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Fast generation of W states of 
superconducting qubits with 
multiple Schrödinger dynamics
Yi-Hao Kang1, Ye-Hong Chen1, Qi-Cheng Wu1, Bi-Hua Huang1, Jie Song2 & Yan Xia1

In this paper, we present a protocol to generate a W state of three superconducting qubits (SQs) 
by using multiple Schrödinger dynamics. The three SQs are respective embedded in three different 
coplanar waveguide resonators (CPWRs), which are coupled to a superconducting coupler (SCC) qubit at 
the center of the setups. With the multiple Schrödinger dynamics, we build a shortcuts to adiabaticity 
(STA), which greatly accelerates the evolution of the system. The Rabi frequencies of the laser pulses 
being designed can be expressed by the superpositions of Gaussian functions via the curves fitting, so 
that they can be realized easily in experiments. What is more, numerical simulation result shows that 
the protocol is robust against control parameters variations and decoherence mechanisms, such as the 
dissipations from the CPWRs and the energy relaxation. In addition, the influences of the dephasing 
are also resisted on account of the accelerating for the dynamics. Thus, the performance of the protocol 
is much better than that with the conventional adiabatic passage techniques when the dephasing is 
taken into account. We hope the protocol could be implemented easily in experiments with current 
technology.

Entanglement plays a significant role in quantum information processing (QIP)1–12. Therefore, the generation 
of entangled states for two or more particles is not only fundamental for showing quantum nonlocality13–15, but 
also useful in many research fields in QIP, such as, quantum secure direct communication16,17, quantum secret 
sharing18,19, quantum teleportation20,21, quantum cloning machine22,23 and so on. For multi-qubit entanglement, 
there are two major types of entangled states, the W states14 and the Greenberger-Horne-Zeilinger (GHZ) states15, 
which can not be converted to each other by local operations and classical communications. The GHZ states 
are usually called as “maximally entangle” in several senses, e.g., the GHZ state violates Bell inequalities max-
imally. But a particle trace of a GHZ state results in a maximally mixed state compared with a nonmaximally 
mixed result for a W state, i.e., the W states show perfect correlations. Therefore, in past several years, the W 
states have attracted more attentions because of their robustness against qubit loss and advantages in quantum 
teleportation20.

Till now, the generation of the W states has been studied in numerous systems24–35, such as the atom-cavity 
coupled systems24–26, electronic spin qubits inside the quantum dots systems27, photons and linear optical sys-
tems28,29, superconducting qubits (SQs) systems30–36, etc. Among of these protocols24–36, the generation of W states 
with SQs has shown fantastic advantages, since new progress in circuit cavity quantum electrodynamics makes 
it a standout performance among the most promising candidates for implementing QIP37,38. It has been shown 
that, the SQs (e.g., flux, phase and charge qubits) and microwave resonators can be manufactured using modern 
integrated circuit technology, their features can be characterized and adjusted in situ. Moreover, the SQs have rel-
atively long decoherence times39, and various single and multiple qubits operations with state readout have been 
shown40–43. Furthermore, a superconducting resonator can provide a quantized cavity field, in order that the fast 
and long-range interaction between distant SQs could be mediated44–46. What is more, it has been proved by both 
a lot of theoretical researches47,48 and experiments49,50 that, the strong-coupling limit can be easily realized with 
SQs. Therefore, creating W states with SQs is a wise choice.

On the other hand, if one decides to generate W states with SQs, another question is how to accurately con-
trolling the system with high fidelity. Many previous researches have indicated that the adiabatic passages, espe-
cially the stimulated Raman scattering involving adiabatic passage (STIRAP) and its variants51–54 hold robustness 
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against variations of the controlled parameters. Generally speaking, if the system remains in the instantaneous 
ground state of its time-dependent Hamiltonian during the whole evolution process under an adiabatic control, 
the dissipations caused by decoherence, noise and losses may be repressed. However, we all know that, to prevent 
the transition between each instantaneous eigenstate, the adiabatic condition is required, which will badly limit 
the evolution speed of the system. During a long evolution, the dissipations may accumulate and finally destroy 
the intended dynamics. For example, refs 31 and 36 has shown that, the fidelity for generating of the W state by 
using adiabatic passage is quite sensitive to the dephasing, which is an ineluctable element of the decoherence 
mechanisms in the superconducting systems, i.e., a small increase of the dephasing rates causes a large decrease of 
the fidelity; this will also bring challenges to the experiments. Therefore, to overcome the problem causing by the 
long evolution time of the adiabatic passage, one should speed up the evolution by using some other techniques. 
To speed up the evolution, using resonant interaction is a choice. But unfortunately, using resonant interaction 
will make the system quite sensitive to the variations of experimental parameters. For example, if there are a little 
variations of the evolution time or Rabi frequencies of laser pulses, the fidelity will decrease a lot. It is also proved 
in ref. 32 that, with resonant interaction, the population of each state changes rapidly when the evolution time 
increases, and a high fidelity of the target state only appears in very narrow ranges around some certain moments. 
Therefore, methods with both robustness and high speed are desired, and consequently, a new technique called 
“Shortcuts to adiabatic passage” (STAP) has been proposed55–63.

