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ABSTRACT 

The worldwide pandemic of coronavirus disease 2019 (COVID-19) along with the various newly 

discovered major SARS-CoV-2 variants, including B.1.1.7, B.1.351, and B.1.1.28, constitute the 

Variant of Concerns (VOC). It's difficult to keep these variants from spreading over the planet. As 

a result of these VOCs, the fifth wave has already begun in several countries. The rapid spread of 

VOCs is posing a serious threat to human civilization. There is currently no specific medicine 

available for the treatment of COVID-19. Here, we present the findings of methods that used a 

combination of structure-assisted drug design, virtual screening, and high-throughput screening to 

swiftly generate lead compounds against Mpro protein of SARs-CoV-2. Therapeutics, in addition 

to vaccinations, are an essential element of the healthcare response to COVID-19's persistent 

threat. In the current study, we designed the efficient compounds that may combat all emerging 

variants of SARs-CoV-2 by targeting the common Mpro protein. The present study was aimed to 

discover new compounds that may be proposed as new therapeutic agents to treat COVID-19 

infection without any adverse effects. For this purpose, a computational-based virtual screening of 

352 in-house synthesized compounds library was performed through molecular docking and 

Molecular Dynamics (MD) simulation approach. As a result, four novel potent compounds were 

successfully shortlisted by implementing certain pharmacological, physiological, and ADMET 

criteria i.e., compounds 3, 4, 21, and 22. Furthermore, MD simulations were performed to evaluate 

the stability and dynamic behavior of these compounds with Mpro complex for about 30 ns. 

Eventually, compound 22 was found to be highly potent against Mpro protein and was further 

evaluated by applying 100 ns simulations. Our findings showed that these shortlisted compounds 

may have potency to treat the COVID-19 infection for which further experimental validation is 

proposed as part of a follow-up investigation. 
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1. INTRODUCTION 

The current ongoing pandemic of COVID-19 has appeared as one of the most life-threatening 

infections caused by SARS-CoV-2 [1]. It was initially diagnosed in Wuhan city, China (December 

2019), associated with a bunch of respiratory diseases. The International Committee on Taxonomy 

of Viruses (ICTV) named this virus “SARS-CoV-2” and the disease “COVID-19”. Several 

countries have declared it as a pandemic in a very short span of time due to its rapid spread [2, 3]. 

The World Health Organization (WHO) reported on 16th July 2021 that there are more than 180 

million infections with 4 million deaths caused by Covid-19 around the globe [4].  

COVID-19 is a positive sense ranging from 26 to 32 kb ssRNA containing virus (65–125 nm in 

diameter) in size [5]. Coronavirus genome is comprised of the 5′-untranslated region (UTR), 

replicase complex (ORF1a and ORF1ab), structural genes for spike (S), nucleocapsid (N) 

envelope (E), membrane (M) proteins, and several Open Reading Frames (ORFs) for accessory 

proteins introduced between four structural genes, ending with 3′-UTR with poly A tail. However, 

the two polypeptides generated from the first ORFs (pp1a and pp1ab) encode for several vital 

Nonstructural Proteins (NSPs), among which is NSP5 (a cysteine 3C-like protease) also known as 

main protease (Mpro) [6, 7]. The Mpro protein mediates the production of important NSPs crucial 

for the viral infection cycle i.e. RNA-dependent RNA polymerase, methyltransferase, and 

helicase[8]. Hence, the main protease controls the major pathways and replication of the viral 

genome and it is an attractive drug target to halt the replication event in the virus life cycle [9, 10]. 

The membrane association, fusion of membranes and entry of this pathogenic virus into the host cell is 

mediated by spike protein which is anchored by viral envelope. The spike proteins are large transmembrane 

glycoprotein which in some coronaviruses are cleaved by cellular proteases into two subunits [11]. There 

are S1 and S2 domains of spike protein which are described for HCoV-22E, HCoV-NL63 and SARS-CoV 

[12]. The S1 domain of spike protein mediates viral binding with susceptible host cell surface 

receptor/ACEII, while S2 domain comprises of hydrophobic peptide and coiled coil regions which facilitate 

membrane fusion followed by prior receptor association [13]. S-protein interacts with host angiotensin 

converting enzyme (II) receptor/ACE-II receptor. This S-protein/ACE-II interaction causes the fusing of 

host cell membrane with virus [14]. 

Currently, due to the mutations found in the SARS-CoV-2 genome, several different variants 

(alpha., beta, gamma, delta and recently Omicron) are recognized in different countries [15] having 
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S-gene (+) with a higher rate of transmissibility and immune escape mechanism responsible for 

persevering a global threat [16]. Initially, the alpha variant that emerged from the Wuhan strain 

possesses 13 mutations that ultimately increases the transmissibility rate up to 50%. Another 

variant of the greatest concern is Beta or B.1.351, which was first emerged in South Africa, 

possessing nine mutations, decreases the neutralization aptitude of antibodies prompted by 

infection with earlier variants or vaccination [15]. Similarly, the third worldwide documented 

VOC, Gamma or P.1, is composed of 11 spike mutations [17]. Nevertheless, the emerging variant 

B.1.617 or delta derived from Alpha lineage B.1.617 is now internationally recognized as VOC, 

that is comprised of different mutational profiles [4]. These multiple mutations appear to give an 

advantage to variants [18] with increased transmission rate (e.g., within 10 seconds, 60% more 

transmissible than Alpha variant), rendering it as most dangerous and dominant variant globally 

[19, 20]. The recently emerged Omicron variant also possessed 50 mutations (30 in spike proteins). 

Luckily, in all these Cov-II mutations, Mpro remained conserved without any prior mutations [21]. 

