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Abstract

Lipid droplets (LDs) are dynamic cellular organelles responsible for the storage of neutral lipids, and are associated with a
multitude of metabolic syndromes. Here we report monodansylpentane (MDH) as a high contrast blue-fluorescent marker
for LDs. The unique spectral properties make MDH easily combinable with other green and red fluorescent reporters for
multicolor fluorescence imaging. MDH staining does not apparently affect LD trafficking, and the dye is extraordinarily
photo-stable. Taken together MDH represents a reliable tool to use for the investigation of dynamic LD regulation within
living cells using fluorescence microscopy.
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Introduction

Lipid droplets (LDs) are ubiquitous cellular organelles respon-

sible for the storage of neutral lipids, important in development,

and provide needed energy supply under conditions where food

sources become limiting [1,2]. Notable associations to LD

dysregulation are a multitude of metabolic syndromes, such as

obesity and diabetes. LDs are dynamic: proteomic analysis has

revealed that large numbers of proteins reside on LD surfaces, with

the exact protein content dynamically remodeled under varying

culturing conditions [3,4,5,6]. LDs are actively transported along

microtubules, oftentimes undergoing fusion events [7,8,9,10]. Live

cell analysis is thus required for unraveling the dynamic regulation

of this important organelle.

Live-cell imaging offers a unique opportunity for investigating

LD regulation. A large collection of imaging tools based on

fluorescence is currently available to cell biologists. Varying

colors of photostable genetically-encoded fluorescent proteins can

be used in multiplexed tracking of protein remodeling on LDs

[11]. Photo-switchable fluorescent proteins as well as fluorescent

timers will allow quantitative assessment of LD protein dynamics

[12,13]. Fluorescent sensors, such as those based on fluorescence

resonance energy transfer (FRET), can be applied to follow

protein conformational changes or protein-protein interactions

relevant to LDs [14]. These tools, combined with the use of a

reliable LD marker, represent a versatile scheme for investigating

LD biology.

However, commercially available live-cell LD dyes such as

NileRed and BODIPY 493/503 can be limiting in multicolor

imaging, as most ready-made fluorescent reporter constructs

fluoresce in the green to red region of the visible spectrum (e.g.

the large collection of reporter constructs available from

Addgene utilizing EGFP, EYFP or mcherry). NileRed emits

broadly between green and red, while its absorption significantly

overlaps with both EGFP and mcherry, making combined use

with other fluorescent reporters difficult. BODIPY 493/503, on

the other hand, can be used together with red-fluorescent

constructs for two-color imaging; but its lesser photo stability,

and being photoconvertable from green to red fluorescent [15],

limit one’s ability to utilize it for time lapse imaging of living

cells. Two recently reported, but commercially unavailable small

molecules, LD540 and LipidGreen, were demonstrated as

probes for in vivo imaging of lipid droplets [16,17], but again

fluoresce in the green to red region of the visible spectrum. Dye-

free LD imaging can be achieved through coherent Raman

microscopy [18,19] or harmonic generation microscopy [20,21],

though these methods require sophisticated setups that are less

accessible. Combining these dye-independent methodologies

with fluorescence in live-cell imaging could also be problematic,

as pulsed-lasers required for these techniques rapidly photo-

bleach fluorescent proteins, rendering longer-term investigations

difficult. The identification of a dye that can stain the LD cores

while being spectrally well-separated from most fluorescence

reporters will be key to the application of live-cell imaging in

studying LD biochemistry.

Herein we report a commercially available fluorophore

monodansylpentane (MDH) as a new marker for LDs in living

cells. MDH absorbs in the violet (and emits blue fluorescence

when labeling LDs), well-separated from the most robust

fluorescent proteins/reporters. It can be excited with 405 nm,

compatible with most confocal fluorescence microscopes. We

found MDH achieved its high contrast LD labeling in living

cells through two mechanisms: its preferential partitioning into

LDs, and its significantly blue-shifted, highly enhanced emission
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within lipophilic environments. Easily combinable with different

fluorescent reporters for multi-color live cell imaging, MDH

possess extraordinary photostability as compared to NileRed

and BODIPY 493/503. MDH can also be effectively imaged

with two-photon fluorescence microscopy. MDH labeling did

not apparently affect LD trafficking activities in living cells.