The STAP is closely related to adiabatic passage but totally breaks the limit of the adiabatic condition. It depicts 
a rapid adiabatic-like process which is not really adiabatic but leading to the same goals with adiabatic process. 
With these advantages, the STAP has attracted a lot of interests and been used in many research fields including 
“fast cold-atom”, “fast ion transport”, “fast quantum information processing”, “fast wave-packet splitting”, “fast 
expansion”, and so on refs 64–93. Among of these protocols55–93, the method named “Transitionless quantum 
driving” (TQD)58–61 has shown its power to construct the STAP. However, when we accelerate adiabatic proto-
cols using TQD, the structure or the values of the shortcut-driving Hamiltonian might not exist in practice. For 
example, in refs 24,80,94–96, the authors did a lot to design Hamiltonians to overcome the problem caused by 
the problematic terms which are actually equivalent to the special one-photon 1–3 pulse (the microwave field). 
Nevertheless, the operations usually cause some other problems or make some other limiting conditions to the 
protocols, for examples, there will be a limiting condition for the total operation time to generate the entan-
gled states. Therefore, numerous protocols with different methods97–107 have been further presented to avoid 
the problematic terms of the system’s Hamiltonian which is designed by TQD. Among of these methods97–107, 
the multiple Schrödinger dynamics104,105 is a very interesting method. It exploits iterative interaction pictures 
to obtain Hamiltonians with physically feasible structure for quantum systems. Moreover, by choosing suitable 
boundary conditions, it enables the designed interaction picture to reproduce the same final population (or state) 
as those in the original Schrödinger picture. In 2012, Ibáñez et al.105 have adopted some Schrödinger pictures and 
dynamics to design alternative and feasible STAP for harmonic transport, trap expansions and trap compressions. 
Subsequently, in 2013, Ibáñez et al.104 have studied the capabilities and limitations of superadiabatic iterations to 
construct a sequence of shortcuts to adiabaticity by iterative interaction pictures. Afterwards, Song et al.106 have 
investigated the physical feasibility of the multiple Schrödinger dynamics in a three-level systems, and obtained 
very interesting results in 2016. They have shown that the Hamiltonian of the interaction picture in the second 
iteration has the same form as the Hamiltonian in the original Schrödinger picture. This makes the multiple 
Schrödinger dynamics useful in three-level systems.

Inspired by the protocols in refs 104–106, as well as considering the advantages of the superconducting sys-
tems, we come up with a protocol for generating a W state of three SQs by using multiple Schrödinger dynamics. 
With the help of the multiple Schrödinger dynamics, a STAP is constructed, which greatly speeds up the evolu-
tion of the system. The Hamiltonian being designed in this protocol has the same form as the system’s original 
Hamiltonian. Moreover, the Rabi frequencies of the laser pulses being designed can be expressed by the superpo-
sitions of Gaussian functions assisted by the curves fitting, so that they can be realized in experiments. Numerical 
simulation demonstrates that the protocol is robust against control parameters variations and decoherence mech-
anisms, such as the dissipations from the coplanar waveguide resonators (CPWRs) and the energy relaxation of 
SQs. What is more, the influences of the dephasing are also resisted because of the accelerating for the dynamics. 
Therefore, the performance of the protocol is much better comparing with the conventional adiabatic passage 
techniques when the dephasing is taken into account. Based on a circuit quantum electrodynamics system, the 
protocol could be controlled and implemented readily in experiments.

The article is organized as follows. In the section of “The multiple Schrödinger dynamics”, we will introduce 
the method of the multiple Schrödinger dynamics. In the section of “Fast generation of W states of superconduct-
ing qubits with multiple Schrödinger dynamics”, we will describe the generation of a W state of three SQs in detail. 
In the section of “Numerical simulations and discussions”, we will investigate the performance of the protocol 
when the control parameters variations and decoherence mechanisms are considered. Finally, the conclusions 
will be given in the section of “Conclusions”.

The multiple Schrödinger dynamics
In this section, we would like to review the multiple Schrödinger dynamics104–106 firstly. Assume that the original 
Hamiltonian of the system is H0(t). We perform a picture transformation as ψ ψ= †t A t t( ) ( ) ( )1 0 0 , where 

= ∑A t n t n( ) ( ) (0)n0 0 0  and |n0(t)〉  is the n-th instantaneous eigenstate of H0(t). So, the Hamiltonian in the 1-st 
interaction picture is = −†H t A t H t K t A t( ) ( )[ ( ) ( )] ( )1 0 0 0 0  with = 

†K t iA t A t( ) ( ) ( )0 0 0 . Suppose that the 1-st mod-
ified Schrödinger Hamiltonian is = +H t H t H( ) ( ) cd0

(1)
0

(0). If one hopes the transitions between instantaneous 
eigenstates {|n0(t)〉 } are all forbidden, the simplest choice is =H Kcd