Therefore, Mpro protein remained a promising target to halt the potent COVID pathogenicity 

mechanism. Recent Bioinformatics studies have also uncovered the roles of miRNAs in the 

pathogenesis and in the infection mechanism of SARs-COV-2.  The viral miRNAs are crucial in 

the infection as they facilitate the viral entry into host cells due to the low molecular weight and 

size. They are unperceived by the host immune system. They also target immune system, cytokine 

storm, and inflammatory response related host’s genes. Thus, the interactions between the miRNA 

and other molecules may also be suitable intervention strategy for limiting the viral infection and 

in terms of prevention and cure [22].  

Several vaccines are available since early 2022 however, the new viral variants with novel 

mutations and antigenic profiles are posing serious threats and diminishing the efficacy of the 

available vaccines (e.g., AstraZeneca, Sinovac, Sinopharm, and Pfizer’s, etc)[23]. Collectively, 

these all vaccines are only ~50% effective with lower optimal results against these variants[9, 24-

26]. Certain drug and vaccine designing approaches are used to develop efficacious drugs or 

vaccines against COVID-19[27-29]. However, no such effective vaccine or drug candidate is yet 

designed that can completely treat CoV-II infections [15]. A new approach is imperative with 

insights into the initial strains of COVID-19 to investigate the mutation mechanism and look 

forward to developing new therapeutics. Therefore, we employed the computational based virtual 

screening, molecular docking, followed by the intensive ADMET profiling and MD simulation 
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approach to predict the in-house synthesized multiple medicinally important class of chemical 

compounds as novel therapeutic candidates against SARS-CoV-2. In this study, an established 

drug target is used to discover new therapeutics against it while a machine learning approach can 

also be used to explore the chemical space if the drug target is known [30-32]. The prioritized 

compounds in this study belong to the tyramine, quinoline, thiourea and indole class of 

compounds. Quinolone are highly reported compounds for their diverse pharmacological role, 

used as anti-bacterial, antitumor, and antiparasitic [33]. Significantly, some of its derivatives are 

approved (FDA approved) against fungal infections, antiseptics, and amoebiasis etc 

(https://go.drugbank.com/categories/DBCAT002551). Furthermore, thiourea derivative are 

primarily used as second generation antibiotics to treat Graves, diabetes, and cancers [34]. 

Similarly, indole derivatives are widely tested against ant-durg-resistant caner and multiple disease 

[35]. In comparison to the existing therapy and reported data for SARS-CoV-2, the derivatives of 

these compounds utilized in the current study are not previously studied, thus providing a new 

prospective for SARS-Cov-2 drug discovery. Overall, the current study provides an insight to 

combat COVID-19 using novel identified drug candidates as promising lead, optimized for drug 

discovery. We strongly believe that our findings may provide prolific information and better 

guidance for drug development against all the existing strains of the CoV-II virus including the 

newly emerged Omicron variant as well.  
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2. MATERIAL AND METHODS 

2.1. Dataset Collection and Preparation 

The structures of synthetic compounds were drawn in ChemDraw3D. All 352 structures were 

subjected to energy minimization with MM9F forcefield available in ChemDraw3D. The 

minimized compounds were then saved in PDB format for further virtual screening analysis. The 

X-ray crystal structure of the main protease (PDB ID: 6Y2G) with its inhibitor was retrieved from 

RCSB Protein Data Bank [36]. The PDB 6Y2G was preferred because it is a complexed structure 

of SARS-CoV-2 Mpro protein with an inhibitor and having better resolution.  

2.2. Ligand Preparation 

All 352 in-house synthetic compounds were subjected to Open Babel 2.3.1 [37] to convert in to 

PDBQT format. The PDBQT format is required for virtual screening as AutoDock Vina [38] read 

this format. 

2.3. Protein/Receptor Preparation and Grid Generation 

The X-ray crystal structure of the main protease (Mpro) was prepared with ADT tool of AutoDock 

Vina. The water molecules were removed, polar Hydrogens were added and non-polar Hydrogens 

were merged. Kollman charges were added to estimate the potential partial atomic charges 

followed by saving the receptor protein in the PDBQT format for further analysis. The prepared 

protein structure was used for grid generation using the AutoGrid program in AutoDock Vina. The 

receptor grid box of size x = 40, y = 40, and z = 40 dimensions were centered on the selected co-

crystallized ligand of the protein within the active site. The grid was centered on x = -18.792, y = 

-6.95, and z = -26.325 with 0.375 nm spacing. The grid maps were prepared around amino acids 

Leu27, His41, Ser139, Phe140, Leu141, Asn142, Gly143, Ser144, Cys145, Met165, Glu166, 

Leu167, Val171, His172, and Ala173 by running AutoGrid 4. These amino acid residues were 

selected due to the presence of co-crystallized ligand and existence of catalytic dyad i.e. His41 and 

Cys145. 
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2.4. Virtual Screening 

The approach to discover the potent inhibitors against the SARS-CoV main protease (Mpro) 

employed the screening of a small library of synthetic compounds into the active site of the target 

protein. The AutoDock Vina was used to perform the screening of all 352 synthetic compounds. 

The compounds were docked with the receptor and 20 conformations were generated for each 

compound. The screening model was employed to select the compounds with potential of 

mediating the energetically favorable interactions with the active site of the target protein. The 

method was first validated by redocking the co-crystal ligand “ketoamide” to the Mpro structure 

(Figure 1 and Supplementary Information heading 1 and Figure 3) . The crystal structure of Mpro 

was fetched from the protein data bank. 

