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Abstract: Cannabis research has taken off since the relaxation of legislation, yet proteomics is still
lagging. In 2019, we published three proteomics methods aimed at optimizing protein extraction,
protein digestion for bottom-up and middle-down proteomics, as well as the analysis of intact
proteins for top-down proteomics. The database of Cannabis sativa proteins used in these studies was
retrieved from UniProt, the reference repositories for proteins, which is incomplete and therefore
underrepresents the genetic diversity of this non-model species. In this fourth study, we remedy
this shortcoming by searching larger databases from various sources. We also compare two search
engines, the oldest, SEQUEST, and the most popular, Mascot. This shotgun proteomics experiment
also utilizes the power of parallel digestions with orthogonal proteases of increasing selectivity,
namely chymotrypsin, trypsin/Lys-C and Asp-N. Our results show that the larger the database the
greater the list of accessions identified but the longer the duration of the search. Using orthogonal
proteases and different search algorithms increases the total number of proteins identified, most of
them common despite differing proteases and algorithms, but many of them unique as well.

Keywords: cannabis sativa; bottom-up and middle-down proteomics; post-translational modification;
missed cleavages; SEQUEST; Mascot; LC-MS; Asp-N; chymotrypsin; trypsin/Lys-C

1. Introduction

Bottom-up proteomics (BUP) refers to the characterization of proteins by analysis of their peptides
released through proteolysis. When BUP is performed on a mixture of proteins it is called shotgun
proteomics [1–4]. Large-scale or high-throughput analyses of highly complex samples are commonly
accomplished using a BUP strategy [5]. Middle-down proteomics (MDP) [6] also refers to the
characterization of proteins through proteolysis, albeit via either purposeful and partial digestion
and/or choosing a protease targeting fewer excision sites and therefore yielding longer peptides.
As MDP can also be applied to a complex mixture of proteins, it falls under the shotgun proteomics
category. In other words, shotgun proteomics is a peptide-centric approach, as opposed to top-down
proteomics (TDP) [7], which is a protein-centric approach. In a typical shotgun proteomics experiment,
proteins are extracted and digested using one or several proteases, and the peptide mixture is separated
using liquid chromatography (LC) once or multiple times and subjected to tandem mass spectrometry
(MS/MS) analysis [8]. Using complex search algorithms, the tandem mass spectra derived from peptide
fragmentations are compared with theoretical tandem mass spectra generated from in silico digestion
of a protein database, and the amino acid (AA) sequences of the peptides are thus obtained. Peptide
sequences are assigned to proteins by protein inference and post-translational modifications (PTMs) of
identified proteins inferred [9].
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A key step in performing a successful shotgun proteomics experiment relies on the choice of
proteases to convert the proteins present in a sample into a complex mixture of peptides. Proteolytic
enzymes differ by their selectivity for cleaving the amide bonds between individual residues in a
protein. The cleavage is carried out through hydrolysis of the amide bond before or after one or several
specific residues. Trypsin has become the gold standard for protein digestion for shotgun proteomics.
Trypsin is a serine protease which cleaves at the carboxyl side of positively charged arginine (R) and
lysine (K) residues. Alternative proteases display different selectivity, either being more specific than
trypsin by targeting only one AA residue or less specific than trypsin by targeting more than two AA
residues. When opting for multiple proteases, it is advisable to choose enzymes that act orthogonally
to each other. This is the case for Asp-N, more selective than trypsin, which cleaves at the amine
side of the negatively charged residue aspartic acid (D), as well as for chymotrypsin, less selective
than trypsin, which cleaves at the carboxyl side of hydrophobic residues phenylalanine (F), tyrosine
(Y), and tryptophan (W). The value of adopting a parallel digestion strategy based on orthogonal
proteases has been amply demonstrated on various species and research goals [10–18]. The outcomes
of generating complementary peptides resulted not only in an increased number of identified proteins
but also in greater sequence coverage and, consequently, more PTMs being detected [8,19–21].

Following MS/MS data acquisition of the digests, another critical step in the shotgun proteomics
workflow is a bioinformatics component and consists of a database search. First, a protein sequence
database must be retrieved; second, a search algorithm must process the database and match it
against the experimental data. Protein databases in the form of FASTA AA sequences can be freely
downloaded from various sources depending on the species of interest. The two main protein
sequence repositories are 1) the UniProt Knowledge Base (https://www.uniprot.org/help/uniprotkb),
which is the central hub for the collection of functional information on proteins, with accurate,
consistent and rich annotation, and as such is the main reference database for proteins, and 2) NCBI
(https://www.ncbi.nlm.nih.gov/protein/), which is a collection of sequences from several sources.
Both repositories supply annotated sequences, particularly UniProtKB, which also indicate biological
ontologies, pathways, processing, PTMs, isoforms, classifications and cross-references. This information
is extremely valuable to the prospective scientist because it gives a quick, yet thorough, snapshot of the
knowledge associated with the proteins.

Data interpretation of the fragmentation spectra used to be performed manually by an expert,
which was labour-intensive, time-consuming and of low throughput. MS-based proteomics greatly
progressed with the automation of identification of candidate peptide sequences from MS/MS spectra
using search algorithms and scoring models which assess the likelihood of a match. In order to model
matches to sequences, four basic concepts have been devised: descriptive (e.g., Sequest), interpretative
(e.g., PeptideSearch), stochastic (e.g., SCOPE) and probability-based modeling (e.g., Mascot) [22].
SEQUEST was the first search algorithm developed [23]. It leveraged two timely technological
developments: 1) the sequencing of genomes and 2) the creation of algorithms to match peptide tandem
spectra to peptide sequences. The most popular search engine is Mascot; it relies on the probabilistic
matching of fragment ions [24]. Nowadays a multitude of search engines and bioinformatics tools
exist [25–29]. An analysis will benefit from the use of multiple search algorithms with improved overall
identification numbers and confidence [8,22]. Bioinformatic software packages are now bundled into
proteomics pipelines, such as ProteomeDiscoverer (www.thermoscientific.com) [8]. This automation
has greatly contributed to help standardize and simplify MS-based proteomic analysis.

The relaxing of the legislation around cannabis, in particular in a therapeutic context, in the 21st
century has triggered a surge in research with more than 22,000 articles published since 1840 and hosted
at the National Center for Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov/pubmed/

?term=cannabis+sativa). It peaked in 2019 with 2120 publications and is already exceeding 1000 articles
this year (2020). Cannabis sativa was named the “plant of the thousand and one molecules” by Andre
and colleagues [30] due to its immense catalog of unique chemical compounds. Recent reviews on the
topic are available [31–34]. Among the therapeutically promising molecules are the phytocannabinoids
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and terpenes. The nuclear and chloroplastic genomes of C. sativa have been sequenced [35–38] and
are predicted to accommodate 27,819 to 34,589 genes [33]. NCBI hosts more than 30,000 C. sativa
protein entries but UniProt, the reference protein database, hosts less than 500 C. sativa accessions.
Another source of sequences for this non-model plant species rests within the Medicinal Plant Genomics
Resource (MPGR, http://medicinalplantgenomics.msu.edu/) from a genome sequencing collaborative
effort. Unfortunately, none of these gene models are annotated in MPGR. Despite the sequencing
of the C. sativa genome, cannabis proteomics remains underrepresented with only 27 publications
since 2004 (including 15 articles since 2018, https://www.ncbi.nlm.nih.gov/pubmed/?term=cannabis+
sativa+AND+proteom* cannabis sativa AND proteom*). Legislative hurdles aside, perhaps the lack
of C. sativa sequence in the reference protein database UniProt has impeded proteomics progress on
cannabis research.

This experiment is the fourth installment of a series of proof-of-concept methodological
developments aiming at designing screening procedures to rapidly analyse the proteome of mature
buds from various cultivars of medicinal cannabis. In a first step, we optimized the extraction of
cannabis proteins, demonstrating the superiority of guanidine-hydrochloride over urea [1]. In a
second step, we optimized the digestion of cannabis proteins using a multiprotease (four enzymes)
and multidigestion (single, double and triple digestion) approach, questioning the rationale behind
limiting the number of missed cleavages allowed [2]. In a third step, we developed a top-down
proteomics strategy to analyse intact proteins and discovered that cannabis proteins are predominantly
methylated [3]. These three proof-of-concept proteomics studies share one deficiency: the UniProt
database searched for the purpose of protein identification was small (containing less than 500 entries)
and consequently greatly underestimated the rich genetic diversity of C. sativa [33]. To remedy the
database shortcomings of the three past studies, this fourth experiment endeavors to test four C. sativa
databases of various sizes, from a database reduced to a metabolic pathway (phytocannabinoids and
terpenoids) to a database combining entries from several independent sources and therefore exhibiting
some level of redundancy. One of the C. sativa databases originates from the proteogenomics study
by Jenkins and Osburn [39]. We also search a fifth non-specific database, SwissProt viridiplantae,
to evaluate what is gained or lost for non-model plant species such as C. sativa. We take this opportunity
to compare two very popular search engines: SEQUEST and Mascot. Finally, in this fourth experiment,
we present shotgun proteomics results related to single parallel digestions using orthogonal proteases
of decreasing selectivity, namely Asp-N, Trypsin/Lys-C and chymotrypsin. Our observations are
presented and discussed with respect to LC-MS patterns, database search yield and duration, search
algorithm comparison, protease efficiency, number of accessions, number of missed cleavages and
peptide size, PTMs and gene ontology.