(0)
0, so that the Hamiltonian in the 1-st inter-

action picture is diagonal. If the 1-st modified Hamiltonian H t( )0
(1)  is difficult to be realized, the 2-nd interaction 
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picture should be introduced. Assume that {|n1(t)〉 } are the eigenstates of H1(t). We perform a picture transforma-
tion as ψ ψ= †t A t t( ) ( ) ( )2 1 1  with = ∑A t n t n( ) ( ) (0)n1 1 1 . Then, we obtain the Hamiltonian in the 2-nd inter-
action picture as = −†H t A t H t K t A t( ) ( )[ ( ) ( )] ( )2 1 1 1 1  with = 

†K t iA t A t( ) ( ) ( )1 1 1 . Suppose that the 2-nd modified 
Schrödinger Hamiltonian is = +H t H t H( ) ( ) cd0

(2)
0

(1). To forbid the transitions between {|n1(t)〉 } and diagonalize 
the Hamiltonian in the 2-nd interaction picture, Hcd

(1) can be calculated as = †H A t K t A t( ) ( ) ( )cd
(1)

0 1 0 . Repeating the 
processing as the 1-st and the 2-nd iterations, according to the Hamiltonian in the j-th ( ∈ …j N{1, 2, 3, , }) 
interaction picture (Hj(t)), one can obtain the j-th modified Schrödinger Hamiltonian as

= + = +−


† †H t H t H H t iB t A t A t B t( ) ( ) ( ) ( ) ( ) ( ) ( ), (1)
j

cd
j

j j j j0
( )

0
( 1)

0

where = −B t A t A t A t( ) ( ) ( ) ( )j j0 1 1  and = ∑ | 〉〈 |A t n t n( ) ( ) (0)j n j j  with {|nj(t)〉 } being the instantaneous eigen-
states of Hj(t). Governed by the Hamiltonian H t( )j

0
( ) , the transitions between instantaneous eigenstates {|nj(t)〉 } of 

Hj are forbidden.

Fast generation of W states of superconducting qubits with multiple Schrödinger 
dynamics
In this section, we will show how to generate a W state of three SQs with multiple Schrödinger dynamics. 
Consider a system composed of a superconducting coupler (SCC) qubit and three CPWRs (CPWR1, CPWR2 and 
CPWR3). As shown in Fig. 1(a), the SCC qubit in the center of the devices is coupled to CPWRk through capacitor 
Ck (k ∈  {1, 2, 3}). There is a SQ named SQk in the CPWRk, which has an excited state |e〉 k and two ground states |g〉 k 
and |f〉 k. As shown in Fig. 1(b) the transition |e〉 k ↔  |f〉 k is driven by the laser pulse with Rabi frequency Ωk(t), and 
the transition |e〉 k ↔  |g〉 k is coupled to CPWRk with coupling constant λk. As for the SCC qubit, it has an excited 
state |e〉 c and two ground states |g〉 c and |f〉 c, which has similar structure as the three SQs. The transition |e〉 c ↔  |f〉 c 
is driven by the laser pulse with Rabi frequency Ωc(t). Different from the three SQs, the transition |e〉 c ↔  |g〉 c may 
couple to three CPWRs with different coupling constants. We assume that the coupling constant for the transition 
|e〉 c ↔  |g〉 c coupled to CPWRk is νk. Therefore, in the interaction picture, the Hamiltonian for the system can be 
written by

∑ ∑

∑

λ ν

= +

= + + . .

= Ω + Ω + . .

= =

=

H t H H t

H a e g a e g H c

H t t e f t e f H c

( ) ( ),

,

( ) ( ) ( )
(2)

I c l

c
k

k k k
k

k k c

l c c
k

k k

1

3

1

3

1

3

For simplicity of calculations, we adopt λk =  λ and νk =  ν in the following. Assuming that the initial state of the 
system is Ψ = f g g g(0) 0 0 0r 1 2 3 1 2 3

, where, |0〉 k and |1〉 k are the vacuum state and one-photon state of 
the cavity mode in k-th CPWR, respectively. The excited number operator of the system is defined by 
= + + ∑ + + †N e e f f e e f f a a( )e c c n k k j j . As [Ne, HI] =  0, and Ψ Ψ =N(0) (0) 1e , the system will 

remain in the one-excited subspace spanned by

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ

= =

= =

= =

= =

= =

= .

f g g g e g g g

g g g g g g g g

g g g g g e g g

g g e g g g g e

g f g g g g f g

g g g f

0 0 0 , 0 0 0 ,

1 0 0 , 0 1 0 ,

0 0 1 , 0 0 0 ,

0 0 0 , 0 0 0 ,

0 0 0 , 0 0 0 ,

0 0 0 (3)

c c

c c

c c

c c

c c

c

1 1 2 3 1 2 3 2 1 2 3 1 2 3

3 1 2 3 1 2 3 4 1 2 3 1 2 3

5 1 2 3 1 2 3 6 1 2 3 1 2 3

7 1 2 3 1 2 3 8 1 2 3 1 2 3

9 1 2 3 1 2 3 10 1 2 3 1 2 3

11 1 2 3 1 2 3

Figure 1. (a) Schematic diagram of three CPWRs and a SCC qubit (a circle at the center). (b) The energy-level 
structure of SQk.