2.5. ADMET-Tox Properties Estimation 

The compound obtained after the virtual screening was narrowed down based on ADMET-Tox 

(http://www.acdlabs.com/products/admet/tox/) properties. An online tool PreADMET 

(http://preadmet.bmdrc.org) was employed to perform ADMET-Tox calculation. The properties 

were considered to screen the compounds that fulfill the requirement to define them as ADMET-

Tox competent and safe enough to administer them in-vivo or animal use. The estimated features 

to define molecules are safe based on ADMET-Tox and include CMC_like_Rule, 

Lead_like_Rule_Violation_Fields, Rule_of_Five, Blood_Brain_Barrier (BBB), Buffer_solubility, 

Caco2, Plasma_Protein_Binding, Pure_Water_Solubility, Skin_Permeability, Carcino_Mouse, 

Carcino_Rat, and hERG_inhibitor. All screened compounds were evaluated for their drug-like 

nature under the rule of five, CMC-like-Rule, and Lead-like-Rule. ADME predictions such as oral 

drug absorption was based on Caco2-cell model, potential oral and transdermal drug delivery was 

based on Skin permeability. The drug distribution was predicted by Blood brain barrier(BBB) and 

Plasma protein binding model predicted efficacy and disposition. Toxicity predictions was based 

on carcino mouse and rat model that can readily classify the risk of mutagenicity.  

2.6. Molecular Docking Experiments 

The compounds that fulfilled the requirements of ADMET-Tox properties were further subjected 

to molecular docking via AutoDock 4.2 tools. The specificity of the binding of the compounds 
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with stable conformation within the binding site pocket was increased via the employment of same 

grid box which was used for virtual screening. The molecular docking was used to dock 

compounds with the following parameters: 250 number of GA runs, 250 population size, and the 

maximum number of evaluations = 10000000. The best-docked ligand conformation out of 250 

conformations having the least binding energy was obtained complexed with Mpro in PDBQT 

format. The best-docked pose of the compounds was 2D plotted via LigPlus 1.4.5 [39] to get 

insights of 2D interactions, whereas the 3D interactions were generated and examined in UCSF 

Chimera v.1.14 [40]. 

2.7. MD Simulations  

The obtained docked conformations complexed with Mpro binding site were subjected to 

molecular dynamics simulation. The ligand and protein were prepared separately for MD 

simulation. The ligand was prepared via an online tool named Automated Topology Builder (ATB) 

V 3.0. [41]. The ATB server used GROMOS96 54A7 forcefield to minimize the ligand and the 

ligand topology files were obtained as an output. Additionally, the Mpro protein was converted in 

GROMACS file format with pdb2gmx using a forcefield of gromos96 54a7. Later, both ligand 

and protein in GROMACS formatted file were complexed. The ligand-Mpro complex was covered 

with a unit cell of dodecahedron box shape of size 1.0 and the spc216 water model of GROMACS 

was used to solvate the complex with water. System solvation was followed by the addition of four 

Na+ ions in the system to make it neural. The molecular dynamics was performed in three steps 

on the prepared ligand-Mpro complex with GROMACS. First, the system’s minimization was 

performed which consisted of 50,000 steps via the steepest descent minimization algorithm. The 

system minimization is intended to eradicate the major atomic clashes in the protein. Then the 

system was equilibrated to restrain protein and ligand whereas solvent and Na+ ions were allowed 

to contact the protein. The total equilibration time was 100 ps along with the time step of 2 fs at 

300 K. Finally, the MD production steps were performed without position restraining for a total of 

30 ns with a timestep of 2 fs at 300 K. The trajectories were obtained after MD production step. 

They were used to analyze root mean square deviation (RMSD), root mean square fluctuations 

(RMSF), radius of gyration (Rg), and hydrogen bond analysis of the system. The binding free 

energy of compound 22 was evaluated via MMGBSA method by using gmx_MMPBSA tool 

v1.5.2. [42]. The following equation used to evaluate binding free energies:  
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ΔGbind = Gcomplex – Gprotein – Gligand  

= ΔEMM + ΔGGB + ΔGSA – TΔS 

= ΔEvdw + ΔEele + ΔGGB + ΔGSA – TΔS 

Eq (1) 
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3. RESULTS 

3.1. Virtual Screening of Synthesized Compounds 

All 352 in-house synthesized compounds were virtually screened against the chain A of Mpro 

(since Mpro is a homodimeric enzyme). It resulted in shortlisting of the 22 compounds with the 

estimated lowest binding energy (≤ -7.0 kcal/mol) in comparison with the binding energy of the 

co-crystallized ligand (-7.4 Kcal/mol) (Figure 2). All compounds obtained from the experiment of 

virtual screening were found in contact with the amino acids His41, Met49, Phe140, Leu141, 

Asn142, Gly143, Ser144, Cys145, His163-164, Asp187, and Arg188. Whereas the interactions of 

the compounds with the amino acid residues His41 and Cys145 were found to be more significant 

since these residues are also involved in the substrate catalysis [21]. The compounds along with 

their structure and binding energy are given in Table 1. 

3.2. Physicochemical Properties and ADMET-TOX Prediction 

The pharmacokinetics properties and toxicity profile of the compounds are necessarily required to 

certify the level of their efficacy along with their therapeutic and toxic effects. The examined 

properties of the initially obtained significant compounds through virtual screening are shown in 

Table 2. The Blood-Brain Barrier (BBB) permeability defines the ability of the compound to 

penetrate the CNS [43]. The value of CNS > -2 was measured to infiltrate the Central Nervous 

System (CNS). Among the four lead compounds, compounds 3, 4, and 21 had CNS permeability 

of -1.4, -1.357, and -0.863 respectively, showing that they are accessible to CNS. Whereas 

compound 22 had the least -2.649 value i.e. impermeable to CNS and considered as non-toxic to 