2. Materials and Methods

Figure 1 schematises the experimental design of this study.

http://medicinalplantgenomics.msu.edu/
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2.1. Protein Extraction, Digestion, and Analysis Using Nano Liquid Chromatography-Tandem Mass
Spectrometry (nLC-MS/MS)

Individual mature apical buds of medicinal cannabis were sampled in triplicate (labelled “bud1”,
“bud2” and “bud3” hereafter) and proteins were extracted using a trichloroacetic acid/acetone
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precipitation followed by resuspension in a guanidine-HCl buffer as detailed in [1,2]. A plant protein
content of 100 µg was digested using either a trypsin/Lys-C protease mixture (TL, Mass Spectrometry
Grade, 100 µg, Promega), or chymotrypsin (C, Sequencing Grade, 25 µg, Promega) or rAsp-N (A,
Sequencing Grade, 10 µg, Promega). Digestions with trypsin/Lys-C and chymotrypsin have been
described in [2]. For the digestion using rAsp-N, 50 mM Ammonium bicarbonate (pH 7.8) was added
to the dithiothreitol (DTT)-reduced and iodoacetamide (IAA)-alkylated proteins in order to drop the
guanidine-HCl resuspension buffer molarity below 1 M. The protease was carefully solubilised in
0.1 mL of ddH2O. To achieve a 1:50 ratio of protease:proteins, as instructed by the manufacturer,
a 20 µL aliquot of rAsp-N solution was added and gently mixed with the protein extracts. The mixture
was incubated at 37 ◦C in the dark for 1 h. All digests were cleaned up using solid phase extraction
(SPE) cartridges followed by evaporation, as explained in [1,2]. Peptides digests were analysed using
nLC-MS/MS exactly as described in [1,2].

2.2. Protein Identification Using Five Databases and Statistical Analyses

The RAW files were processed in Proteome Discoverer (PD) version 1.4 (PD 1.4, ThermoFisher
Scientific) using both SEQUEST and Mascot search engines. The workstation hosting PD 1.4 has a 64-bit
operating system, a physical memory of 16 GB RAM, and an Intel®Core™ i7-2600 CPU @ 3.4 GHz
processor with 4 cores. PD 1.4 can access our in-house MASCOT server version 2.6.1 which comprises
40 logical and 2 physical Intel processors with 20 cores and 4 CPU units. Five FASTA databases of
increasing entry size and two levels of specificity were searched, as listed in Table 1.

SP21, Uniprot515 and Homemade95k databases include two C. sativa AA sequences
unavailable from public databases and retrieved from patents. The first one is the aromatic
prenyltransferase_geranyl-pyrophosphate olivetolic acid geranyltransferase or GOT or CBGAS for short
(patent WO/2011/017798A1 or PCT/CA2O1 O/OO1222 [40]). The second one is cannabichromenic acid
synthase or CBCAS for short (patent WO/2015/196275Al or PCT/CA20 15/000423 [41]). The SPGP40k
database contains all green plant sequences from SwissProt viridiplantae, including 19 sequences from
C. sativa. The JO29k FASTA file is linked to the recent proteomic study of Jenkins and Osburn [39] and
contains 29,057 AA sequences, many of which are duplicates. This proved unparsable using the Mascot
algorithm and generated many warnings in the SEQUEST search engine. For the Homemade95k
database, a collection of 95,069 C. sativa protein sequences, in FASTA format, was constructed
with 1133 sequences from the UniProt Knowledgebase (with SwissProt and Trembl annotations),
36,525 entries from the GenBank nr protein database (with nr annotations) and 57,411 proteins from the
Medicinal Plant Genomic Resource (MPGR). All MPGR sequences were annotated by aligning them to
sequences in the GenBank nr database using blastp [42]. Each database was indexed in PD 1.4 using
each of the enzymes, which generated the corresponding reversed databases for the decoy searches.

The searching parameters in PD 1.4 specified trypsin, chymotrypsin or AspN as the proteases
and allowed for maximum number of missed cleavages, as discussed in [2]. The mass tolerances
were set at 10 ppm for the precursor and 0.8 Da for the fragments. Both SEQUEST (Thermo Fisher
Scientific Australia Pty Ltd, Scoresby, VIC, Australia) and Mascot (Matrix Science Ltd, London, UK)
algorithms were interrogated in parallel. All PD 1.4 parameters are indicated in Supplementary
Materials Figure S1. The steps labelled “MASCOT” and “SEQUEST” correspond to the algorithm target
searches during which the various databases indicated in Table 1 are searched. Decoy searches are
performed during these steps using the reversed decoy database. We exemplify this in Supplementary
Materials File F1.txt using the Homemade95k database, which lists step by step the full process of the
PD 1.4 workflow along with the durations. The last step of the workflow consists of a target/decoy
peptide-spectrum match (PSM) validation which compares the results from both target and decoy
databases and eliminates the false positives using a strict false discovery rate (FDR) threshold of 1%.
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Table 1. Description of the five FASTA databases used in this study.

DB Name Source Number of Entries Annotation Date Algorithm Taxonomy

SP21

https://www.uniprot.org/uniprot/?query=
taxonomy:%22Rosales%20{[}3744{]}%22%

20cannabis%20organism:
sativa&fil=reviewed%3Ayes

https://patentscope.wipo.int/search/en/detail.
jsf?docId=WO2015196275

https://patentscope.wipo.int/search/en/detail.
jsf?docId=WO2011017798&_cid=P11-

K8DWCD-64087-1

19 from SwissProt + CBCAS (patent
WO2015/196275) + GOT (patent

WO2011/017798) = 21
Yes Feb 2020 SEQUEST

Mascot C. sativa

Uniprot515

https://www.uniprot.org/uniprot/?query=
taxonomy%3A%22Rosales+%5B3744%5D%

22+cannabis+organism%3Asativa
https://patentscope.wipo.int/search/en/detail.

jsf?docId=WO2015196275
https://patentscope.wipo.int/search/en/detail.

jsf?docId=WO2011017798&_cid=P11-
K8DWCD-64087-1

513 from UniProt +
2 patents = 515 Yes Feb 2020 SEQUEST

Mascot C. sativa

JO29k https://www.cannabisdraftmap.org/ 29,057 Yes Dec 2019 SEQUEST 1 C. sativa

Homemade95k

https://www.uniprot.org/uniprot/?query=
taxonomy%3A%22Rosales+%5B3744%5D%

22+cannabis+organism%3Asativa
https://www.ncbi.nlm.nih.gov/protein

(cannabis sativa) AND "Cannabis
sativa"[porgn:__txid3483]

http://medicinalplantgenomics.msu.edu/pub/
data/MPGR/Cannabis_sativa/

Uniprot515 +
37,143 +

57,411 = 95,069

Yes
Yes
No

Feb 2020 SEQUEST
Mascot C. sativa

SPGP40k https://www.uniprot.org/uniprot/?query=
reviewed:yes%20taxonomy:33090 39,800 Yes Feb 2020 SEQUEST

Mascot Green plants

1 JO29k FASTA file could not be parsed in Mascot due to duplicate rows. SEQUEST could handle the duplicates.
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The nine RAW files are publicly available from the stable public repository MassIVE (http:
//massive.ucsd.edu/ProteoSAFe/datasets.jsp, reference number MSV000085379).

The data files obtained following nLC-MS/MS analysis were processed in the Refiner MS module
of Genedata Expressionist®12.0, and statistical analyses were performed using the Analyst module,
as detailed in [2]. For each peptide ion, the set of isotopic peaks is grouped into a cluster. The volumes
under each peak are summed to make up the volume of the peptide cluster. Cluster volumes were
used for the statistical analyses.

3. Results and Discussion

The purpose of the present study on medicinal cannabis buds is two-fold: (1) testing several
proteases of varying selectivity and efficiency and (2) assessing the relevance of several databases of
varying size and specificity as well as comparing two widely used search engines (Figure 1).

3.1. Comparison of the nLC-MS Files

Three digestions were performed on three biological replicates, yielding nine samples. In order to
enable meaningful comparisons across proteases, every sample preparation step was kept rigorously
identical for each sample (protein extraction, reduction and alkylation, protein amount digested, dilution
factor, SPE desalting and LC-MS analyses), with the exception of the digestion steps themselves where
optimum conditions were applied as recommended by the manufacturer to maximise protease efficiency.
In particular, unique protease:protein ratios (1:50 for A, 1:100 for C and 1:25 for TL), tailored digestion
buffers (50 mM Tris pH 8.0 for TL, 100 mM Tris/10 mM CaCl2 pH 8.0 for C and 50 mM ammonium
bicarbonate pH 7.8 for A), different temperatures (37 ◦C for A and TL and 25 ◦C for C) and two
digestion times were employed (1 h for A, and 18 h for C and TL). Alternative digestion parameters
might lead to improved results and the reader is encouraged to test them; this is however outside the
scope of this work.