www.nature.com/scientificreports/

4Scientific RepoRts | 6:36737 | DOI: 10.1038/srep36737

Moreover, the eigenstates of Hc can be described as

φ
λ ν

λ ϕ ν ϕ ϕ ϕ

φ ϕ ϕ ϕ ϕ

φ ϕ ϕ ϕ ϕ

φ ϕ ϕ ϕ ϕ

φ ϕ ϕ ϕ ϕ

φ ν

λ ν
ϕ ϕ ϕ ϕ

λ

λ ν
ϕ ϕ ϕ

φ ν

λ ν
ϕ ϕ ϕ ϕ

λ

λ ν
ϕ ϕ ϕ

=
+

− + +

= − + −

= − + −

= − − +

= − − +

=






 +

+ + +

+
+

+ +








=






 +

− − −

+
+

+ +








1

3
[ ( )],

1
2

( ),

1
2

( ),

1
2

( ),

1
2

( ),

1
6

3

3

3
( ) ,

1
6

3

3

3
( ) ,

(4)

0 2 2 2 6 7 8

1 3 5 6 8

2 3 4 6 7

3 3 5 6 8

4 3 4 6 7

5 2 2 2 3 4 5

2 2 6 7 8

6 2 2 2 3 4 5

2 2 6 7 8

with corresponding eigenvalues ε0 =  0, ε1 =  λ, ε2 =  λ, ε3 =  − λ, ε4 =  − λ, ε λ ν= + 35
2 2 and ε λ ν= − + 36

2 2, 
respectively.

For simplicity, we set Ω = Ω = Ω = Ωt t t t( ) ( ) ( ) 2 ( )a1 2 3  and Ω = Ωt t( ) 2 ( )c b . Under the condition Ωa(t), 
λΩ t( )b , ν, we can obtain the effective Hamiltonian of the system as

λ

λ ν
ϕ φ

ν

λ ν
ϕ ϕ ϕ φ

α ϕ φ α φ

=
Ω

+
−

Ω

+
+ + + . .

= Ω − Ω + . .

H t t t H c

t t W H c

( ) 2 ( )

3

2 ( )

3
( )

2 ( ) cos 2 ( ) sin , (5)

eff
b a

b a

2 2 1 0 2 2 9 10 11 0

1 0 0

where α = λ

λ ν+
cos

32 2
, α = ν

λ ν+
sin 3

32 2
, ϕ ϕ ϕ= + +W ( )1

3 9 10 11 . Without loss the generality, we 

assume α =  π/4. We also assume Ω = Ω + Ωt t t( ) ( ) ( )b a
2 2  and θ = Ω Ωt t t( ) arctan[ ( )/ ( )]b a . Then, the system’s 

effective Hamiltonian can written by

θ ϕ φ θ φ= Ω − + . .H t t W H c( ) ( )(sin cos ) (6)eff 1 0 0

Afterwards, the instantaneous eigenstates of Heff(t) can be solved as

ξ θ ϕ θ

ξ θ ϕ φ θ

ξ θ ϕ φ θ

= +

= + −

= − −

+

−

t W

t W

t W

( ) cos sin ,

( ) 1
2

(sin cos ),

( ) 1
2

(sin cos ),
(7)

0 1

1 0

1 0

with corresponding eigenvalues ϵ0 =  0, ϵ+ =  Ω and ϵ− =  − Ω, respectively. Therefore, the picture transformation 
for the 1-st iteration in basis ϕ φ W{ , , }1 0  is

θ θ θ

θ θ θ

=










−
− −









.A

cos sin / 2 sin / 2
0 1/ 2 1/ 2

sin cos / 2 cos / 2 (8)
0

By calculating = 

†H iA t A t( ) ( )cd
(0) , in basis ϕ φ W{ , , }1 0 , we obtain

θ

θ
=






−








.




H t
i

i
( )

0 0
0 0 0

0 0 (9)
cd
(0)

If we add Hcd
(0) to modify the Hamiltonian Heff(t) in Eq. (6), the structure of the system is also required to be 

adjusted. Therefore, we consider the 2-nd iteration picture to find another shortcut. Then, the Hamiltonian in the 
1-st iteration picture can be solved in basis ξ ξ ξ| 〉 | 〉 | 〉+ −{ , , }0  as
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θ θ
θ
θ

=









− Ω
− −Ω









.