CNS. All the four compounds were predicted as non-toxic and non-carcinogenic in AMES (assay 

to assess reverse mutation in Salmonella) and carcinogenic profile assessment. The shortlisted 

compounds followed the Lipinski rule of five where the molecular weight of compounds 2, 3, 21, 

and 22 were 352.604, 351.711, 344.789, and 304.39 g/mol respectively. That is in complete accord 

to the Lipinski’s rule of five. All four lead-like compounds were found to be in an acceptable range 

according to the Lipinski rule of five, and their pharmacokinetic and toxicity profiles. Since 

compound 22 was impermeable to CNS, it was deemed more suitable for further analysis.  
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3.3. Molecular Docking Studies 

The ADMET-Tox profile of compounds 3, 4, 21, and 22 was suitable for their possible 

consideration to be used as a safe drug candidate for in-vivo studies. The binding energies of 

compounds 3 and 4 were estimated as -7.17 and -6.6 Kcal/mol respectively. Both compounds were 

interacted with the target binding site on CoV-II Mpro via mediating only significant hydrophobic 

interactions (Table 3) as seen in Supplementary Figures 1A and 1B. Whereas compounds 21 and 

22 were found as mediating the hydrogen bonds between the amino acid residue His163 and 

His164 while compound 21 formed an additional H-bond with Ser144 (Table 3). The compound 

21, having trifluoromethyl group, formed one H-bond with amino acid Ser144 at a bond distance 

= 2.82 Å and second hydrogen bond with the His163 at a bond distance of 2.72 Å, whereas the N1 

group of compound 21 formed an H-bond with oxygen (O) of His164 (bond distance of 2.78 Å) 

as shown in Supplementary Figure 1C. The O-3 group of compound 22 mediated an H-bond with 

NE2 of His163 with a bond distance of 2.84 Å, while the N2 group of compound 22 mediated an 

H-bond with (O) of His164 (bond distance 2.90 Å) as seen in Figure 3. The co-crystallized ligand 

“O6K” with the Main protease of SARS-CoV-II was re-docked with -7.97 kcal/mol as estimated 

binding energy. The O-26 group of O6K mediated an H-bond with SG of Cys145 (bond distance 

= 2.87 Å) whereas, O-40 of O6K mediated an H-bond with the O of the carbonyl group of Glu166 

backbone (bond distance = 2.86 Å) as shown in Supplementary Figure 1D. 

In addition, the docking scores were used to make predictions for the inhibitory constant (Ki) for 

these compounds. By measuring the Ki, one may estimate that how likely a compound will inhibit 

an enzyme and lead to a clinically significant drug interaction with an enzyme. A compound 

inhibitory potential may often be predicted by calculating the Ki in proportion to the inhibitor 

concentration in the body. In the current study, Ki values for the lead compounds were predicted 

to be in the range of 11-14µm (Table 3). This correlation study showed that the predicted Ki and 

binding energy of the compounds were highly correlated (r2 = 0.99), estimating the direct 

correlation of Ki with predicted docking scores [44] (Figure 4). 

3.4. Molecular Dynamics Simulation 

The docked complex of Mpro and ligands (3, 4, 21, and 22) shortlisted by docking studies were 

further assessed for their stability analysis utilizing MD simulation for up to 30 and 100 ns. The 
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simulation outcomes are highlighted in terms of RMSD, RMSF, hydrogen bond, and radius of 

gyration analysis. 

The RMSD suggested that the lead compounds 3, 4, 21, and 22 were all within the permissible 

range of 0.25 nm, indicating that all detected lead compounds were tightly bound within Mpro 

active cavity. The protein-compound complex system proceeded to equilibrate between 12 and 30 

ns within the RMSD range of 0.2 to 0.3 nm resulting in an average RMSD value of 0.25 nm, as 

per the RMSD graph (Figure 4A). The Mpro in complex with compound 3 (black) showed stability 

after 13 ns of simulation with mild fluctuations. After 13 ns simulation, a modest increase in 

complex with 4 (red) and 21 (blue) was observed, resulting in overall stability within the range of 

0.2 – 0.4 nm. The compound 22 complex (green) and reference compounds (yellow) showed the 

stable RMSD at 12 ns around 0.2 nm. These backbone variations observed in Mpro and ligand 

complexes indicate the conformational changes as shown by the RMSD.  

The RMSF trajectories provide essential information regarding the stability of the complex. The 

large variance in the plots indicates that the interactions are more flexible and fragile. Low values 

or less fluctuation indicate well-structured complex regions with less distortion. However, the 

Mpro complex with compounds showed an identical pattern of interactions in the system as shown 

in Figure 4B. The compounds complexed with Mpro showed stability of protein with slight high 

peaks observed as the constant pattern during the complete (30 ns) simulation period. 

Furthermore, the radius of gyration was also analyzed to study the compactness of Mpro in the 

presence of compounds. The simulated Rg of these five (four selected and one reference) 

compounds varies from 2.17 to 2.3 nm as illustrated in Figure 4C. The Rg value revealed the 

stability of the protein in the complex indicating the stable binding of these five molecules without 

any structural reforms. 

Hydrogen bonding determines the strength of the interaction between ligands and proteins. 