All nine nLC-MS maps show reproducible diagonal separation patterns (Figure 2A) demonstrating
that low m/z features eluting early are less hydrophobic whereas features characterized by higher m/z
elute are late and are therefore more hydrophobic.

Digest patterns resulting from the action of rAsp-N or trypsin/Lys-C occupy most of the retention
time and m/z windows, whereas chymotryptic patterns do not exploit such large windows with
only a few peptides greater than m/z 1200 and eluting after 35 min. The depletion in late-eluting
hydrophobic peptides released by chymotrypsin is also very evident on the base peak chromatograms
(BPC, Supplementary Materials Figure S2). The elution window of the most abundant peptides is
protease-specific; prominent peptides elute from 20–30 min when rAsp-N is used, from 15–27 min
when chymotrypsin is used and from 17–30 min when trypsin/Lys-C is employed (Supplementary
Materials Figure S2).

The signal intensities are comparable across all samples and stretch from 4 to close to 108 (Figure 2B).
A violin plot of the cluster volumes further indicates that the bulk of the volumes range from 10 to 1000
(Figure 2C), with tryptic/Lys-C digests displaying slightly greater volumes. A principal component
analysis (PCA) plot demonstrates the high levels of reproducibility of the biological triplicates tightly
grouped together, albeit to a lesser extent when chymotrypsin is employed (Figure 2D). The fact that
the three digest profiles form a triangular shape on the PCA plot also illustrates how distinct and
complementary they are from each other, a testament to their orthogonality.

http://massive.ucsd.edu/ProteoSAFe/datasets.jsp
http://massive.ucsd.edu/ProteoSAFe/datasets.jsp
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Figure 2. LC-MS pattern and statistical results. (A) 2-D nLC-MS maps along m/z 300–1800 on the X-axis
and 9–39 min retention time on the Y-axis. (B) Box plots of cluster intensities. (C) Violin plots of cluster
volumes. (D) Principal component analysis (PCA) plots of PC1xPC2 of the nine samples. Buds 1–3 are
the biological triplicates. Proteases A, rAsp-N; protease C, chymotrypsin; protease TL, trypsin/Lys-C.

The numbers of MS and MS/MS scans per sample are listed in Table 2, along with the number
of clusters.

The numbers of MS scans range from 10,391 (bud2_C) to 13,423 (bud1_TL), the numbers of MS/MS
scans fluctuate from 8458 (bud2_C) to 11,828 (bud1_TL), and 82,091 (bud2_C) to 91,784 (bud1_A)
clusters can be resolved under our nLC-MS conditions. Those numbers are comparable to what was
previously reported [1,2], unsurprisingly given that the protein extraction and analytical methods are
exactly the same.

Based on the averages indicated in Table 2, the three proteases rank as follows: TL > A > C.
Standard deviations (SDs) are low and coefficients of variation (CV) inferior to 7%. This ranking
coincides with the protease:protein ratios (1:25 for TL > 1:50 for A > 1:100 for C); therefore, it would
be interesting to repeat this experiment by keeping a consistent protease:protein ratio (for instance
1:100, which is often used in shotgun proteomics) and verifying whether it evens out all the differences
highlighted above.
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Table 2. Number of MS and MS/MS scans and clusters per sample.

Sample MS Scans MS/MS Scans MS Clusters

bud1_A 12,582 10,990 91,784
bud2_A 11,820 10,174 85,566
bud3_A 11,686 10,079 85,388
bud1_C 11,345 9532 89,030
bud2_C 10,391 8458 82,091
bud3_C 11,562 9597 83,440

bud1_TL 13,423 11,828 91,320
bud2_TL 12,858 11,242 87,335
bud3_TL 12,330 10,665 84,845

mean A 12,029 10,414 87,579
SD A 483 501 3642
CV A 4 5 4

mean C 11,099 9196 84,854
SD C 623 640 3679
CV C 6 7 4

mean TL 12,870 11,245 87,833
SD TL 547 582 3266
CV TL 4 5 4

3.2. Database Search Yield and Duration

Protein sequences are the fundamental determinants of biological structure and function. A protein
sequence database is required to match an acquired spectrum to its theoretical counterpart. The database
comprises the AA sequences of all proteins that are expected in the sample. This is why specific protein
databases arising from genome sequencing projects of the species of interest are ideal. However, if that
is not readily available, sequences from a closely related species must be explored. Issues related to
the database search include variant proteins, sequencing errors or homologous proteins from another
species [43]. Several C. sativa genomes have been sequenced [35–38], and the number of predicted
gene models varies from 27,819 to 34,589 [33].

In our previous experiments, a small C. sativa FASTA database retrieved from UniProt Knowledge
Base was searched to identify proteins from medicinal cannabis apical buds [1–3]. This database
corresponded to what we refer to as Uniprot515 in the present study. Whilst highly specific, extremely
well annotated and originating from a high reputable source, such a small database does not capture
the genetic richness of this very unique plant and clearly underrepresents the actual number of
C. sativa proteins.

To overcome this shortfall, we have retrieved two significantly larger C. sativa FASTA databases
from various sources, which we named homemade95k and JO29k (Table 1). We have also searched the
non-specific but curated SwissProt viridiplantae (green plants) database (SPGP40k), which comprises
only 19 C. sativa accessions out of close to 40 thousand entries, to test what was gained or lost when the
search space was not limited to the species of interest.

A continued focus of ours are the phytocannabinoid and terpenoid pathways; 21 of the enzymes
involved in these metabolisms and reviewed in UniProt (i.e., originating from SwissProt) are gathered
in a minimalist FASTA database called SP21. In all, we searched five databases of varying sizes and
specificity (Table 1).

All the proteins identified using the five databases and the two algorithms (SEQUEST and Mascot)
for the nine samples are listed in Supplementary Materials Tables S1–S5. When searching the SP21
database, 18 accessions out of 21 (85.7%) are identified across all nine samples. A search with Uniprot515
database produces 72 accessions out of 515 (14.0%) sequences. Exploring the JO29k database yields
1343 accessions out of 29,057 (4.6%). Using the largest database, Homemade95k, 1442 accessions out
of 95,069 (1.5%) are found across all nine samples. Finally, interrogating the less specific SPGP40k
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database leads to the identification of 819 accessions out of 39,800 (2.1%) entries. Identification results
are summarized in Table 3.

Table 3. Number of identities for each sample across the five databases and the two algorithms.

Database # Proteins in
Database Sample # Proteins with

SEQUEST
# Proteins

with Mascot
% Proteins with

SEQUEST
% Proteins

with Mascot

SP21 21 bud1_A 15 9 71.4 42.9
SP21 21 bud2_A 15 9 71.4 42.9
SP21 21 bud3_A 15 9 71.4 42.9
SP21 21 bud1_C 15 12 71.4 57.1
SP21 21 bud2_C 15 12 71.4 57.1
SP21 21 bud3_C 15 11 71.4 52.4
SP21 21 bud1_TL 16 15 76.2 71.4
SP21 21 bud2_TL 15 14 71.4 66.7
SP21 21 bud3_TL 16 16 76.2 76.2

Uniprot515 515 bud1_A 65 40 12.6 7.8
Uniprot515 515 bud2_A 63 35 12.2 6.8
Uniprot515 515 bud3_A 67 36 13.0 7.0
Uniprot515 515 bud1_C 67 46 13.0 8.9
Uniprot515 515 bud2_C 70 39 13.6 7.6
Uniprot515 515 bud3_C 70 38 13.6 7.4
Uniprot515 515 bud1_TL 70 48 13.6 9.3
Uniprot515 515 bud2_TL 69 39 13.4 7.6
Uniprot515 515 bud3_TL 69 48 13.4 9.3

JO29k 29,057 bud1_A 1071 n.a. 3.7 n.a.
JO29k 29,057 bud2_A 1037 n.a. 3.6 n.a.
JO29k 29,057 bud3_A 1034 n.a. 3.6 n.a.
JO29k 29,057 bud1_C 748 n.a. 2.6 n.a.
JO29k 29,057 bud2_C 766 n.a. 2.6 n.a.
JO29k 29,057 bud3_C 807 n.a. 2.8 n.a.
JO29k 29,057 bud1_TL 1244 n.a. 4.3 n.a.
JO29k 29,057 bud2_TL 1162 n.a. 4.0 n.a.
JO29k 29,057 bud3_TL 1188 n.a. 4.1 n.a.