Taken together, these findings demonstrate that MDH repre-

sents a robust marker for LDs in live-cell fluorescence

microscopy.

Materials and Methods

Materials
Methanol (#1060074000) was obtained from Merck. 2-

propanol (#9084-03) was obtained from J.T. Baker. 100%

sunflower seed oil was obtained from Quaker (Taiwan). BODIPY

493/503 (#D-3922) was obtained from Invitrogen. The EGFP-

tubulin plasmid (#6117-1) was obtained Clonetech. The TagRFP-

ADRP plasmid was constructed by inserting the human ADRP

gene into the pTagRFP-C vector (#FP-141) from Evrogen. The

mEos2-GABARAPL2 plasmid was constructed by combining

mEos2 (Addgene, #20341) and the human GABARAPL2 gene in

the pEGFP-C1 vector backbone (Clonetech).

Cell culture and transfection
HeLa cells (CCL-2) were acquired from American Type

Culture Collection (ATCC, Manassas, VA, USA) and maintained

at 37uC, 5% CO2 in Dulbecco’s Modified Eagle Medium (Gibco,

#11965) supplemented with 10% Fetal Bovine Serum (Gibco,

#10437) and 1% P/S (Gibco, #15140). HepG2 cells (HB-8065)

were acquired from American Type Culture Collection (ATCC,

Manassas, VA, USA) and cultured in Minimum Essential Medium

(MEM) (Gibco, #10370) supplemented with 10% Fetal Bovine

Serum (Gibco, #10437) and 1% P/S (Gibco, #15140). HepG2

cells were transfected using the transIT-LT1 transfection reagent

(Mirus, #MIR 2300). 3T3-L1 preadipocytes were maintained at

37uC, 5% CO2 in Dulbecco’s Modified Eagle Medium (Gibco,

#11965) supplemented with 10% Calf Serum (JRH, #12138C)

and 1% P/S (Gibco, #15140).

Protocol for MDH staining of LDs in living cells
To stain LDs in live cells with MDH (Abgent, #SM1000a), cells

need to be first washed once with PBS, and incubated with

100 mM of MDH-containing PBS (37uC, 15 minutes). Cells should

then be washed three times with PBS and transferred into phenol-

red free medium for imaging. LDs can then be imaged using

405 nm excitation and 420–480 nm emission.

3T3-L1 Differentiation
In adipocyte differentiation, the preadipocytes were grown to

confluency in 10% calf serum/DMEM. Two days (DAY 0) post

confluency, the maintaining medium was switched to MDI

induction medium (10% FBS/DMEM supplemented with

1.1561024 g/ml IBMX, 1 mg/ml Insulin and 1 mM Dexameth-

asone). The medium was further changed to insulin medium (10%

FBS/DMEM with 1 mg/ml Insulin) on DAY 2, and returned to

10% FBS/DMEM from DAY 4 onwards.

Fluorescence Spectroscopy
The MDH fluorescent emission spectrum in H2O, methanol,

isopropanol, and sunflower seed oil were recorded on a

Fluoromax-4 spectrofluorometer. MDH was excited with

405 nm, and its fluorescence between 420–670 nm was measured.

Live Cell Imaging
Cells were imaged on an Olympus FV1000 confocal microscope

under 5% CO2 at 37uC. MDH was excited with 405 nm, and its

fluorescence between 420–480 nm was collected. BODIPY 493/

503 (stained with 1 mg/ml in PBS for 15 min at room

temperature; stocked at 1 mg/ml in methanol), was excited with

488 nm, and its fluorescence between 500–550 nm was collected.

