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Attributing human cases of foodborne diseases to putative sources of infection is crucial for
identifying targets for interventions in the food production chain (Pires et al., 2009). Beyond
traditional epidemiological approaches to source attribution, including outbreak investigations
(Pires et al., 2010) and case-control studies of sporadic cases (Fullerton et al., 2012),
which are undermined by several factors like simultaneous exposure to multiple sources and
selection/information bias, a number of microbiological approaches have been developed (Pires
et al., 2014). These approaches are based on statistical modeling of microbial subtyping data, which
often derive from integrated surveillance systems of human cases and pathogen occurrences in
selected animal, food, and environmental sources (Pires et al., 2009).

The so-called “frequency-matching” source attribution models, such as the (modified) Dutch
(van Pelt et al., 1999; Mughini-Gras et al., 2014b) and Danish (“Hald”) models (Hald et al.,
2004; Mullner et al., 2009a; David et al., 2013a), which rely on the one-to-one matching of
microbial subtypes in humans and sources, have been extensively used for source attribution
of major (bacterial) foodborne pathogens. Studies have focused on Salmonella (Hald et al.,
2004, 2007; Mullner et al., 2009a; Guo et al., 2011; David et al., 2013b; Mughini-Gras et al.,
2014a,c; De Knegt et al., 2015; de Knegt et al., 2016; Vieira et al., 2016) and Campylobacter
(Mullner et al., 2009a,b; Boysen et al., 2014), and to a lesser extent on Listeria (Little
et al., 2010; Nielsen et al., 2017) and Shiga-toxin producing E. coli (STEC) (Mughini-Gras
et al., 2018b). In these studies, subtypes were defined by either phenotyping (e.g., serotyping,
phage-typing, antimicrobial resistance) or genotyping (e.g., multi-locus sequence typing and
multi-locus variable number tandem repeat analysis). Other source attribution approaches
are based on the genetic relatedness among isolates from humans and sources. These are
population genetics models like STRUCTURE (Pritchard et al., 2000) and the asymmetric
island model (Wilson et al., 2008), which have different genetic targets (e.g., allele numbers,
microsatellites, single nucleotide polymorphisms). Applications of these models are mainly
limited to Campylobacter (Wilson et al., 2008; Sheppard et al., 2009; Strachan et al., 2009, 2012;
Mughini Gras et al., 2012; Smid et al., 2013; Mossong et al., 2016) and, to a far lesser extent,
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Salmonella (Mughini-Gras et al., 2014c; Barco et al., 2015), and
Listeria (Nielsen et al., 2017). The scope of pathogens addressable
with these models will increase in the years to come as the
Whole Genome Sequencing (WGS) “revolution” is increasing
the acquisition of high-throughput data (Franz et al., 2016).
While the high discriminatory power of molecular data can be
adjusted to use the frequency-matching models (de Knegt et al.,
2016), population genetics approaches are a more promising
way forward. They namely allow assessing the genealogical
history and evolutionary relationships among strains, taking
into account mutation, recombination and migration events.
A characteristic of population genetics models is that strain
types found exclusively in humans and not in sources can still
be attributed, usually to the genetically closest. This can be
considered as either an advantage or a limitation. Whatever
the case may be, it is of value when perfect matches of strain
types between humans and sources are unattainable given the
highly discriminatory genetic targets investigated and the usually
limited number of sources represented. For WGS-based source
attribution, it is essential to rely on networks of laboratories that
share genomic (and epidemiological) data, working altogether
toward harmonizing methods, inputs, and outputs.

For selected pathogens for which data on the level of
contamination along the food production chain, consumer’s
practices and dose-response relationships are available,
quantitative risk assessment (QRA) offers another option for
“bottom-up” source attribution. QRA models have the potential
to estimate the proportion of cases attributable to sources for
all points in the food production chain, accounting for factors
(e.g., food processing, storage, consumption) that are otherwise
difficult to address with typical disease surveillance tools. Yet,
incorporating strain virulence variation in dose-response models
remains challenging.