Homenade95k 95,069 bud1_A 1130 792 1.2 0.8
Homenade95k 95,069 bud2_A 1115 741 1.2 0.8
Homenade95k 95,069 bud3_A 1085 699 1.1 0.7
Homenade95k 95,069 bud1_C 981 552 1.0 0.6
Homenade95k 95,069 bud2_C 988 555 1.0 0.6
Homenade95k 95,069 bud3_C 1002 549 1.1 0.6
Homenade95k 95,069 bud1_TL 1322 1126 1.4 1.2
Homenade95k 95,069 bud2_TL 1192 922 1.3 1.0
Homenade95k 95,069 bud3_TL 1237 1009 1.3 1.1

SPGP40k 39,800 bud1_A 627 439 1.6 1.1
SPGP40k 39,800 bud2_A 620 415 1.6 1.0
SPGP40k 39,800 bud3_A 605 394 1.5 1.0
SPGP40k 39,800 bud1_C 604 443 1.5 1.1
SPGP40k 39,800 bud2_C 605 395 1.5 1.0
SPGP40k 39,800 bud3_C 621 416 1.6 1.0
SPGP40k 39,800 bud1_TL 756 688 1.9 1.7
SPGP40k 39,800 bud2_TL 706 562 1.8 1.4
SPGP40k 39,800 bud3_TL 730 624 1.8 1.6

The number of identities varies from 9 (SP21 Mascot bud123_A) to 1322 (Homemade95k SEQUEST
bud1_TL) (Table 3). Within a given database, that number fluctuates by up to 58% (from 549 to 1322 in
Homemade95k) across the nine samples. Of course, if we focus our attention on one database, one search
engine and one digestion, the number of accessions identified is much more comparable (CVs < 11.5%),
further confirming the acceptable reproducibility noted above across the biological triplicates.

There is a clear positive relationship between the number of proteins identified and the size of the
database. Considering SEQUEST results only since Mascot could not be applied to JO29k, on average
15 proteins are identified using the SP21 database (72.5% of all the database entries), Uniprot515



Proteomes 2020, 8, 13 11 of 25

produces 54 identifications (13.2%), 1006 accessions are listed with JO29k (3.5%), Homemade95K yields
944 identities (1.2%) and 653 proteins are identified using SPGP40k (1.6%).

The percentages listed in Table 3 correspond to the number of identities relative to the total
number of entries in the database searched; those values show that the greater the database the
smaller the percentage. For instance, up to 76% of the accessions listed in the smallest database,
SP21, are matched (SEQUEST bud1_TL), but as little as 0.6% of the entries comprised in the largest
database, Homemade95k, are identified (Mascot bud3_C). These opposite trends between number
of identities and percentages per database are better visualised in the histogram in Supplementary
Materials Figure S3A.

The UniProt Knowledge Base (https://www.uniprot.org/) collates data from SwissProt and TrEMBL,
thus providing annotated sets of protein sequences, predicted from sequenced genomes for many
species, in particular model organisms. Manually curated and reviewed protein sequences emanate
from SwissProt, whereas automatically annotated and unreviewed proteins originate from TrEMBL.
Searching against SwissProt thus ensures that the identifications are based on high quality protein
information [44]. Limiting the search space to the set of sequences expected in the sample by restricting
the database to the species of interest increases the biological relevance of the results. A specific
taxonomy can be selected from the UniProt website which covers model organisms better than
non-model species such as C. sativa, where species-unique proteins are missed. In such cases a related
species with similar sequences is to be used; alternatively, if no close relatives exist in UniProt, a whole
taxum can be searched. For less studied plant species, the viridiplantae taxa is the best taxonomy
offered by UniProt. In the case of C. sativa, there are currently 19 reviewed (SwissProt) entries and
494 unreviewed (TrEMBL) entries hosted in the UniProt repository. In this work, 72 accessions from
the UniProt repository are identified overall, including 17 accessions from SwissProt (Supplementary
Materials Table S2).

The NCBI protein database (https://www.ncbi.nlm.nih.gov/protein) gathers sequences from several
sources (GenBank, RefSeq and Third-Party Annotation (TPA), SwissProt, PIR, PRF and PDB) and
makes them publicly available. GenPept translations exist for each of the coding sequences within
the GenBank Nucleotide database; consequently, more than one protein sequence might correspond
to a nucleotide sequence record. When UniProt builds become available, they are loaded into NCBI.
The RefSeq project at the NCBI (http://www.ncbi.nlm.nih.gov/refseq/) has several missions: maintaining
and curating annotated genomic, transcript and protein sequence records; leveraging data submitted
to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of
computation, manual curation and collaboration to produce a standard set of stable, non-redundant
(nr) reference sequences; adding references to publications, functional features and informative
nomenclature [45]. GenBank is a public repository of DNA sequences built from community data
submissions to INSDC, as well as daily data exchanges from the DNA DataBank of Japan (DDBJ),
the European Nucleotide Archive (ENA) and GenBank at NCBI [46]. We retrieved from the NCBI
repository 37,654 C. sativa AA sequences that are fully annotated, including 36,521 accessions from
RefSeq, 899 entries from TrEMBL and 234 sequences from SwissProt. Overall, 834 accessions originating
from the NCBI database are identified in this work (Supplementary Materials Table S4), one from
SwissProt and all the others from RefSeq.

The Medicinal Plant Genomics Resource (MPGR, http://medicinalplantgenomics.msu.edu/) stems
from the Medicinal Plant Consortium (MPC). Initiated in 2010 and funded by the National Institutes of
Health (NIH), MPC gathers 13 collaborating research units from 7 institutions. MPC aims to provide
publicly available transcriptomic and metabolomic resources for 14 key medicinal plants for the
worldwide research community for the advancement of drug production and development. It wishes
to bridge the gap between genomic information and the highly specialized secondary metabolisms of
plants with promising medical applications such as C. sativa. A total of 57,411 C. sativa AA sequences
are available from MPGR, which exceeds the genetic richness mentioned above and therefore might
host redundant sequences. MPGR accessions lack protein descriptions, which we added by applying

https://www.uniprot.org/
https://www.ncbi.nlm.nih.gov/protein
http://www.ncbi.nlm.nih.gov/refseq/
http://medicinalplantgenomics.msu.edu/
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the blastp sequence alignment algorithm [42] to the GenBank nr database. Overall, 608 accessions
originating from the MPGR database are identified in this work (Supplementary Materials Table S4).
Most of them (530, 87%) match a C. sativa protein, 22 (4%) match accessions from Trema orientale, and 17
(3%) match proteins from Parasponia andersonii. Both species belong to the Cannabaceae family and are
closely related to C. sativa [47].

The JO29k database created by Jenkins and Osburn [39] is also publicly available and contains
29,057 entries. The authors employed trypsin to digest protein extracts from various tissues from
various cultivars of C. sativa plants followed by a fractionation method prior to shotgun LC-MS/MS
analyses. By maximizing sample diversity (genetic backgrounds, vegetative and reproductive tissues)
and by prefractionating the tryptic digests, they managed to not only achieve extensive proteome
coverage with the identification of 17,269 open reading frames but also validate genome annotations
using proteogenomics. The authors do not indicate how many proteins were identified in mature
female flowers. In our study, using the JO29k database, we identified 1343 accessions in mature buds.

While it is obviously advantageous to search larger specific databases since they generate longer
lists of identifications, it is computationally taxing, particularly when dynamic modifications are added
and an unlimited number of miscleavages is allowed, as was done in this study, because all those
parameters greatly increase the search space. Table 4 details the search durations for each sample.

For the databases containing less than a thousand entries, search durations take minutes,
whereas hours are needed when several thousands of entries are interrogated. For the smallest
databases, SP21 and Uniprot515, search durations span from 8 to 12 min and 16 to 26 min, respectively
(Table 4). For databases of comparable size, such as JO29k and SPGP40k, search durations fluctuate from
19 min to 1 h 22 min and from 2 h 18 min to 4 h 17 min, respectively. The largest database, Homemade95k,
necessitates the longest search durations, from 5 h 21 min to 25 h 28 min (Supplementary Materials
File F1). Table 4 has been converted into a histogram for ease of interpretation in Supplementary
Materials Figure S4A.

Table 4. Search times across the five databases and two algorithms for each sample.