Throughout the simulation, a continuous range of hydrogen bonds ~5 was detected in these 

compounds when analyzed at 4 frames interval. Whereas compound 22 mediates ~10 hydrogen 

bonds in 1790 frames with the Cys145 of catalytic site along with Gly143, Asn142, Glu166, 

Ser144, Gln189, Gly143, His41, Ser46 in 615, 484, 213, 202, 171, 15, 6, and 6 frames respectively 

(Figure 6), indicating the most stable bonding with Mpro protein.  
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During simulation, the Mpro protein in complex with four compounds was identified to be stable 

during 30 ns simulation. However, compound 22 outperformed the overall simulation studies and 

showed more stable interaction compared to other compounds and reference ligand and hence 

better possibilities for inhibiting Mpro as a prospective inhibitor. Therefore,  200-ns simulation of 

Apo protein (Mpro) and compound 22 were further performed to more accurately understand the 

stability and flexibility of compound 22 within the Mpro cavity. The RMSD results showed that 

compound 22 (red) remained stable after ~30 ns of simulation with mild fluctuation within the 

range of 0.2–0.4 nm as given in Figure 7A, whereas Apo protein (black) fluctuated in the range of 

0.2–0.3 nm. It shows the significant differences in the binding pattern of compound 22 with Mpro 

i.e., a fluctuation can be observed after the ligand is bound to Mpro (red).Importantly, during 

simulations analysis, the RMSD of compound 22 within the binding pocket was also evaluated to 

monitor the ligand stability and flexibility throughout the 200 ns simulation. It was observed that 

the compound 22 initially showed fluctuations between 10 to 15 ns stabilizing at 0.5 nm, while 

convergence was observed after 15 ns to 55ns. However, after 55 ns its showed stable interaction 

with in the pocket throughout the 200 ns simulations within the range of 0.65 to 0.8 nm. This value 

lowers with time, showing that compound 22 may change Mpro conformation in the binding area. 

Throughout the simulation, the RMSD of compound 22 fluctuated between 0.5 and 0.8 nm and 

stayed constant at 0.75 nm respectively as showed in Figure 7B. The fluctuation and overall 

stability of compound 22 in Mpro binding cavity showed variable conformations changes 

suggesting the stability of its interaction. Additionally, the calculated Coulombic and Lennard 

jones dispersion/repulsion interaction energies for Mpro Protein and Compound 22 complex was 

calculated. It resulted in the estimated average energies as -115 and -112 KJ/mol respectively as 

Supplementary Figure 4. The detail of these estimated energies are provided in Supplementary 

Table S1. 

The RMSF and Rg for compound 22 and Apo protein were also calculated and compared and  

found to be in an acceptable range as given in Figure 7C (shown in black-compound 22 and shown 

in red-Apo protein) and 7D (shown in black-compound 22 and shown in red-Apo protein). 

Moreover, several persistent hydrogen bonds mediated by ligand with mainly Cys145 in 9698 

frames, Asn119 in 5686 frames, δ2N of Asn142 with O1 and O2 of ligand 22 in 3988 and 155 

frames respectively. Whereas, N of Gly143 mediated H-bond O1 and O2 of compound 22 in 4823 

and 1811 frames respectively. Furthermore, N and γ-O of Ser144 mediated H-bond with O1 of 
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ligand in 3125 and 73 frames respectively. Additionally, ε-N of Gln189 mediated H-bond with O3 

of compound 22 in 184 frames, shown in Figure 6E. These bonds were mainly observed between 

compound 22 and amino acids residues of Mpro binding pocket (Cys145, Gln189, Asn142, 

Ser144, Asn119, and Gly143) defining the possible significant in-silico inhibitory activity of 

compound 22. The binding free energy of compound 22 was estimated via last 100 frames of 

equilibrated simulation trajectories by gmx_MMPBSA [42]. In this study, the ΔGbind value of 

compound 22 was equaled to -22.13 Kcal/mol as shown in Figure 8, ranging from -18 to -28.5 

Kcal/mol (Supplementary Table S2).  
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4. DISCUSSION 

The novel coronavirus has resulted in an ongoing pandemic problem [45]. The need to discover 

the new drugs, that can potentially target the virus in patients suffering from the infection due to 

new types of emerging COVID-19 variants such as delta and most recently the omicron despite 

the availability of vaccines, still exists [46]. The viral genome of the SARS-CoV II encodes several 

structural and non-structural proteins[47]. The non-structural proteins also include main proteases 

(Mpro)[47]. The Mpro protein is one of the most suitable and attractive drug targets for the design 

and development of direct-acting anti-viral drugs (Figure 1). The Mpro protein is a conserved key 

enzyme and plays a pivotal role in the process of viral replication and transcription [48]. Our study 

has taken Mpro as potential drug target to perform the structure-based identification of potential 

inhibitors from the in-house synthesized compound library (Table 1). The virtual screening, 

molecular docking and dynamic simulation approaches were adopted as they are time efficient, 

cost-effective and powerful tool in the development of drugs against disease.  

4.1. Virtual Screening, Molecular Docking Analysis Based on Binding Energy and 

ADMET-Tox Profiling 

The amino acid residues of the catalytic pockets of the Mpro are highly conserved and share more 

than 90 % sequence similarity with 3CLpro of other coronaviruses. The two conserved amino acids 

His41 and Cys145 (catalytic dyad) are mainly responsible for the catalysis of the substrate in the 

binding site [49]. In the current study, structure-based virtual screening for Mpro determined 22 

compounds as computationally suitable ligand from the in-house synthesized compound library. 

The compounds with the potential antiviral activity were ranked based on the estimated binding 

energy profiles by comparing the estimated binding energy of the co-crystallized ligand. The 

interaction profiles of these 22 compounds in stable conformation within the binding cavity of the 

Mpro revealed the Hydrogen bond interactions with the conserved catalytic dyad. It also revealed 

the H-bond, pi-pi, non-covalent, or hydrophobic interactions with other hot spot amino acids such 

as Met49, Phe140, Leu141, Asn142, Gly143, Ser144, His163-164, Asp187, and Arg188 as 

highlighted in Figure 3 and Supplementary Figure 1. Although all the 22 ligands have been docked 

with significant binding energies onto the Mpro target protein, but only compounds 3, 4, 21, and 

22 were selected due to their appropriate ADMET-Tox profiles and physicochemical properties 
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(Table 2). Therefore, the molecular interaction profiles of only four ligands (compounds 3, 4, 21, 

and 22) were analyzed via molecular docking studies (Table 3). 