Epidemiological and microbiological approaches, however,
are not mutually exclusive and can be combined in a
“source-assigned case-control study” design, as illustrated for
Campylobacter (Mullner et al., 2010; Bessell et al., 2012;
Mughini Gras et al., 2012; Lévesque et al., 2013; Mossong
et al., 2016; Rosner et al., 2017), Salmonella (Mughini-Gras
et al., 2014b), and STEC (Mughini-Gras et al., 2018b). Source
attribution at the point of exposure is also possible by combining
comparative exposure assessment and subtype comparison based
on comparative genomic fingerprinting (Ravel et al., 2017). These
combined analyses show that the outcome of epidemiological
studies and QRA can be enhanced by incorporating source
attribution and vice versa.

The choice of the source attribution method depends on
the point of attribution along the farm-to-fork continuum and
the epidemiological context, as well as the quality/completeness
of data available and the characteristics of the pathogen in
question. For microbiological methods, the sampling point
of the sources determines the point of attribution, hence
the risk management target (Mughini-Gras et al., 2014a).
Indeed, while epidemiological methods like case-control studies
are best suited to attribute sporadic cases “downstream” to
specific food exposures, transmission routes and risk factors,
microbiological methods can attribute sporadic cases up to

the level of reservoir (i.e., amplifying host). Moreover, when
using frequency-matching models, the subtypes upon which
attribution relies must possess some stability along the farm-to-
fork continuum, as they are often compared between primary
production and human cases. If this is not the case, population
genetics models, which account for evolution, are to be preferred.
Microbiological methods, however, are not suited to attribute
pathogens with low genotyping/phenotyping diversity (i.e., non-
heterogeneous distribution among sources), and pathogens with
only one recognized reservoir in a given setting (e.g., cats for
Toxoplasma gondii). Moreover, QRAmodels can be used to assess
the relative contributions of different reservoirs, transmission
routes, risk factors and exposures, but in practice they are mainly
used to assess a limited number of sources to which consumers
are directly exposed.

Data availability and quality are major factors guiding the
choice of source attribution methods, and doubtlessly the
relevance of results. Inferring probabilistically the most likely
sources of human cases based on subtyping data is demanding in
terms of data requirements and computational capacity. Besides
large strain-typed data sets for a broad panel of potential sources
representative of the epidemiological situation in question, it
may be necessary to include other data on, e.g., the level of
contamination of the sources and food consumption. Therefore,
comprehensive application of microbiological approaches to
source attribution are often conditional to well-established
surveillance systems, detailed ancillary data to frame the specific
epidemiological context, and the systematic and harmonized
application of subtyping methods. This requires including
source attribution as an objective of surveillance systems to
generate data optimized for this purpose. Yet, studies providing
indications on the optimal sample size to address both statistical
power and strain diversity in source attribution are scarce (Smid
et al., 2013).

The relevance of the attributions based on microbiological
methods depends also on the number of sources considered,
which need to be as complete and representative as possible.
Omission of epidemiologically-relevant sources can seriously
affect the attributions. A characteristic of the frequency-matching
models is that they do not allow attributing subtypes identified
only in humans, thereby generating a fraction of non-attributable
cases. Yet, human cases related to sources that are not included
in the model, but are infected with subtypes present also
in other sources included in the model, will be erroneously
attributed to these latter sources. It has been shown that
including sources considered of minor importance led to
the reassignment of 25% of the cases initially attributed to
known sources of Salmonella (David et al., 2013b). The panel
of potential sources included in the analysis is particularly
important for population genetics models, as no non-attributable
fraction is contemplated. Non-omission of relevant sources
is also relevant when there are important non-foodborne
sources, as illustrated for environment-mediated spread of
Campylobacter (Friesema et al., 2012; Mughini-Gras et al.,
2016b) and pet-associated salmonellosis (Mughini-Gras et al.,
2016a) and campylobacteriosis (Mughini Gras et al., 2013).
However, such non-food sources are not usually monitored
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by surveillance systems. Moreover, source attribution based
on microbial subtyping often suffers from incomplete time
series for all relevant sources. This makes it difficult to assess
trends in the relative contributions of different sources and
to document the impact of interventions, even if methods
attempting to address this have been proposed (Ranta et al.,
2011).