Database Sample Total Search
Duration 1

SEQUEST/Decoy 2

Search Duration
Mascot/Decoy 2

Search Duration

SP21 bud1_A 11 min 0 s 2 min 0 s 6 min 43 s
SP21 bud2_A 10 min 0 s 1 min 30 s 6 min 44 s
SP21 bud3_A 10 min 0 s 1 min 31 s 6 min 25 s
SP21 bud1_C 10 min 0 s 2 min 35 s 4 min 52 s
SP21 bud2_C 8 min 0 s 1 min 54 s 4 min 4 s
SP21 bud3_C 10 min 0 s 2 min 21 s 5 min 12 s
SP21 bud1_T 12 min 0 s 2 min 28 s 6 min 42 s
SP21 bud2_T 11 min 0 s 2 min 18 s 6 min 28 s
SP21 bud3_T 11 min 0 s 2 min 12 s 6 min 1 s

Uniprot515 bud1_A 20 min 0 s 5 min 30 s 10 min 12 s
Uniprot515 bud2_A 19 min 0 s 5 min 10 s 10 min 53 s
Uniprot515 bud3_A 21 min 0 s 5 min 15 s 11 min 42 s
Uniprot515 bud1_C 18 min 0 s 8 min 28 s 5 min 12 s
Uniprot515 bud2_C 16 min 0 s 7 min 1 s 4 min 22 s
Uniprot515 bud3_C 19 min 0 s 8 min 53 s 5 min 4 s
Uniprot515 bud1_T 26 min 0 s 11 min 33 s 8 min 25 s
Uniprot515 bud2_T 20 min 0 s 8 min 55 s 6 min 4 s
Uniprot515 bud3_T 21 min 0 s 8 min 49 s 7 min 22 s

JO29k bud1_A 1 h 14 min 0 s 1 h 9 min n.a.
JO29k bud2_A 1 h 17 min 0 s 1 h 13 min n.a.
JO29k bud3_A 1 h 22 min 0 s 1 h 18 min n.a.
JO29k bud1_C 28 min 0 s 24 min 3 s n.a.
JO29k bud2_C 19 min 0 s 16 min 14 s n.a.
JO29k bud3_C 25 min 0 s 21 min 4 s n.a.
JO29k bud1_T 56 min 0 s 51 min 50 s n.a.
JO29k bud2_T 45 min 0 s 40 min 29 s n.a.
JO29k bud3_T 49 min 0 s 44 min 30 s n.a.
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Table 4. Cont.

Database Sample Total Search
Duration 1

SEQUEST/Decoy 2

Search Duration
Mascot/Decoy 2

Search Duration

Homemade95k bud1_A 19 h 13 min 0 s 4 h 47 min 14 h 17 min
Homemade95k bud2_A 22 h 16 min 0 s 5 h 14 min 16 h 54 min
Homemade95k bud3_A 25 h 28 min 0 s 5 h 56 min 19 h 24 min
Homemade95k bud1_C 8 h 31 min 0 s 2 h 53 min 5 h 31 min
Homemade95k bud2_C 5 h 21 min 0 s 1 h 31 min 3 h 43 min
Homemade95k bud3_C 5 h 29 min 0 s 1 h 57 min 3 h 25 min
Homemade95k bud1_T 9 h 20 min 0 s 2 h 50 min 6 h 22 min
Homemade95k bud2_T 5 h 29 min 0 s 1 h 49 min s 3 h 30 min
Homemade95k bud3_T 8 h 10 min 0 s 2 h 19 min s 5 h 43 min

SPGP40k bud1_A 6 h 48 min 0 s 3 h 33 min 3 h 8 min
SPGP40k bud2_A 7 h 41 min 0 s 3 h 50 min 3 h 45 min
SPGP40k bud3_A 8 h 39 min 0 s 4 h 17 min 4 h 15 min
SPGP40k bud1_C 3 h 35 min 0 s 2 h 3 min 1 h 26 min
SPGP40k bud2_C 2 h 18 min 0 s 1 h 14 min 59 min 41 s
SPGP40k bud3_C 2 h 42 min 0 s 1 h 39 min 57 min 18 s
SPGP40k bud1_T 4 h 22 min 0 s 2 h 27 min 1 h 48 min
SPGP40k bud2_T 2 h 43 min 0 s 1 h 34 min 1 h 2 min
SPGP40k bud3_T 3 h 42 min 0 s 1 h 59 min 1 h 36 min

1 The total search duration is the time PD 1.4 takes to completely process one LC-MS/MS file as detailed in the
workflow supplied in Supplementary Materials Figure S1. Beside database/decoy searches using SEQUEST and
Mascot, the workflow includes a spectrum file reading step, a spectrum selector step and a target decoy PSM
validator step. 2 Decoy searches are performed during the search engine steps using a decoy reversed database;
false positives are eliminated during the target decoy PSM validator step. We exemplify this in Supplementary
Materials File F1.txt using the Homemade95k database.

Interestingly, proteases also influence the amount of time the searches take. Above a critical
database size (to be determined but from this experiment anywhere between 515 to 29,057 entries),
searches take up to three times longer for rAsp-N-released peptides than for tryptic and chymotryptic
peptides (Table 4 and Supplementary Materials Figure S4A). We have averaged all search durations
across each of the five databases to produce Supplementary Materials Figure S4B, which shows a
marked increase in the duration of the search as a function of the number of entries.

The search engines also perform differently with a clear advantage for SEQUEST over Mascot
when the large database Homemade95k is searched. For instance, SEQUEST searched rAsp-N-released
peptides three time faster than Mascot (Table 4 and Supplementary Materials Figure S4A).

3.3. Comparison of Proteases and Their Proteolytic Efficiencies

In this study, we used three orthogonal digestions with proteases of increasing selectivity levels,
chymotrypsin (C), trypsin/Lys-C (TL) and rAsp-N (A).

The success identification rate follows the order previously observed with the number of MS and
MS/MS scans (Table 2). Typically, more accessions are identified when using trypsin/Lys-C, followed
by rAsp-N and lastly chymotrypsin (Table 3 and Supplementary Materials Figure S3A). The difference
in identification success among proteases becomes also more evident with larger databases. The Venn
diagrams in Supplementary Materials Figure S3B further exemplify this with the Homemade95k
database, as well as indicating how many of the accessions are unique to each of the proteases or shared
among them. For instance, when applying the SEQUEST algorithm, 1108 accessions are identified
with TL, 674 with A and 385 with C. Only 265 (17%) accessions are shared among TL and A, 79 (5%)
among TL and C and 17 (2%) among A and C. A total of 242 (11%) accessions are common to all
proteases. The Venn diagram for Mascot is very similar. Even though some proteases yield longer
lists of identities, in particular TL, they all complement each other, as attested by the high number
of protease-specific identities (e.g., for SEQUEST 522 TL-specific, 150 A-specific and 47 C-specific
protein accessions). This is expected because rAsp-N, trypsin/Lys-C and chymotrypsin are completely
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orthogonal, target different AA residues and consequently produce unique peptides (Supplementary
Materials Table S1).

Protease complementarity was also observed in our previous study where we tested single, double
and triple digestions using orthogonal proteases [2]; taking olivetolic acid cyclase (OAC) as an example,
we illustrated that full coverage of its AA sequence could only be reached by combining the sequencing
data from all the proteases since none of them individually produced 100% coverage. Similarly, in the
present study a wider coverage is achieved upon merging all the sequencing information produced
by the A, C and TL proteases (Supplementary Materials Tables S1–S5). From these results and those
obtained in our previous multiprotease experiment [2], we conclude that trypsin/Lys-C is the best
single digestion method systematically yielding the largest number of identifications regardless of the
database used.

Other studies have applied a multiple protease strategy to increase the proteome depth and
sequence coverage. As early as 2002, Choudhary and colleagues demonstrated that 93.9% coverage of a
recombinant tissue plasminogen activator could be achieved by the combination of trypsin, Lys-C and
Asp-N, covering respectively 88.2%, 62.8% and 34.9% of the 527 AA sequence [11]. Whilst covering the
least, Asp-N proved essential as it spanned regions of the recombinant protein that were not explored
by either trypsin or Lys-C. A similar observation was made on bovine serum albumin [48]. Swaney
and colleagues compared trypsin to highly selective proteases, namely ArgC, AspN, GluC and LysC,
and observed that while trypsin yielded the greatest number of unique identifications, the alternative
proteases identified different proteins thus augmenting the proteome depth [49]. Asp-N ranked second
with respect to the number of unique peptides identified, albeit achieving a lesser sequence coverage.

We mentioned above that perhaps applying similar protease:proteins ratios during the digestion
step might lead to comparable success rates among the different proteases. We also need to factor
in protease proteolytic efficiencies or how effectively proteases find their target AA residue and
cleave their substrate. This is assessed by the number of missed cleavage sites. The manufacturer
Promega (https://www.promega.com.au) ranks proteolytic efficiencies as follows: TL > A > C (Figure 1).
The website stipulates that trypsin/Lys-C yields less than 10% missed cleavages of R and K residues,
thus realizing more than 90% efficiency; rAsp-N achieves 85% digestion efficiency (no missed cleavage)
of D residues after 1h. Under our conditions (1M Guanidine-HCl), chymotrypsin loses 20% cleavage
efficiency (https://www.promega.com.au) of Y, F and W residues. We must also consider variations in
fragmentation efficiencies of the peptides as both trypsin/Lys-C and chymotrypsin leave a proton on
the peptide C-terminus, whereas Asp-N leaves it on the N-terminus of the released peptides.

The SEQUEST search program allows for up to twelve miscleavages whereas Mascot only allows
for up to nine miscleavages. We have previously discussed the benefits of setting a number of
miscleavages greater than two [2], particularly in the context of middle-down proteomics. Table 5
presents the distribution of missed cleavage sites observed in our experimental data.