The existence of H-bond, hydrophobic (pi-pi stacking) and non-covalent (non-polar) interactions 

implied that all ligands were docked in their energetically favorable conformations. It also implied 

that the interatomic distances were within the range of 5 nm. Detailed analysis of the docking 

experiment revealed that compounds 3 and 4 were stabilized by pi-pi interactions and compounds 

21 and 22 were stabilized with the H-bond interactions and pi-pi bond with the hot spot residues. 

In previous similar docking studies performed against the Mpro, the hotspot residues such as 

His164, Glu166, Asp187, His41, Gln189, and Cys145 were found in mediating polar and non-

polar interactions i.e. H-bond interactions and pi-pi (hydrophobic) interactions [50]. This 

confirmed that the binding modes of all four compounds with the target Mpro are significant and 

their binding behavior is similar to potential inhibitors.   

4.2. Molecular Dynamics Trajectory Analysis 

The MD simulation offered the detailed study of binding interactions of ligands to the targets on 

atomic levels. The RMSD, RMSF, Rg and number of hydrogen bonds analysis provided useful 

insights into the structural stabilities and binding modes of the ligands. The resulting graph 

generated by all these analyses are more often used to predict the compound’s affinity for the 

active site of Mpro target protein. The root means square deviation (RMSD) value of Mpro and all 

four compounds remain stable after 12 ns depicting the convergence of simulations. All systems 

appeared to converge within 30 ns simulations, shown in Figure 5A. The average value of RMSD 

varies between 0.14 and 0.38 nm. The maximum deviation occurred in the compound 4 simulation 

system and the minimum deviation was in compound 22. Overall, the observation suggested that 

docked complexes were stable. The RMSF plot given in Figure 5B showed ligands 21 and 4 

depicted the slightly significant fluctuation across different regions of residues compared to other 

ligands. Overall, all four ligand complexes and co-crystallized complexes exhibited the same 

fluctuation pattern (peaks) across the residues. The Rg calculated for all four complex systems and 

co-crystallized ligand complex varied between 2.125 and 2.325 nm. It suggested that the 

compactness of all systems are similar and binding patterns are stable (Figure 5C). Moreover, the 

200 ns simulation for compound 22 compared with 200 ns simulation for Apo protein resulted in 
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stable interaction throughout the 200 ns simulation with mild fluctuation within the acceptable 

range of 0.5 to 0.75nm. It showed the significant differences in the binding pattern of compound 

22 with Mpro i.e., fluctuations can be observed after the ligand bound to Mpro (Red) in Figure 7A. 

These results showed that the compound 22 is highly stable and can be used as a lead to discover 

novel therapeutics against COVID-19. 

4.3. Hydrogen Bond Analysis  

Hydrogen bonding determines the binding strength of the ligands to the proteins. The hydrogen 

bond formed between the protein backbone and the ligands were calculated throughout the 

simulation runtime. The number of hydrogen bonds formed contribute to the overall 

conformational stability of the docked complex. Overall, the compounds 3 (Supplementary Figure 

2A) and 4 (Supplementary Figure 2B) showed less stable and insignificant intermolecular 

hydrogen bond interactions and compound 21 (Supplementary Figure 2C) showed inconsistent 

hydrogen bonds in just two frames of MD simulation, with amino acid Ser144 and His172 of Mpro. 

The simulation analysis revealed many hydrogen bonds formed between amino acid residues of 

Mpro and ligand 22 shown in Figure 5. The simulation experiments also revealed that compound 

22 had the highest affinity for Mpro compared to the other ligands. The extended simulation from 

30 ns to 100 ns of complex 22 indicated strong interactions due to the formation of many 

intermolecular hydrogen bonds. During 30 ns simulation, a constant and strong H-bond was 

observed between residue Cys145. The Ser144 was also found to be involved in mediating the H-

bond within the 5 ns of simulation and afterward with minor breaks. The Gln189 mediated a weak 

bond between 0-3 ns and then 10-15 ns. Similarly, two strong H-bonds were observed after 20 ns 

between Asn142 and Gly143. The 200 ns simulation revealed that the H-bond between Cys145 is 

significant and stable throughout the simulation, only minor breaks observed, shown in Figure 7E. 

The H-bond interactions exhibited by Asn142 was found more stable between 20-50 ns and then 

less stable after 55 ns whereas completely despaired after 160ns of simulation. The bond between 

Gly143 and compound 22 was more stable in 200 ns simulation as it appeared after 20 ns and 

remain consistent up to 55 ns, appeared and disappeared in many frames up to 160 ns while 

completely disappeared after 160 ns of simulation. The H-bond of Ser144 was unstable, formed in 

many frames throughout the simulation showing the facilitation of Ser144 in the ligand binding in 

active site of enzyme. A new H-bond between Asn119 and compound 22 appeared after 55 ns 
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which became more stable after 175 ns till the end of 200 ns of simulation. The hydrogen bond 

analysis revealed that Asn119, Asn142, Gly143, Ser144, and Cys145 were mainly involved in the 

interaction and stabilization of compounds within the Mpro binding pocket. Root Mean Square 

Fluctuation (RMSF) of protein’s amino acid residues throughout 200 ns simulations showed the 

stability of protein and compound with mild fluctuations (Figure 7C). Similarly the RMSF analysis 

of Apo protein (black) and Mpro-compound 22 complex (red) showed the distinct fluctuations in 

the ligand bound protein amino acids as significant peaks of active amino acids can be observed 

from 100 to 200 range of amino acids i.e., Asn142, Gly143, Ser144, Cys145, Glu166, and Gln189 