 





H t
i i

i
i

( )
0 / 2 / 2
/ 2 0
/ 2 0 (10)

1

Defining θ= Ω + Ω + P 2 2 , θ= −Ω + Ω + Q 2 2  and θ= Ω + R 2 2 2 , the eigenstates of H1(t) can be 
described as

ξ θ ξ θ ξ

θ ξ ξ ξ

θ ξ ξ ξ

|Ξ 〉 = Ω| 〉 + | 〉 − | 〉

|Ξ 〉 = | 〉 + | 〉 + | 〉

|Ξ 〉 = | 〉 − | 〉 − | 〉

+ −

+ + −

− + −

 





t i i R

t i P Q R

t i Q P R

( ) (2 2 2 )/ ,

( ) ( 2 )/ ,

( ) ( 2 )/ , (11)

0 0

0

0

corresponding to the eigenvalues η0 =  0, η θ= Ω ++


2 2  and η θ= − Ω +−


2 2 , respectively. Therefore, the pic-
ture transformation for the 2-nd iteration in basis ξ ξ ξ| 〉 | 〉 | 〉+ −{ , , }0  can be given by

θ θ
θ
θ

=










Ω
−

− −









.

 





A
R

i i
i P Q
i Q P

1
2 2 2

2
2 (12)

1

Submitting j =  2, Eqs (6) and (12) into Eq. (1), one can obtain the 2-nd modified Hamiltonian for Heff(t) in 
basis ϕ φ W{ , , }1 0  as

θ θ
θ θ θ θ

θ θ
=








Ω − ϒ
Ω − ϒ Ω + ϒ

Ω + ϒ









=











Ω

Ω Ω

Ω











∼

∼ ∼

∼

H t( )
0 sin cos 0

sin cos 0 cos sin
0 cos sin 0

0 0

0

0 0

,

(13)

eff

b

b a

a

(2)

w here  θ θϒ = Ω − Ω  ̈ R4( )/ 2 ,  Ω = Ω Ω + Ω Ω Ω  ( )/b b a a ,  θ = Ω Ω − Ω Ω Ω − Ω Ω Ω − Ω Ω Ω  ̈ ̈ ̈[( ) 2 ( )]/b a b a b a b a
3 , 

θΩ = Ω − ϒ
∼ cosb b  and θΩ = Ω + ϒ

∼ sina a . We find that H t( )eff
(2)  has the same form as Heff(t). Therefore, using 

H t( )eff
(2)  instead of Heff(t), we only need to adjust the Rabi frequencies Ωb(t) and Ωa(t).

Now, let us design the frequencies Ωb(t) and Ωa(t) so that the system governed by H t( )eff
(2)  can be driven from 

its initial state ϕΨ =(0) 1  to the target state |W〉 . Firstly, when the system is governed by H t( )eff
(2) , the transitions 

between instantaneous eigenstates Ξ Ξ Ξ+ −{ , , }0  of H1(t) are forbidden. Assuming that the initial time is 
ti =  0 and the final time is tf =  T, we find that if the boundary condition θ θ= =  T(0) ( ) 0 is satisfy, the instantane-
ous eigenstate Ξ t( )0  of H1 will coincide with the dark state ξ t( )0  of Heff(t) at t =  0 and t =  T. Therefore, we adopt 
the boundary condition θ θ= =  T(0) ( ) 0, and we set θ(0) =  0 and θ(T) =  π/2. Then, we will have the following 
results

ξ ϕ

ξ

Ψ = Ξ = =

Ψ = Ξ = = .T T T W
(0) (0) (0) ,
( ) ( ) ( ) (14)

0 0 1

0 0

So, the system will evolve along the instantaneous eigenstate Ξ t( )0  of H1 and finally at t =  T, we can obtain the 
target state Ψ =T W( ) . After the boundary conditions of θ and θ  are set, in the second step, let us design the 
Rabi frequencies of the laser pulses. To satisfy the boundary conditions of θ and θ  mentioned above, we firstly 
design the Ωb and Ωa via STIRAP. Ωb and Ωa can be expressed as

Ω = Ω Ω = Ω− − − − + −t e t e( ) , ( ) , (15)b
t t T t

a
t t T t

0
[( 0 /2)/ ]

0
[ ( 0 /2)/ ]c c

2 2

where Ω0 is the pulse amplitude, t0 =  0.16T and tc =  0.25T are two related parameters. By calculating 
θΩ = Ω − ϒ

∼ cosb b  and θΩ = Ω + ϒ
∼ sina a , one can obtain the Rabi frequencies Ω∼b and Ω∼a of laser pulses for the 

modified Hamiltonian H t( )eff
(2) . However, the forms of Ω∼b and Ω∼a are too complex to be realized in experiments. For 

the sake of making the protocol more feasible in experiments, the Rabi frequencies of laser pulses should be 
expressed by some frequently used functions (e.g. Gaussian functions and sine function), or their superpositions. 
Fortunately, by using curves fitting, Ω∼b and Ω∼a can be replaced respectively with Ωb and Ωa, whose expressions can 
be written by

ζ ζ

ζ ζ

Ω = +

Ω = +

τ χ τ χ

τ χ τ χ

−

− 


−

− 



−

− 


−

− 



t e e

t e e

( ) ,

( ) , (16)

b b
t

b
t

a a
t

a
t

( )/ ( )/

( )/ ( )/

b b b b

a a a a

1
1 1

2

2
2 2

2

1
1 1

2

2
2 2

2
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where,

ζ ζ ζ ζ

τ τ τ τ

χ χ χ χ

= . = . = . = .