The majority (60–89%) of the peptides matched in this study do not contain any miscleavage.
However, a significant proportion (11–40%) does include missed cleavage sites, indicating that our
digestions are incomplete. This is further confirmed by subtracting the number of matched peptides
with a missed cleavage site (miscleavage > 0) from the number of matched peptides without missed
cleavage (miscleavage = 0) to compute the excess of limit-digested peptides (ELDP) [50]. If the
proteolysis was total, the ELPD values indicated in Table 5 would be much smaller.

The fact that the digestion is incomplete is not an issue in our study. It just warrants allowing for
more miscleavages in the search parameters, which will result in longer search times, as was discussed
above. However, this is also advantageous in an MDP context where more missed cleavage sites
create longer peptides and ultimately greater sequence coverage, as was demonstrated in our previous
study [2] and confirmed in this new study. The peptide sizes (i.e., masses) are reported in Table 6.

https://www.promega.com.au
https://www.promega.com.au


Proteomes 2020, 8, 13 15 of 25

Table 5. Number of missed cleavages per database.

# Miscleavage SP21 Uniprot515 JO29k Homemade95k SPGP40k

0 116 433 2822 5818 2060
1 33 95 282 1091 403
2 20 51 32 339 140
3 7 16 13 158 60
4 8 9 5 54 28
5 1 1 6 22 7
6 4 3 4 8 5
7 2 3 1 8 4
8 1 0 3 5 1

10 1 0 1 1 1

TOTAL 193 611 3169 7504 2709
TOTAL miscleavage = 0 116 433 2822 5818 2060
TOTAL miscleavage > 0 77 178 347 1686 649

% miscleavage > 0 39.9 29.1 10.9 22.5 24.0
ELPD a 39 255 2475 4132 1411

a ELDP, excess of limit-digested peptides.

Table 6. Masses of identified peptides across all five databases (A) and for each protease (B).

A. Peptide
Mass SP21 Uniprot515 JO29k Homemade95k SPGP40k

min 626.4 626.4 969.5 604.3 604.3
max 7600.9 6385.2 6724.5 6993.1 6448.6

average 2123.2 2023.2 2173.6 1975.8 1866.0
SD 1099.7 1048.9 791.1 830.3 776.8

B. Protease Database min Mass max mass average Mass SD Mass

A SP21 1006.6 7600.9 2475.2 1166.7
A Uniprot515 631.3 5994.1 2363.4 1192.1
A JO29k 969.5 6724.5 2280.9 905.8
A Homemade95k 653.4 6375.2 2147.2 939.1
A SPGP40k 653.4 6448.6 2028.9 929.2

C SP21 774.4 5520.9 1807.1 927.0
C Uniprot515 704.4 5520.9 1779.1 793.0
C JO29k 1034.6 6061.9 2108.9 776.2
C Homemade95k 789.5 6954.3 1901.9 724.2
C SPGP40k 789.5 5121.4 1832.0 581.4

TL SP21 626.4 5303.5 2007.0 1058.9
TL Uniprot515 626.4 6385.2 1926.4 1015.7
TL JO29k 1055.5 6369.2 2112.1 705.8
TL Homemade95k 604.3 6369.2 1922.4 789.4
TL SPGP40k 604.3 6369.2 1795.0 706.0

Identified peptide masses range from 604.3 D (Homemade95k) to 7600.9 D (SP21) and they
average 2032.5 D with a huge standard deviation (SD, Table 6A), indicating that the size of many
peptides falls outside the average mass. There is a trend that the larger the database, the smaller the
identified peptides.

If we take a closer look at the protease level, rAsp-N produces the longest peptides, averaging
from 2.0 to 2.5 (+/− 0.9–1.2) kD (Table 6B). This is expected because rAsp-N is highly selective and
targets only the N-terminus of D residues. The largest peptide originates from the action of rAsp-N on
CBCAS (WO/2015/196275Al), weighs 7.6 kD, hosts only one miscleavage and matches the following AA
sequence: DLFWAIRGGGGENFGIIAACKIKLWVPSKATIFSVKKNMEIHGLVKLFNKWQNIAYKYDK.

Proteases that are less selective and target multiple sites such as trypsin and chymotrypsin produce
shorter peptides averaging 1.9 kD. The longest peptides arising from the action of C or TL present
more missed cleavages. For instance, the chymotryptic peptide EILSGKSRGAAAATESLTDSSAEFG
ETSSSISSSEISTEDVKVKGSSSPPHLGWPIRRADVRKSF from the C. sativa rop guanine nucleotide
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exchange factor 5-like protein (XP_030490016.1) weighs 6954.3 D and contains 5 miscleavages. In another
example, the tryptic peptide VSRLDLKKLRFGAANRYGFRVGLGKTHLSANFSDEVASWKKFRNQR
from the C. sativa uncharacterized protein LOC115699895 (XP_030483299.1) weighs 5539.9 D and carries
10 miscleavages.

In our previous shotgun study, we evidenced the positive relationship between the number of
miscleavages and the size of the peptides [2]. We discussed how advantageous this feature is in a
middle-down proteomics context and recommended applying a number of missed cleavages greater
than two, as is usually the case, during the database search stage. This is also confirmed in the present
work. Swaney and colleagues applied up to three missed cleavages and reported increased length of
Asp-N-released peptides relative to that of tryptic peptides [49]. Giansanti and colleagues observed 0–2
miscleavages for trypsin and Lys-C and 0-4 miscleavages for Asp-N and chymotrypsin [48]. Cristobal
and colleagues reported Asp-N-released peptides bearing more than four miscleavages and a greater
median size than tryptic peptides [51].

3.4. Comparison of the Search Algorithms

A plethora of search engines are available to the proteomics community to turn tandem mass
spectra of peptides into AA sequences [22,25,27–29]. All of these algorithms rely upon the same
fundamental elements: read protein sequence databases, emulate enzymatic cleavage to peptides,
extrapolate PTMs, apply a tolerance of observed precursor and fragment masses, predict fragment ions
for each peptide sequence, and compare observed and expected fragments [29]. In our past shotgun
proteomics studies [1,2], we used SEQUEST, which was designed for instruments manufactured by
Thermo Scientific such as the Elite LTQ-orbitrap mass analyser employed here. In this study we
compare two of the most commonly used search algorithms, SEQUEST and Mascot.

The SEQUEST program was created in 1994 to correlate tandem mass spectra of digested protein
mixtures from a yeast cell lysate with AA sequences hosted in a database [23]. Amino acid sequences are
converted into a fragmentation pattern used to match fragment ions in a MS/MS spectrum. The number
of peaks the sequence shares with the experimental spectrum are counted to generate the SEQUEST
preliminary score or Sp [23]. Two key calculations assess whether a peptide sequence is a confident
match for a fragmentation spectrum: 1) XCorr, a statistical calculation of the correlation of the theoretical
and experimental spectra and 2) ∆CN, the difference between the top peptide spectrum match (PSM)
and the second best PSM [8]. SEQUEST was exclusively licensed to Thermo Scientific instruments and
incorporated into Proteome Discoverer 1.4 package [29]. Since its inception in 1994, SEQUEST has
undergone a series of improvements [29], including the addition of dynamic modifications [52] and
the ability to interrogate nucleotide databases through six-frame translation [53].

Developed in 1999, the Mascot program incorporates a probability-based scoring which allows
discrimination against false positives, can be compared with other probabilities such as sequence
homology and can be optimized by iteration [24]. To maximise search speed and reduced data, FASTA
format sequence databases are compressed, and multiple spectra originating from the same precursor
are summed together. Tandem MS data are converted to peak lists of centroided mass values associated
with intensity values. The match significance depends on the size of the database. Fixed and variable (so
called dynamic in SEQUEST) modifications can also be included [24]. Several common causes of failure
to find a peptide match are considered in the Mascot program: (a) enzyme nonspecificity, (b) incorrect
determination of precursor charge, (c) underestimated mass measurement error, (d) unsuspected
chemical and post-translational modifications and (e) peptide sequence not in the database [43].

A pubmed survey (https://www.ncbi.nlm.nih.gov/pubmed/) with the following key words
“proteom* AND mascot” or “proteom* AND sequest” indicates that even though SEQUEST predates
Mascot by five years, more proteomics publications contain the term Mascot (751) than the term
SEQUEST (346). This can probably be explained by the fact that the SEQUEST search engine is only
distributed with a Thermo Scientific instrument whereas Mascot is a stand-alone license that can be

https://www.ncbi.nlm.nih.gov/pubmed/
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purchased independently of the instrument used. The distribution of publications per year is available
in Supplementary Materials Table S6.

The number of accessions identified varies slightly depending on which search algorithm is
employed, with SEQUEST always yielding more identities (Table 3 and Supplementary Materials Figure
S3A). For instance, when Uniprot515 is searched, SEQUEST yields an average of 68 (+/−3) accessions,
whereas Mascot produces 41 (+/−5) accessions. When a much larger database like Homemade95k
is interrogated, the gain becomes more evident with 1117 (+/−118) SEQUEST-related accessions
and 772 (+/−211) Mascot-related accessions. If time is a constraint and very large databases are
interrogated, then SEQUEST is to be favoured, with search durations up to three times faster than when
Mascot is used, as demonstrated for the largest database, Homemade95k, in Table 4 and illustrated in
Supplementary Materials Figure S4A.