(Figure 7D). On the other hand, the Radius of Gyration (Rg) of proteins (black) and ligand bound 

protein (red)  presented protein stability upon inhibitor interaction with Mpro. A significant 

compactness of protein can be observed after the compound 22 occupied the binding pocket of 

Mpro while a significant decrease in Rg was observed in the range of 2.15nm compared to 2.25nm 

of Apo protein (Figure 7E), and persistent hydrogen bonds mediation of compound 22 with the 

significant amino acids of binding pocket of Mpro such as Asn142, Gly143, Ser144, Cys145. The 

results of hydrogen bonds are further supported by the RMSF fluctuation observed (in Figure 7C) 

within the binding pocket of Mpro, required for the anchoring and catalysis of substrate. The H-

bond analysis of co-crystallized ligand given in Supplementary Figure 2D showed that the bond 

between His41, Asn119, and Glu166 with co-crystallized ligand is stable, whereas Cys145, Thr26, 

Gly143, and Ser144 are less stable. Hence, it is suggested that the number of hydrogen bonds 

formed during simulation is more in case of compound 22 than the co-crystallized ligand. The 

results of hydrogen bond analysis illustrated that the residue Cys145 is stable in compound 22-

Mpro complex and His45 is stable for co-crystallized ligand-Mpro complex. Besides these 

observations, the residue Gly143, Ser144, and Asn119 are also stable in compound 22-Mpro 

complex (Figure 7A, 7B, and 7C) and Asn119 is stable in co-crystallized-Mpro complex (Figure 

5A, 5B, and 5C). Furthermore, the result obtained from MMGBSA calculations revealed the stable 

binding of compound 22 with Mpro target site. The detailed information of the calculated 

contribution of energy term in Eq. 1 revealed that compound 22 binding to Mpro was primarily 

driven by van der waals (ΔEvdw) and electrostatic interaction energies (ΔEele), but hampered by 

polor solvent energies (ΔGpol-sol), as summarized in Supplementary Table S3. 

The analysis of results revealed that compound 22 showed a very strong molecular interaction 

profile with an amino acid residue of the binding site especially the catalytic dyad (Cys145 and 
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His41) of the Mpro target enzyme. Hence the compound 22 may behave as a plausible candidate 

for designing direct antiviral inhibitors against SARS-CoV as it also showed the highest extent of 

safety profile. In future, these results will be followed up by performing in vitro experiments to 

demonstrate their effectiveness.   

5. CONCLUSION 

The main protease (Mpro) is a potential drug target for designing direct-acting anti-viral inhibitors. 

We adopted a virtual screening protocol to search novel inhibitors from an in-house synthesized 

library. The four compounds were identified as potential inhibitors based on ligand-protein binding 

pattern (lowest estimated binding energy) and ADMET-Tox prediction profiles. Furthermore, the 

structure stability and dynamic behavior of Mpro were explored through MD simulation upon 

binding with these four compounds. Overall, the whole study of simulation analysis manifested 

that the Mpro-compound 22 complex is more stable, and its simulation properties were comparable 

to that of co-crystallized Mpro complex. Compound 22 exhibited good intermolecular interaction 

and binding profiles with the conserved residues of the catalytic site particularly the Cys145 (that 

is the part of catalytic dyad). Therefore, our findings suggested that the compound 22 may have 

the ability to inhibit the replication process in SARs-CoV-II by directly targeting the Mpro 

enzyme. However, in vitro testing protocols are required to further support these results.   
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FIGURE LEGENDS 

 

Figure 1. The 3D structure of Mpro, integrated with inhibitor (brown) embedded in enzyme’s catalytic 

pocket. 
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Figure 2. Virtual screening of 352 in-house synthetic compounds against SARS-CoV-II Mpro. It shows 

that compounds mainly showed binding affinities from -5.8 to -6.11 kcal/mol, -6.38 to -6.92 kcal/mol. 

Additionally, >200 compounds showed binding energies > than -6.0 kcal/mol. 
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Fig: 3-A 
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Fig: 3-B 
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Figure 3. Docking studies of compounds showing significant Hydrogen bonds and Hydrophobic interaction 

in 2D (3A) and 3D (3B) formats of compound 22. Showing potent interaction within the binding cavity of 

Mpro. 

 

Figure 4: The correlation analysis of lead compounds docking scores and their predicted Ki, showing the 

strong correlation with R2 = 0.99. 
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Fig: 5-A 
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Fig: 5-B 
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Figure 5. Molecular dynamics simulation study highlighting Root mean square deviation (RMSD) of 

protein backbone (A), Root Mean Square Fluctuation of proteins in complex with shortlisted four 

compounds after simulations (B), Radius of gyration of proteins (Rg) showing the protein stability during 

Mpro-inhibitor interaction (C). i.e., Compound 3 (black), 4 (red), 22 (green), 21 (blue), Co-crystalized 

ligand (yellow). 

 

 

Fig: 5-C 
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Figure 6. Hydrogen bonds mediated by ligand 22 with MPro of CoV-II. Significant atom types shown 

involve in mediation of H-bond with the amino acids of binding pocket of MPro for the 30 ns simulation, 

showing the potential interaction of compound 22 with enzyme. 

  Jo
urn

al 
Pre-

pro
of



31 
 

 

 

 

  

Fig:7-A 

Fig: 7-B 
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Fig: 7-C 

Fig: 7-D 
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Figure 7: Molecular dynamics simulation of Compound 22 (A), Root mean square deviation (RMSD) of 

apo protein (black) and ligand bounded protein (red) within the binding pocket of Mpro. It shows the 

significant differences in the binding pattern of compound 22 with Mpro i.e., a fluctuation can be observed 

after the ligand bound to Mpro (Red) (B), Root Mean Square Fluctuation of proteins amino acid residues 

throughout 200 ns simulations showing stability of protein and compound with mild fluctuations (C), the 

RMSF analysis of Apo protein (Black) and Mpro-compound 22 complex (red) showing the clear 

fluctuations in the ligand bounded protein amino acids, as a significant peaks of active amino acids can be 

observed from 100 to 200 range of amino acids i.e., Asn142, Gly143, Ser144, Cys145, Glu166, and Gln189. 