NileRed (stained with 100 ng/ml in PBS for 15 min at room

temperature; stocked at 25 mg/ml in DMSO), was excited with

488 nm, and its fluorescence between 530–600 nm was collected.

EGFP and mEos2 fluorescence were collected using 488 nm

excitation (collecting 500–550 nm emission), and TagRFP fluo-

rescence was obtained using 559 nm excitation (collecting 570–

670 nm emission).

Two-photon Fluorescence Imaging. Cells were imaged on

a Zeiss LSM 510 confocal microscope under 5% CO2 at 37uC.

Images were collected using a 4061.2 W Zeiss C-Apochromat

objective. MDH was excited with 760 nm light (Coherent

Figure 1. The Solvatochromatic properties of MDH. (A) MDH
contains a fluorescent dansyl moiety that displays strong solvatochro-
matic properties. (B) MDH absorption spectrum in water and methanol.
(C) MDH emission in different solvents (H2O/methanol/isopropanol/
sunflower seed oil); the MDH emission maxima shifted from 570 nm to
485 nm with decreasing solvent polarity (when excited with 405 nm).
doi:10.1371/journal.pone.0032693.g001

The Blue Lipid Droplet Dye MDH
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Chameleon), and its fluorescence between 435–485 nm was

collected.

Tracking LDs
HeLa cells stained with MDH or BODIPY 493/503 were

imaged at 2-second time intervals for a total of 40 seconds, and

the movements of LDs were tracked using the ImageJ particle

tracker plugin. LDs trajectories that displayed continuous active

transport throughout the entire movie were collected and

analyzed.

Results

MDH solvatochromatic fluorescence properties
MDH contains a dansyl moiety known to exhibit solvatochro-

matic fluorescence properties [22,23] (figure 1A); such properties

Figure 2. A comparison between the spectral properties of commercially available LD dyes and fluorescent proteins. The absorbance
(A) and emission spectra (B) of LD dyes in sunflower seed oil, overlaid with fluorescent proteins’ respective curves in water (the TagGFP2, TagYFP, and
TagRFP spectra were obtained from Evrogen). The absorbance spectrum of MDH is significantly blue-shifted compared to those of the green and red
fluorescent proteins. The 420–480 nm emission from MDH in oil is also free of overlap from the green and red fluorophores.
doi:10.1371/journal.pone.0032693.g002

The Blue Lipid Droplet Dye MDH
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provide microenvironment sensing ability that generates contrast

for cell imaging. MDH absorbs in the violet, very well-separated

from the most robust genetically-encoded fluorophores (figure 1B),

the green and red-colored fluorescent reporters (which absorbs in

the blue/green region of the visible spectrum), allowing them to be

combined for multi-color live cell imaging. We find when using

405 nm excitation, a light source commonly found in confocal

fluorescence microscopes, MDH’s fluorescence displayed a strong

polarity dependence. Not only did the emission intensity increase

strongly in the non-polar solvents (i.e. methanol or isopropanol vs.

water), the emission maximum was also greatly blue-shifted from

570 nm in water to 485 nm in sunflower seed oil (figure 1C). The

effect was not a result of an MDH absorption difference in varying

solvents (figure 1).

Blue-fluorescing MDH’s selectively labels LDs
As MDH is hydrophobic, together with the fact that it emits

strong blue fluorescence when placed into lipophilic environments

(i.e. sunflower seed oil, figure 1), we reasoned that MDH could be

a robust marker for LDs, the most hydrophobic structure of a cell.

Cells labeled with MDH could be monitored for blue emission

(420–480 nm, a spectral region free of potential background from

the MDH that partitioned into aqueous environments) following

405 nm excitation to highlight cytosolic LDs. We compared the

absorbance and emission spectrum of MDH and the commercially

available LDs dyes in sunflower seed oil (to mimic the LD

environment) to those of fluorescent proteins in water; MDH’s

absorbance and emission is significantly blue-shifted from green/

red fluorescent proteins (figure 2). The 420–480 nm emission

window is particularly suitable for imaging MDH within lipidic

environments, and can be used in combination with green/red

fluorophores for multicolor imaging.