Accounting for biological characteristics of the different
strains remains challenging for models based on microbiological
methods, as well as QRA. Moreover, these models often assume
that the different strains and sources are independent entities,
whereas biological interactions between these exist. Recently,
a new source attribution model, named sourceR, has been
proposed (Miller et al., 2017). This model builds upon, and
blends together, properties of the original (Hald et al., 2004) and
modified (Mullner et al., 2009a) Hald models, using molecular
surveillance data to determine the force of infection from
each source, allowing for varying survivability/pathogenicity
of strains and varying abilities of sources to act as vehicles
(Miller et al., 2017). A Bayesian non-parametric approach is
used to cluster strains by epidemiological behavior, preventing
the model from overfitting and allowing for the detection
of “highly virulent” strains (Miller et al., 2017). This is a
significant improvement over previous models that relied on
several adaptations to improve identifiability, such as fixing
some parameters a priori (Hald et al., 2004), modeling them
hierarchically as random effects (Mullner et al., 2009a), or
setting the ones related to a unique source using data-based
values (David et al., 2013a). Future developments will have to
focus on modeling also spatiotemporal effects to identify, e.g.,
foci of source contamination in time and space, particularly
for pathogens that rapidly evolve over time and are highly
diverse across regions (Miller et al., 2017). Moreover, including
interactions between types and sources would allow for certain
types to be differentially likely to cause disease depending on the
source they appear in (Miller et al., 2017). There is also a need
to account for multi-directionality in transmission from and to
the sources and within the human population itself, as this is
a limiting factor for source attribution of microorganisms for
which humans can be both targets and sources. This could be
the case of, e.g., Shigella,Cryptosporidium, or Extended-Spectrum
Beta-Lactamase (ESBL)-producing bacteria.

The development of new source attribution models should
go in parallel with the development of model diagnostics and
empirical cross-validation tools, similar to traditional validation

based on self-attribution (Sheppard et al., 2009; Kittl et al.,
2013; Mughini-Gras et al., 2014c). In addition, difficulties in
identifying a model that satisfies all needs should lead to the
routine application of different models in a comparative fashion,
including indexes of genetic proximity and diversity (e.g.,
Simpson’s index of diversity and analysis of molecular variance)
(Excoffier et al., 2005; Sheppard et al., 2009; Kittl et al., 2013; Roux
et al., 2013), and phylogenetic approaches (Didelot and Falush,
2007; Strachan et al., 2009; Roux et al., 2013; Mughini-Gras et al.,
2014c) to complement source attribution (Dearlove et al., 2016).
Comparison with epidemiological approaches (Roux et al., 2013)
or different population genetics models like BAPS (Dale et al.,
2011) are also available. Obviously, using new models requires
evaluating changes in trends of attributions as to check whether
they reflect actual changes in the epidemiology of these pathogens
or artifacts of the different methods used (Mughini-Gras et al.,
2018a).

In conclusion, with increased interest in source attribution of
foodborne pathogens, current methods need to be systematically
sorted and possibly combined or applied in a comparative
fashion, accounting for factors like the type, quality, and
completeness of data available, analytical requirements, point
of attribution, pathogen characteristics, and epidemiological
contexts. As this field evolves, a number of methodological
bottlenecks will have to be faced, including the analysis of
increasingly available high-throughput data, spatiotemporal and
multi-directional processes, and the yet to be determined
differential properties (pathogenicity and behavior) of pathogen
strains in interaction with the sources.
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