= . = . = . = .

= . = . = . = .

T T T T

T T T T
T T T T

7 513/ , 4 3/ , 7 513/ , 4 3/ ,

0 697 , 0 4 , 0 303 , 0 6 ,
0 217 , 0 1222 , 0 217 , 0 1222 , (17)

b b a a

b b a a

b b a a

1 2 1 2

1 2 1 2

1 2 1 2

when Ω0 =  8/T. As a comparison, we plot Ω∼ t( )b  and Ω t( )b  versus t/T in Fig. 2(a) and Ω∼ t( )a  and Ω t( )a  versus t/T in 
Fig. 2(b). As shown in Fig. 2, the curve for Ω t( )b  (Ω t( )a ) is very close to that for Ω∼ t( )b  (Ω∼ t( )a ). In the next section, 
we will show that the laser pulses with Rabi frequencies Ω = × Ωt t( ) 2 ( )b1 , Ω = × Ωt t( ) 2 ( )b2 , 
Ω = × Ωt t( ) 2 ( )b3  and Ω = × Ωt t( ) 2 ( )c a  can drive the system from its initial state ϕΨ =(0) 1  to the 
target state Ψ =T W( )  with a high fidelity, so, the replacements here for the Rabi frequencies of the laser 
pulses are effective.

Numerical Simulations and Discussions
In this section, various numerical simulations will be performed to demonstrate the effective of the present proto-
col. The fidelity of the target state |W〉  is defined as ρ=F t W t W( ) ( ) , where ρ(t) is the density operator of the 
system. Firstly, let us choose suitable coupling constants λ and ν. As we adopted α =  π/4, the relation between λ 
and ν is λ ν= 3 . And the Rabi frequencies of laser pulses satisfy Ω = Ω Ω Ω Ω ≈

≤ ≤
t t t t Tmax { ( ), ( ), ( ), ( )} 12/

t T
c0

0
1 2 3 . 

We plot the final fidelity F(T) versus λ in Fig. 3. As shown in Fig. 3, F(T) is near 1 around λ =  10/T. Moreover, F(t) 
is close to 1 when λ >  20/T. One can easily find that even when the condition Ω t( )a , λΩ t( )b , ν is not satisfied 
well, the target state |W〉  can also be obtained. This can also easily be understood, as the evolution of the system, 
between the initial state ϕ1  and the target state |W〉 , may move along different medium states, and it is not gov-
erned by the effective Hamiltonian Heff(t), which guides the system moving through the dark state φ0  of Hc as the 
only medium state. However, when the condition Ω t( )a , λΩ t( )b , ν is broken, the system may move through a 
medium state with higher energy. That will make the evolution of the system suffers more from dissipations. On 
the other hand, for a relative higher evolution speed, the value of λT should not be too large, as λ has a upper limit 

Figure 2. (a) Comparison between Ω∼ t( )b  and Ω t( )b  (versus t/T). (b) Comparison between Ω∼ t( )a  and Ω t( )a  
(versus t/T).

Figure 3. The final fidelity F(T) versus λ. 
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in a real experiment. Therefore, to make the protocol with both high speed and robustness against dissipations, we 
choose λ =  35/T, slightly larger than Ω0 ( λΩ ≈ ./ 0 30 ).

Secondly, since we have adopted a suitable value of the coupling constant λ, we would like to examine the 
fidelity F(t) and the population ϕ ρ ϕ=P t( )m m m  = m( 1, 2, , 11) of state ϕm  during the evolution. The 
fidelity F(t) versus t/T is plotted in Fig. 4(a). And the the population Pm of each state is shown in Fig. 4(b). As 
shown in Fig. 4(a), the fidelity F(t) keeps steady during time intervals [0, 0.3T] and [0.8T, T], and increases rapidly 
to approach 1 during time interval [0.3T, 0.8T]. As shown in Fig. 4(b), P1 falls from 1 to 0 during evolution; P9, P10 
and P11 are initial 0 and final 1/3 at time t =  T as our expectation.

Thirdly, to show that the present protocol is faster than the adiabatic protocol, we plot the fidelity of the target 
state |W〉  with different methods versus t/T in Fig. 5. The Rabi frequencies of laser pulses for the STIPAP method 
can be set as Ω = Ω = Ω = Ωt t t t( ) ( ) ( ) 2 ( )a1 2 3  and Ω = Ωt t( ) 2 ( )c b , where Ωa(t) and Ωb(t) are shown in 
Eq. (15). And it is easy to obtain that Ω′ = Ω Ω Ω Ω = Ω