MDH was previously proposed to be a marker for autophagic

structures, due to its structural homology to a commonly utilized

autophagosome dye, monodansylcadaverine (MDC) [24,25].

However, MDH is much more hydrophobic than MDC, and

chemical structures similar to MDH such as Prodan and

Laurdan are known to partition into lipidic environments

[26,27]. In the initial report that suggested the use of MDH

for autophagosome labeling, the signals were not verified with

autophagic structure marker proteins, and were widefield

fluorescence images on fixed cells showing strong cytoplasmic

labeling that are difficult to interpret [25]. We verified the

cellular staining patterns for MDH using live HepG2 cells, and

found that MDH staining patterns (using 420–480 nm emission)

were entirely segregated from well-known autophagic structure

markers: this includes atg5, which resides on phagophores [28],

and LC3/GABARAPL2, two molecules that resides on autop-

hagosomal membranes [29] (figure 3). MDH structures also did

not colocalize with LC3 in HeLa cells (figure S1). Instead, MDH

staining patterns were apparently highly circular in shape,

resembling cytosolic LDs.

Figure 3. MDH staining patterns are separated from known molecular markers for autophagic structures. HepG2 cells transiently
transfected with either EGFP-LC3B (top row), mcherry-atg5 (middle row), or mEos2-GABARAPL2 (bottom row) were stained with MDH and imaged.
Under normal (not shown) and starvation conditions, EGFP-LC3B, TagRFP-atg5, or mEos2-GABARAPL2 puncta did not colocalize with MDH spots
(right columns; merged). Scale bars, 10 mm.
doi:10.1371/journal.pone.0032693.g003
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To confirm that MDH staining patterns indeed represented

LDs, we compared it to the cellular distribution of adipocyte-

differentiation related protein (ADRP), an abundant LD surface

protein [30]. We found that TagRFP-ADRP quantitatively

decorated the surface of MDH stained puncta (full overlap),

indicating that the MDH structures are cytosolic LDs (figure 4B).

In addition, EGFP-TIP47 translocated onto MDH stained puncta

upon oleic acid supplementation, again confirming MDH

structures as LDs (figure S2). We further tested MDH’s ability to

stain LD in adipocytes, where neutral lipid accumulation is most

abundant. As expected, before 3T3-L1s were differentiated

(preadipocytes), the MDH patterns highlighted the small and

dispersed LDs within the cell cytoplasm; 10 days after differen-

tiation, the MDH patterns revealed large LDs, characteristic of the

adipocyte phenotype (figure 4C).

Mechanism for MDH-based LD imaging
By exciting MDH with 405 nm, and simultaneously imaging its

fluorescence between 420–480 nm and 550–650 nm in HepG2

cells, we found that MDH’s robust ability in highlighting cytosolic

LDs can be attributed to two major factors: 1. MDH is

hydrophobic and preferentially partitions into LDs. As shown in

the fluorescence emission spectrum of MDH in figure 1 (bottom),

MDH possess similar total fluorescence in water as in sunflower

seed oil between 550–650 nm when excited with 405 nm. In cell

images on MDH taken between 550–650 nm, LDs showed the

strongest fluorescence (figure 4A, bottom, LDs were much brighter

than other signals), indicating a preferential MDH-partitioning

into LDs. 2: MDH fluorescence is highly enhanced and blue-

shifted in lipophilic environments. While MDH preferentially

partitions into lipophilic environments, imaging between 550–

650 nm was not sufficient to generate a background-free image on

cellular LDs. Collecting MDH’s fluorescence between 420–

480 nm, on the other hand, generated LD images devoid of

background (figure 4A, top). This is because MDH’s blue

fluorescence is highly enhanced within nonpolar environments,

while MDH in aqueous environments (i.e. figure 1, water) show no

prominent signal within this emission range.