(D) Radius of gyration (Rg) of proteins (Black) and ligand bounded protein (Red) indicating protein 

stability upon inhibitor interaction with Mpro. A significant compactness of protein can be observed after 

the compound 22 occupied the binding pocket of Mpro with a significant decrease in Rg can be observed 

in range of 2.15nm compared to 2.25nm of Apo protein (E), and persistent hydrogen bonds mediation of 

compound 22 with the significant amino acids of binding pocket of Mpro such as Asn142, Gly143, Ser144, 

Cys145 respectively. The results of hydrogen bonds are further supported by the RMSF fluctuation 

observed (in Figure 7C) within the binding pocket of Mpro, required for the anchoring and catalysis of 

substrate. 

Fig: 7-E 
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Figure 8: Binding free energy calculation for compound 22 via MMGBSA Eq (1), showing binding free 

energy as -28 Kcal/mol within the binding cavity of Mpro for last 100 frames of 200 ns simulation. 
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Table 1: Top 22 molecules obtained on virtual screening via autodock vina, with the best binding 

affinity score 

S. 

No. 

Compound Structure Binding 

Affinity 

(Kcal/mol) 

Compound 

Class 

1 

 
 

-7.5 Tyramine 

2 

 

-7.4 Tyramine 

3 

 

-7.3 Quinoline 

4 

 

-7.2 Quinoline 

5 

 

-7.3 Quinoline 
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6 

 

-7.2 Quinoline 

7 

 

-7.3 Quinoline 

8 

 

-7.3 Quinoline 

9 

 

-7.5 Quinoline 

10 

 

-7.6 Quinoline 
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11 

 

-7.4 Quinoline 

12 

 

-7.7 Quinoline 

13 

 

-7.3 Quinoline 

14 

 

-8.1 Quinoline 

15 

 

-7.7 Quinoline 
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16 

 

-7.4 Quinoline 

17 

 

-7.3 Quinoline 

18 

 

-7.4 Quinoline 

19 

 

-7.2 Quinoline 

20 

 

-7.2 Thiourea 
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21 

 

-7.2 Thiourea 

22 

 

-7.5 Indole 
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Table 2: Pharmacological and toxic profiling of virtually significant compounds using Pre 

ADMET webserver 

 

Parameter Compound 

3 

Compound 

4 

Compound 

21 

Compound 

22 

CNS 

permeability 

-1.4 -1.357 -0.863 -2.649 

MW 352.604 351.711 344.789 304.39 

Rule 0f five Suitable Suitable Suitable Suitable 

CMC like 

rule 

Qualified Qualified Not 

qualified 

Qualified 

Plasma 

protein 

binding 

98.426781 90.847276 91.408083 78.62002 

Caco2  48.126 48.548 55.282 33.0089 

Skin 

permeability 

-2.72608 -2.01596 -1.63015 -4.15853 

AMES 

toxicity 

 No No No No 

Carcino 

Mouse 

No Yes No No 

Carcino Rat No No No Yes 

CYP2C19 

inhibition 

Yes Yes   

CYP2C9 

inhibition 

Yes Yes No No 

CYP2D6 

inhibition 

No No No No 

CYP3A4 

inhibition 

Yes Yes No No 

CYP3A4 

substrate 

Yes Yes Yes Yes 

CYP2D6 

substrate 

No No No No 

P-

glycoprotein 

inhibition 

Yes Yes Yes No 
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Table 3: Molecular docking of shortlisted compounds with SARS CoV-II Mpro (6Y2G) using 

AutoDock 4.2 

 

Compounds Binding 

Energy 

(Kcal/mol) 

Amino 

Acid 

(H-

Bond) 

Amino Acid 

(Hydrophobic) 

Predicted 

Ki (µm) 

3 -7.17 - His41, Phe140, 

Leu141, 

Ser144, 

Cys145, 

His163, 

His164, 

Met165, 

Glu166 

12.37 

4 -6.6 - His41, Phe140, 

Leu141, 

Ser144, 

Cys145, 

His163, 

His164, 

Met165, 

Glu166, 

Asp187 

14.52 

21 -6.67 Ser144, 

His163, 

His164 

His41, Asn142, 

Phe140, 

Cys145, 

Met165, 

Glu166, 

Val186, 

Asp187, 

Arg188, 

Gln189, 

 

12.44 

22 -6.6 His163, 

His164 

His41, Met49, 

Phe140, 

Leu141, 

Asn142, 

Gly143, 

Ser144, 

Cys145, 

Met165, 

Glu166, 

His172, 

11.53 
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Phe181, 

Asp187, 

O6K -7.97 Cys145, 

Glu166 

His41, Met49, 

Phe140, 

Leu141, 

Asn142, 

Gly143, 

Ser144, 

His163, 

His164, 

Met165, 

Asp187, 

Arg188 

14.56 

 

 

 

Jo
urn

al 
Pre-

pro
of



Highlights 

 

• A combination of structure-assisted drug design method was applied to propose lead 

compounds against Mpro protein of SARs-CoV-2. 

• Hypothesized potent compounds that may treat all emerging variants of SARs-CoV-2. 

• A computational-based virtual screening of 352 in-house synthesized compounds library was 

performed. 

• Compound 22 was found to be highly potent against Mpro protein 
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