When all the algorithm-specific matches are considered for the four databases where both
SEQUEST and Mascot were applied and the results represented as Venn diagrams, it paints a
slightly different picture (Supplementary Materials Figure S3C). With the exploration of the SPGP40k
database, Mascot identifies 735 (out of 819 IDs, 90%) accessions across all nine samples, thus slightly
outperforming SEQUEST, which yields 710 (87%) identifications; 626 (76%) are common between the
two algorithms. Overall, irrespective of the database, 61% to 78% of the matches are shared among
both algorithms (Supplementary Materials Figure S3C). Some accessions are unique to SEQUEST
or to Mascot, thus boosting the number of proteins identified when both programs are taken into
account. Therefore, if utilizing several search algorithms is a possibility, prospective researchers should
consider it.

To our knowledge, four studies have compared Mascot and SEQUEST search engines on diverse
samples [51,54–56], however none originating from plants. Shen and colleagues reported that the
number of peptides identified using Mascot was only 40–60% of that obtained using SEQUEST,
attributed to numerous Mascot-related false negative identifications. Mascot rejected many peptides
whose masses fell within the set tolerance and matched unique sequence tags composed of more
than seven residues. The authors conclude that Mascot operates better for well-resolved, small and
doubly charged peptides [55]. Tu and colleagues also report wide differences between both search
engines; however these discrepancies could be leveled out using a post-processing program such as
Percolator [56]. Cristobal et al. indicate that Mascot performs better than SEQUEST on deconvoluted
MS/MS data because the latter rewards data-rich spectra such as those exhibited by large fragments
displaying a wide charge envelop [51]. Very recently, Agten and colleagues debate that resorting to
multiple algorithms to search MS/MS data actually hides the information on complementarity and
agreement among the search engines at the level of spectrum identification [54]. They stipulate that
the percentage sequence agreement on peptide identification at the spectrum level can assess the rate
of agreement between the search engines better than a Venn diagram of matched peptides or identified
proteins. The combination of both sequence annotation and sequence confidence is achieved using
Mondrian-like plots and shows that Mascot matches more tandem spectra than SEQUEST [54].

Other studies have utilized additional search engines on top of SEQUEST and Mascot, including
Spectrum Mill, X!Tandem, PeptideProphet and Sonar [57], X!Tandem and OMSSA [58], MaxQuant [59],
InsPeCT, OMSSA, x!Tandem and MyriMatch [28], Andromeda and SimSpectraST [60], and MaxQuant
and Andromeda [60]. The more algorithms, the less the overlap across the identification results,
as clearly illustrated with Venn diagrams or scatter plots. This begs the following question: do we
consider only the common hits, or do we accept all matches regardless of their origin? We argue that all
those search engines have been well designed and validated, and therefore, all peptide hits should be
considered. Indeed, multiplying search algorithms has led to improved overall identification numbers
and confidence [8,22].
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3.5. Sequence Coverage and Post-Translational Modifications (PTMs)

Every shotgun proteomics experiment strives at producing the longest list of protein identifications
with the broadest sequence coverage possible in order to distinguish between the various isoforms and
detect PTMs.

The sequence coverage of all the proteins identified using the five different databases and listed in
Supplementary Materials Tables S1–S5 have been turned into histograms and scatterplots factoring in
sequence length using the number of AAs or the MWs of the proteins identified in this study (Figure 3).
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Figure 3. Comparison of the protein coverage results obtained using the five databases. (A) Histogram
of cumulated sequence coverage for the 18 proteins identified using SP21 database. The secondary
Y-axis represents the number of AAs. (B) Histogram of cumulated sequence coverage for the
72 accessions identified using Uniprot515 database. The secondary Y-axis represents the number of AAs.
(C) Scatterplot of the coverage of the 1343 accessions identified using JO29k database plotted against
their MWs (kD) for each digestion. (D) Scatterplot of the coverage of the 1442 accessions identified
using Homemade95k database plotted against their MWs (kD) for each digestion. (E) Scatterplot of the
coverage of the 819 accessions identified using SPGP40k database plotted against their MWs (kD) for
each digestion.
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When small databases such as SP21 and Uniprot515 are interrogated, there is a trend showing
that short proteins achieve greater sequence coverage (Figure 3A,B), albeit with many exceptions.
For instance, with SP21, four proteins composed of 385 AAs, 3,5,7-trioxododecanoyl-CoA synthase
(OLIS) and polyketide synthases 1, 2 and 4 (PKSG1, PKSG 2 and PKSG 4) are well covered (up to 79%
with rAsp-N), whereas other proteins of similar size, such as naringenin-chalcone synthase (CHS) and
chalcone synthase-like protein 1 (CHSL1), only reach a maximum of 39% and 27% coverage, respectively
(Figure 3A). Other exceptions are olivetolic acid cyclase (OAC) and cytochrome c (CYC), composed
of 101 and 111 AAs, respectively; while small, these proteins’ sequences are not completely covered.
Similar observations can be made with Uniprot515; generally speaking, small proteins are better
covered, but some exceptions are found (Figure 3B). When large databases like JO29k, Homemade95k
and SPGP40k are explored, the trend described above becomes very clear and scatterplots confirm the
negative relationship between protein MWs and sequence coverage irrespective of the protease used,
as can be seen in Figure 3C–E.

The C. sativa proteins annotated in the UniProt Knowledge Base are known to carry modifications,
and we have experimentally validated some of them using a top-down proteomics strategy [3].
Consequently, in this study we have included the following dynamic PTMs to the search method:
N-term acetylation, acetylation and methylation of K residues, oxidation of M residues, phosphorylation
of S, T and Y residues and the attachment of N-acetyl-D- glucosamine (NAG) glycogroups to N residues.
Examples of C. sativa proteins bearing NAG glycosylations are CBDAS (A6P6V9) and THCAS
(Q8GTB6) [61–63]. Furthermore, following the DTT reduction and iodoacetamide alkylation of proteins
during sample preparation, cysteine residues involved in disulfide bonds are expected to be reduced
and carbamidomethylated. The number of fixed and dynamic PTMs discovered in this experiment are
reported in Table 7.

Table 7. Number of post-translational modifications (PTMs) per database.

PTM SP21 Uniprot515 JO29k Homemade95k SPGP40k

Carbamidomethyl (C) 34 94 493 602 226
N-term acetyl (K) 21 16 27 91 44

Acetyl (K) 47 32 47 132 71
Methyl (K) 61 49 114 163 158
NAG (N) 10 5 9 17 7

Oxidation (M) 18 24 43 66 90
Phospho (STY) 86 57 100 201 71

TOTAL PTMs 277 277 833 1272 667

# identified peptides 344 611 3169 7504 2709
# unmodified peptides 192 450 2255 5593 1834

# modified peptides 152 161 914 1911 875
% modified peptides 44.2 26.4 28.8 25.5 32.3

Depending on the database employed, between 25 and 44% of the identified peptides harbor
one or several modifications. The number of PTMs varies from 277 (SP21 and Uniprot515) to 1272
(Homemade95k), again exhibiting a positive relationship with the size of the database. Most PTMs are
carbamidomethylations (602/1272, i.e., 47% of all PTMs in Homemade95k, Table 7). This is expected as
many proteins comprise disulfide bridges in their secondary structures and as such hold a pivotal role
in their folding, stability and activity [64].

The proportions of dynamic PTMs fluctuate in a database-dependent fashion. For example,
the second largest category of PTMs is phosphorylation for Uniprot515 (57/277, 21%) and Homemade95k
(201/1272, 16%) databases, but it is methylation for JO29k (114/833, 14%) and SPGP40k (158/667, 24%)
databases (Table 7). Acetylations, whether they are located at the N-terminus of the protein or not, are
well represented, particularly with SP21 (47 + 21 = 68/277, 25%), Homemade95k (91 + 132 = 223/1272,
18%) and SPGP40k (44 + 71 = 115/667, 17%). Oxidation only affects a small proportion of peptides
(5–13%), suggesting that no artefactual oxidation was introduced during the sample preparation steps.
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In this study, several peptides decorated with NAG (also called GlcNAc) are detected
(1–4%). With SP21, they are witnessed on polyketide synthase 2 (PKSG2), cannabichromenic
acid synthase (CBCAS), cannabidiolic acid synthase (CBDAS), cannabidiolic acid synthase-like 2
(CBDAS3), tetrahydrocannabinolic acid synthase (THCAS) and inactive tetrahydrocannabinolic
acid (THCAI) (Supplementary Materials Table S1). Using Uniprot515, they are additionally found
on ocimene synthase (A0A5C1IY38), hedycaryol synthase (A0A4Y5QVX6) and mevalonate kinase
(A0A1V0QSI0). Such NAG N-linked glycosylation sites have been reported for CBDAS (https://
www.uniprot.org/uniprot/A6P6V9) [62], CBDAS3 (https://www.uniprot.org/uniprot/A6P6W1), THCAS
(https://www.uniprot.org/uniprot/Q8GTB6) [61,65], THCAI (https://www.uniprot.org/uniprot/Q33DQ2)
and CBCAS (patent WO/2015/196275 Al [41]). Most of these synthases are involved in highly specific
secondary metabolisms, the phytocannabinoid, terpenoid and mevalonate pathways.