Multi-color Live cell imaging using MDH
MDH’s violet absorbance and its blue emission in lipophilic

environments allow simple implementation of multicolor live-cell

imaging on LDs. As shown in figure 4B, we simultaneously imaged

LD with MDH (blue), the microtubule cytoskeleton with EGFP-

tubulin (green, the track LDs travel on), and the ubiquitous LD

protein TagRFP-ADRP (red). The images show no crosstalk

between the 3 colors (a 2-color MDH/EGFP-tubulin movie is

shown in Movie S1). It will also be straightforward to combine the

use of MDH with other fluorescence reporters.

It is important to determine whether MDH staining retain the

native cellular LD properties to allow imaging in living cells. We

addressed this by monitoring LDs movements (motor protein

driven active transport, figure 5A and Movie S2) on microtublues.

We compared the MDH- and BODIPY 493/503- stained LD

motilities in HeLa cells. The LD velocity distributions obtained

using the two different dyes were apparently identical (figure 5B).

The numbers matched the velocities of microtubule motor

proteins [31,32], and the LD movement speed previously obtained

[33,34]. This confirms that MDH is indeed compatible with live

cell imaging of LD activities.

We further benchmarked the performance of MDH against

BODIPY 493/503 and NileRed for long term live-cell imaging.

To perform this comparison, we stained differentiated 3T3-L1

adipocytes with MDH, BODIPY 493/503, or NileRed. The

differentiated cells display large (.5 mm) LDs that remains

immobile, thereby trackable and permits quantification of the

Figure 4. MDH stains LDs. (A) MDH staining patterns in HepG2 cells mimicked cytosolic LDs. Fluorescence emission between 420–480 nm resulted
in a high contrast, low background staining of round spots in HepG2 (top; 405 nm excitation). In contrast, emission between 550–650 nm generated
images retaining the round spots, but with diffusive background stains (bottom). (B) HepG2 cells were transiently cotransfected with TagRFP-ADRP
(colored red) and EGFP-tubulin (colored green), and stained with MDH (colored blue). ADRP signals surrounded the MDH spots (Inset; magnified image
of the white dotted square region), indicating that MDH patterns are indeed LDs. MDH can be combined with the use of green and red fluorophores,
as evidence by the separate MDH/ADRP/tubulin images. (c) MDH specifically stained the LDs in 3T3-L1 cells before and after differentiation. Top:
undifferentiated. Bottom: ten days after differentiation, showing the expected increase in average LD size. Scale bars, 10 mm.
doi:10.1371/journal.pone.0032693.g004
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fluorescence emission over time (which avoids the complication

from stage drift and cell movement). Adjusting the respective

excitation laser powers (405 nm for MDH, 488 nm for BODIPY

493/503 and NileRed) so that images from the two dyes are of the

same quality (figure S3), we then continuously imaged the LDs for

over 300 seconds. In contrast to BODIPY 493/503 and NileRed,

which showed marked photobleaching, MDH fluorescence in LDs

remained unchanged (figure 6A), demonstrating its superior

performance for live cell imaging.

In addition to its use in living cells, MDH can potentially be

extended towards the imaging of LD in intact organisms, such as

in C. elegans. Fluorescence imaging in organisms oftentimes

mandates the use two-photon excitation (TPE), and we found

that MDH is compatible with such configurations. As shown in

figure 6B, MDH stained HepG2 cells can be effectively imaged

with TPE microscopy while again maintaining high photostability.