≤ ≤
t t t tmax { ( ), ( ), ( ), ( )} 2

t T
c0

0
1 2 3 0. As shown in Fig. 5, the 

curve of “STAP” describes the change of the fidelity versus t/T of the present protocol, and the curves of “STIRAP” 
describe the changes of fidelities versus t/T of the STIRAP method under some different conditions. Seen from 
blue line of Fig. 5, if one use STIRAP method with the same condition as the present protocol (Ω′ = T12/0 , 
λ =  35/T), the final fidelity is only about 0.55 due to the greatly violation of the adiabatic condition. Even when 
Ω′ = T35/0 , λ =  100/T (see the pink line of Fig. 5) for the STIRAP method, the fidelity can get close to 1, but the 
result is still a little unsatisfactory. When Ω′ = T50/0 , λ =  150/T (see the green line of Fig. 5) for the STIRAP 
method, the fidelity can approach 1. However, in this case, the laser amplitude Ω′ = T50/0  is much larger than the 
one (Ω ≈ T12/0 ) of the present protocol. If one desire a relative high evolution speed, the product (denotes by μ) 
of laser amplitude and the evolution time is the smaller the better. Because when two persons have the same value 
of the laser amplitudes, the one with smaller μ will have less evolution time. Therefore, comparing with the 

Figure 4. (a) The fidelity F(t) versus t/T. (b) The population Pm of ϕm  versus t/T.

Figure 5. The fidelities of the target state |W〉 versus t/T with different methods. 
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STIRAP method, the present protocol to obtain a W state is much faster by using multiple Schrödinger dynamics. 
In addition, it is also been shown in ref. 31 that, to obtain a W state with the adiabatic passage with a fidelity larger 
that 0.99, the authors should chose λ >  100/T and Ω0 =  0.35λ. That supports the discussion here as well.

Fourthly, since the dissipations caused by decoherence mechanisms are ineluctable in real experiments, it is 
worthwhile to discuss the fidelity F(t) when different kinds of decoherence factors are considered. In the present 
protocol, the decay of the cavity mode in each CPWR, the energy relaxation and the dephasing of every SQ play 
the major roles. The evolution of the system can be described by a master equation in Lindblad form as following

∑ρ ρ ρ ρ ρ= +






− +








† † †i H L L L L L L[ , ] 1
2

( ) ,
(18)I

l
l l l l l l

where, Ll (l =  1, 2, 3, … , 19) is the Lindblad operator. There are nineteen Lindblad operators
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in which γks and γφks (k =  1, 2, 3, s =  f, g) are the energy relaxation rate and dephasing rate of the k-th SQ for decay 
path |e〉 k →  |s〉 k, respectively. And γcs and γφcs (s =  f, g) are the energy relaxation rate and dephasing rate of the SCC 
qubit for decay path |e〉 c →  |s〉 c, respectively. κk (k =  1, 2, 3) is the decay rate of the k-th cavity mode in CPWRk. We 
suppose γks =  γ, γ γ=φ φks  (k =  1, 2, 3, s =  f, g) and κ κ=k  (k =  1, 2, 3) for simplicity. We plot the final fidelity F(T) 
versus κ λ/  and γ/λ in Fig. 6(a), versus κ λ/  and γ λφ/  in Fig. 6(b) and versus γ/λ and γ/λ in Fig. 6(c). And we also 
examine some samples of the final fidelities F(T) with corresponding κ λ/ , γ/λ and γ λφ/  and give them in Table 1. 
As shown in Fig. 6 and Table 1, we can obtain following results. (i) F(T) is insensitive to decays of the cavity modes 
in CPWRs. This is easy to be understood by seeing Fig. 4(b). Because the populations of ϕ3 , ϕ4  and ϕ5  are all 
almost zero during the whole evolution, the influences from decays of the cavity modes in CPWRs will be greatly 
resisted. (ii) The fidelity suffers more influence from the energy relaxations of SQs comparing with the influences 
from decays of the cavity modes in CPWRs. However, F(T) is 0.9502 when γ/λ =  0.01, γ λ =φ/ 0 and κ λ =/ 0, i.e., 
the decreasing of F(T) caused by the increasing of γ is only about 0.05. Therefore, the present protocol is also 
robust against the energy relaxations of SQs. (iii) The dephasing plays a significant role here. When γ λφ/  increases 
from 0 to 0.001, F(T) decreases from 1 to 0.9824. However, in ref. 31, with the adiabatic passages, the fidelity of 
the target W state deceases from 1 to 0.85 when γφ increases only from 0 to 0.0001. This shows that the present 
protocol is more robust against the dephasing comparing with the adiabatic passages. According to ref. 107, in 
experiments, parameters λ =  2π ×  300 MHz, γ =  6π MHZ, κ π= 6 MHz and γ =φ 10kHz can be realized. By 
submitting these parameters, we have F(T) =  0.9484.