PTMs of cannabis proteins have also been reported by Jenkins and Osburn [39]; oxidation of
methionine residues was the most common modification, followed by acetylation of lysine residues
and phosphorylation of serine and threonine residues. Interestingly, the authors indicate that the
acetylated proteins were unique to mature flowers and absent in leaves and stems from the male
plants. Protein PTMs represent a major level of cellular regulation, acting either swiftly and reversibly,
such as phosphorylation, or slowly and irreversibly, such as certain forms of glycosylation. Whilst
gene expression merely regulates protein abundance, PTMs control their three-dimensional structures,
thus revealing or concealing active sites and interfaces for protein–protein interaction, which in turn
modulates the protein subcellular localization, stability and activity. Acting as molecular switches of
proteins, PTMs may initiate and inhibit the interaction of proteins with DNA, cofactors and lipids, as well
as with other proteins [66]. The human proteome is the best proteome characterized so far and MS has
enabled the discovery of most of the PTMs known today. A catalog of 81,721 unique phosphorylated
peptides belonging to 11,025 proteins substrates of kinases, 29,031 unique ubiquitinylated peptides
corresponding to 5769 proteins substrates of ubiquitin ligases, 16,693 acetylated peptides from
7098 proteins that are substrates of acetylases and 7977 proteins and carboxy-terminal peptides for
6778 proteins confirming a large number of translation start and stop sites have been established [67].
As evidenced in this study and previous works [1,2,39], C. sativa hosts numerous PTMs with many
more to be discovered as the number of proteomics experiments on C. sativa gain momentum, leveraged
by a relaxation in the legislation. Neither genomics nor transcriptomics analysis can identify PTMs,
only protein analyses can deliver such valuable information. Experimentally detecting PTMs using
MS is a first step; functionally characterizing them is another critical step that is needed in order to
shed more light onto the biology of this unique plant.

3.6. Database Specificity and Gene Ontology (GO)

Four databases contain exclusive sequences from C. sativa, whereas SPGP40k includes all the
sequences from SwissProt limited to the viridiplantae (i.e., green plants) taxonomy. The 819 identifications
obtained in this study using the green plant taxonomy emanate from 175 different plant species.
The histogram in Supplementary Materials Figure S5 displays 32 species represented by more than
4 accessions.

Most identities (267/819, 33%) come from Arabidopisis thaliana, which is the model plant species
and therefore the most studied, sequenced and best annotated organism. Then, Oryza sativa, the cereal
model, ranks second with 67 (8%) accessions. Only eight (1%) accessions originate from C. sativa, which
ranks 11th and is equally placed with Cucumis sativus and Gossypium hirsutum (Supplementary Materials
Table S5). The SPGP40k database comprises 19 C. sativa (CANSA) entries, which corresponds to only
0.05% of the number of total entries. All the 19 CANSA entries are also included into the SP21 database,
which yields 18 accessions when searched in this study (Supplementary Materials Table S1). Therefore,
it is not clear why only 8 (out of 21, 42%) CANSA accessions are found when SPGP40k is searched;
it is as though they underwent a database dilution. Because decoy searches were performed and PSM
validated, we do not expect false positives to occur in our analyses. Sequences from non-model species

https://www.uniprot.org/uniprot/A6P6V9
https://www.uniprot.org/uniprot/A6P6V9
https://www.uniprot.org/uniprot/A6P6W1
https://www.uniprot.org/uniprot/Q8GTB6
https://www.uniprot.org/uniprot/Q33DQ2
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such as C. sativa are greatly underrepresented in the most reputable protein reference database, UniProt,
even though this species’ genome has been sequenced and annotated in NCBI. It would be useful for
the proteomics community to have these sequences and all their known annotations (e.g., GO terms,
PTMs, signal peptide, etc.) available from the UniProt Knowledge Base. Unsequenced organisms
primarily face the challenge of bioinformatic data analysis, particularly when no close relatives have
been sequenced [68]. The proteome of another non-model species, Artemisia annua, was also mined
using various databases originating from RNA sequencing or retrieved from NCBInr and UniProt
repositories. The searched databases were limited to only A. annua species or included the whole
viridiplantae taxonomy; accordingly, the number of entries ranged from 118 to more than 1 million
sequences [69]. Large specific databases led to the identification of almost 700 accessions, whereas
viridiplantae databases listed about half that number. Similar conclusions were drawn more recently on
cacao, also a non-model species [70]. The authors report that the largest number of identities (906) were
obtained using a database made of the Theobroma cacao genomic sequences translated into six reading
frames and containing 59,577 entries. The T. cacao UniProt/Trembl and NCBI databases yielded 897
and 870 protein identifications, respectively. NCBInr viridiplantae, the largest database searched in this
study in excess of 3 million entries, identified 759 proteins. Both these works thus demonstrate that
database specificity rather than exhaustivity is a key factor to consider for proteomics analyses; we also
report this on C. sativa. When studying non-model plant species for which no genomic sequencing
data is available, searching the viridiplantae database and its sub-taxonomies has proven invaluable to
explore their proteomes, as was evidenced in pomegranate [71], quinoa [72], Pinus occidentalis [73] and
cumin [74].

Using the UniProtKB Retrieve/ID mapping online tool (https://www.uniprot.org/uploadlists/)
and the Uniprot accessions identified using Uniprot515 and SPGP40k databases, we performed a GO
classification; this is not feasible with accession numbers from MPGR and NCBI. The longer the list of
annotations, the more exhaustive the insight into the plant biology, as displayed in Supplementary
Materials Figure S6 based on the Biological Processes classification.

As more proteins are identified when a large database such as SPGP40k is used (Supplementary
Materials Figure S6B) relative to a small database such as Uniprot515 (Supplementary Materials
Figure S6A), more biological processes are listed. In the case of medicinal cannabis, 581 metabolic
processes appear including nitrogen compounds (340), primary (452), small molecules (224) and
organic substances (508) metabolisms. Yet, only 7 results are assigned to the secondary metabolism.
C. sativa manufactures a plethora of compounds found nowhere else, the best known being the
phytocannabinoids [30–34]. This is not reflected in the classification depicted in Supplementary Materials
Figure S6B because no other species resembles cannabis, which is truly unique. This viridiplantae
database gap in SwissProt and UniProt must be urgently filled.

4. Conclusions

In this BUP experiment, three orthogonal proteases of various selectivity were applied to mature
buds of C. sativa and analysed using nLC-MS/MS. Five databases of various sizes and specificity and
two search engines were used to explore the spectral data. Statistical analyses, PCA and Venn diagrams
in particular, highlight the complementarity of the proteases. A portion of the peptides identified in
this study are shared across two or more proteases but many of them are unique to a digestion. Overall,
not only more accessions are identified but also with greater sequence coverage and numerous PTMs
discovered. Searching five databases of increasing sizes, from a minimalist database representing
only a pathway (SP21) to a redundant database containing more than the expected number of C.
sativa genes (Homemade95k), revealed a positive relationship between the number of entries in the
database and the number of identities. A negative consequence is that the duration of the search
increases accordingly, spanning from mere minutes with small databases to over a day with large ones.
The two search engines SEQUEST and Mascot performed adequately, with a slight advantage given to
SEQUEST, which yielded slightly more identifications in a shorter amount of time. Most accessions

https://www.uniprot.org/uploadlists/
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were shared among the two algorithms but a significant proportion of them were unique to one of them.
Therefore, like for the proteases, multiplying the search engine is beneficial as it yields more identities
and ultimately provides a better biological insight. To the prospective scientist devising a shotgun
proteomics strategy to explore the proteome of their samples, we recommend performing multiple
digestions, to search databases that aptly represent the gene diversity of their species of interest and to
utilise multiple search engines if possible.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-7382/8/2/13/s1,
Supplementary Figure S1: Proteome Discoverer 1.4 search parameters, Supplementary Figure S2: Base peak
chromatograms (BPCs) of the nine digests, Supplementary Figure S3: Comparison of the number of identifications
for each database, search algorithm and protease, Supplementary Figure S4: Comparison of the search times across
the databases, algorithms and proteases, Supplementary Figure S5: Distribution of species for which more than four
accessions were identified using SPGP40k database, Supplementary Figure S6: Biological Process GO classification
for the accessions identified using Uniprot515 (A) or SPGP40k (B) from UniProtKB Retrieve/ID mapping online tool,
Supplementary Table S1: SP21 identification results, Supplementary Table S2: Uniprot515 identification results,
Supplementary Table S3: JO29k identification results, Supplementary Table S4: Homemade95k identification
results, Supplementary Table S5: SPGP40k identification results, Supplementary Table S6: Pubmed publications
containing the keywords “proteom* AND sequest” and “proteom* AND mascot”.
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