Figure 5. LD trafficking monitored in living cells using MDH.
HeLa cells stained with MDH (A, left) were imaged every 2 seconds for
20 frames. Single LD trajectories (A, right, showing the movement of the
LD in the white dotted rectangle) were then individually analyzed. LDs
stained by MDH (B, top) showed similar active transport speeds
compared to those stained with BODIPY 493/503 (B, bottom) (150
velocities each, in HeLa cells). The two distributions displayed similar
mean (0.11 mm/s vs. 0.12) and standard deviation (0.09 vs. 0.11).
doi:10.1371/journal.pone.0032693.g005

Figure 6. Superior MDH properties for live cell imaging. (A) The
performance of MDH for long-term imaging was benchmarked against
that of NileRed and BODIPY 493/503 directly in living cells. We tracked
the fluorescence from MDH, NileRed, or BODIPY 493/503 stained,
large/immobile LDs in differentiated 3T3-L1 cells over time (excitation
laser powers were adjusted such that the images from the three
respective dyes were of the same quality; Figure S3), and found that
while NileRed and BODIPY 493/503 showed substantial photobleach-
ing, MDH emission remained stable for long periods of time. (B) The
LDs of HepG2 cells stained with MDH can be imaged with high
contrast through two-photon fluorescence microscopy (760 nm
excitation). The white-dotted line outlines the boundary of the cell.
Scale bar, 10 mm.
doi:10.1371/journal.pone.0032693.g006
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PLoS ONE | www.plosone.org 6 March 2012 | Volume 7 | Issue 3 | e32693



Discussion

Here we have demonstrated that the commercially available

monodansylpentane serves as a robust marker for LDs in living

cells. Its absorption in the violet region and the blue-fluorescence

allow MDH to be separated with the most powerful fluorescence

reporters. We found that MDH achieved its exquisite labeling on

LD through two properties: its lipophilic nature and its

solvatochromatic fluorescence properties. MDH is highly photo-

stable, and can be efficiently excited using 405 nm laser light

commonly available on confocal fluorescence microscopes. MDH

staining with the supplied protocol allows long term live-cell

imaging, without apparent effects to the cells. Taken together,

MDH should represent an attractive option for researchers

wanting to image dynamic regulation of LD in living cells using

fluorescence microscopy.

Supporting Information

Figure S1 Lack of colocalization between EGFP-LC3
and MDH-stained puncta in starved (EBSS, 1 hour)
HeLa cells. Scale bar, 10 mm.

(TIF)

Figure S2 Translocation of Tip47 onto MDH puncta
upon oleic acid supplementation. In HepG2 cells, EGFP-

TIP47 resided in the cytosol when cultured in MEM+10% FBS

(A), but translocated onto MDH stained puncta upon eight hours

of oleic acid supplementation (0.4 mM oleic acid complexed with

0.25 mM BSA in MEM/FBS, B). Scale bars, 10 mm.

(TIF)

Figure S3 Image quality adjustment for LD dye com-
parison. Using the same detector (PMT) and scan settings, we

varied the respective laser excitation powers to achieve similar

image quality for MDH-, BODIPY 493/503-, and NileRed-

stained LD images in differentiated 3T3-L1 cells (8 days) for

performance comparison. For example, MDH stained 3T3-L1

cells were imaged at various excitation powers (in this figure 16
represents the final excitation power we chose for MDH imaging;

0.56= 50% of the laser intensity used in our performance test;

26= 200% of the laser intensity used in the performance test), and

the emission intensity profile for large (.5 mm), immobile LDs

were analyzed (right, cross-section of the white bar indicated in the

0.56 image). The excitation powers that produced an S/N = 5 on

these large LDs for the respective dyes were selected as the laser

intensity to use for further performance evaluation.

(TIF)

Movie S1 2-color live-cell imaging with MDH in HepG2
cells. HepG2 cells transfected with EGFP-tubulin (shown in

green) were stained with MDH (shown in cyan) and imaged every

30 seconds for 15 frames.

(AVI)

Movie S2 LD active transport in HeLa cells. HeLa cells

was imaged every 0.14 seconds for 20 frames and analyzed for LD

trajectories (corresponding movie file for figure 5).

(AVI)
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