Fifthly, since most of the parameters are hard to faultlessly achieve in experiments, it is necessary to investigate 
the variations of the parameters caused by the experimental imperfection. Here, we discuss the variation δT of the 
evolution time T, the variation δΩ0 of the laser amplitude Ω0 and the variation δλ of the coupling constant λ. We 
plot F(T′ ) versus δT/T and δλ/λ in Fig. 7(a), F(T′ ) versus δT/T and δΩ Ω/0 0 in Fig. 7(b) and F(T) versus δλ/λ and 
δΩ Ω/0 0 in Fig. 7(c), where T′  =  T +  δT is the real evolution time when the variation of the evolution time is taken 
into account. Seen from Fig. 7(a,c), the final fidelity is quite insensitive to the variation δλ. This results has also 
been announced in Fig. 3. Moreover, according to Fig. 7(a,b), the final fidelity F(T′ ) is very robust against the 
variation δT. The final fidelity almost unchanged when both δT/T, δλ/λ ≤  10%. As shown in Fig. 7(b,c), variation 
δΩ0 influences the final fidelity mainly. However, even when δΩ Ω =/ 10%0 0 , the final fidelity is still higher than 
0.95. Therefore, we conclude that the present protocol for generating a W state of three SQs is robust against the 
variations δT, δΩ0 and δλ.

Sixthly, in experiments, the protocol can be realized in charge qubits and CPWR coupling system. In other 
words, all the superconducting qubits including the SCC qubit can be chosen to be charge qubits. The structure of 
the a charge qubit is shown in Fig. 8. As shown in Fig. 8, the charge qubit contains a gate capacitance and two 
Josephson junctions with Josephson energy EJ. The charge qubit can be manipulated by controlling the gate volt-
age Vg and the magnetic flux Φ threading the loop. It was pointed out in previous protocols108,109 that, for a charge 
qubit with energy structure as Fig. 1(b), when an external applied magnetic flux Φx of a pulse threads the ring, it 
can driven the transition between |e〉  ↔  |f〉 , and the Rabi frequency can be given by

∫Ω = Φ ⋅t
L

f e t dB r S( ) 1
2

( , ) , (20)S x

where, L is the loop inductance, S is surface bounded by the loop of the charge qubit, Bx (r, t) is the magnetic 
components of the pulse in the superconducting loop of the charge qubit. For the SQs inside the CPWR, the cav-
ity mode with frequency ω can couples resonantly to the levels |g〉  and |e〉  and gives the coupling constant as
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∫λ ω
µ

= Φ ⋅
L

g e dB r S1
2

( ) ,
(21)S g

0

where, Bg (r) is the magnetic components of the cavity mode109,110. For the SCC qubits placed in the center of the 
devices, it can couple capacitively to three different CPWR directly. This kind of directly coupling has been shown 
in many previous protocols both in theory38,111. For example, Yang et al.38 have used these kind of coupling to 
generate entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting 

Figure 6. (a) The final fidelity F(T) versus κ λ/  and γ/λ. (b) The final fidelity F(T) versus κ λ/  and γ λφ/ . (c) The 
final fidelity F(T) versus γ/λ and γ λφ/ .

κ/λ (×10−2) γφ/λ (×10−3) γ/λ (×10−2) F

1 1 1 0.9325

1 1 0.8 0.9418

1 0.8 1 0.9356

0.8 1 1 0.9328

0.8 0.8 0.8 0.9453

0.8 0.8 0.5 0.9596

0.8 0.5 0.8 0.9502

0.5 0.8 0.8 0.9458

0.5 0.5 0.5 0.9651

0.5 0.5 0.3 0.9749

0.5 0.3 0.5 0.9684

0.3 0.5 0.5 0.9654

0.3 0.3 0.3 0.9786

0.3 0.3 0.1 0.9887

0.3 0.1 0.3 0.9820

0.1 0.3 0.3 0.9790

0.1 0.1 0.1 0.9924

Table 1.  Samples of the final fidelities F(T) with corresponding κ λ/ , γ/λ and γ λφ/ .
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qubit. Moreover, to improve the efficiency of the coupling between SCC qubit and each CPWR, one can chose 
SCC qubit to be a transmon112 or a phase qubit113 as well.

Conclusions
In conclusion, we have proposed a protocol to generate a W state of three SQs by using multiple Schrödinger 
dynamics to construct a shortcut to adiabaticity, so that the evolution of the system has been greatly accelerated. 
Interestingly, the form of the Hamiltonian being designed by the multiple Schrödinger dynamics was the same as 
that of the system’s original Hamiltonian. Therefore, we only need to adjust the Rabi frequencies of laser pulses. 
In this protocol, the Rabi frequencies of the laser pulses can be expressed by the superpositions of Gaussian func-
tions via the curves fitting. So, the laser pulses can be realized easily in experiments. One the other hand, numeri-
cal simulations results have demonstrated that the protocol is robust against different kinds of control parameters 

Figure 7. (a) The final fidelity F(T′ ) versus δT/T and δλ/λ. (b) The final fidelity F(T′ ) versus δT/T and δΩ Ω/0 0. 
(c) The final fidelity F(T) versus δΩ Ω/0 0 and δλ/λ.

Figure 8. Schematic diagram of a charge qubit. 
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variations and decoherence mechanisms. Notably, the present protocol is more robust against the dephasing, 
comparing with adiabatic passages. Therefore, we hope the protocol could be controlled and implemented easily 
in experiments based on a circuit quantum electrodynamics system.
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