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ABSTRACT

BACKGROUND: Brain age model, including estimated brain age and brain-predicted age difference (brain-PAD), has shown great potentials for
serving as imagingmarkers for monitoring normal ageing, as well as for identifying the individuals in the pre-diagnostic phase of neurodegenerative
diseases.

PURPOSE: This study aimed to investigate the brain agemodels in normal ageing andmild cognitive impairments (MCI) converters and their values
in classifying MCI conversion.

METHODS: Pre-trained brain agemodel was constructed using the structural magnetic resonance imaging (MRI) data from the Cambridge Centre
for Ageing and Neuroscience (Cam-CAN) project (N = 609). The tested brain age model was built using the baseline, 1-year and 3-year follow-up
MRI data from normal ageing (NA) adults (n = 32) andMCI converters (n = 22) drew from theOpen Access Series of Imaging Studies (OASIS-2). The
quantitative measures of morphometry included total intracranial volume (TIV), gray matter volume (GMV) and cortical thickness. Brain age models
were calculated based on the individual’s morphometric features using the support vector machine (SVM) algorithm.

RESULTS:With comparable chronological age, MCI converters showed significant increased TIV-based (Baseline: P= 0.021; 1-year follow-up: P=
0.037; 3-year follow-up: P = 0.001) and left GMV-based brain age than NA adults at all time points. Higher brain-PAD scores were associated with
worse global cognition. Acceptable classification performance of TIV-based (AUC = 0.698) and left GMV-based brain age (AUC = 0.703) was
found, which could differentiate the MCI converters from NA adults at the baseline.

CONCLUSIONS: This is the first demonstration that MRI-informed brain agemodels exhibit feature-specific patterns. The greater GMV-based brain
age observed in MCI converters may provide new evidence for identifying the individuals at the early stage of neurodegeneration. Our findings
added value to existing quantitative imaging markers and might help to improve disease monitoring and accelerate personalized treatments in
clinical practice.

PLAIN LANGUAGE SUMMARY
Based on individual’s MRI scans, brain age model has shown great potentials for serving as imagingmarkers for monitoring normal ageing (NA), as
well as for identifying the ones in the pre-diagnostic phase of age-related neurodegenerative diseases. In this study, we investigated the brain age
models in normal ageing and mild cognitive impairments (MCI) converters and their values in classifying MCI conversion. Pre-trained brain age
model was constructed using the quantitative measures of morphometry included total intracranial volume (TIV), gray matter volume (GMV) and
cortical thickness. With comparable chronological age, MCI converters showed significant increased brain age than NA adults at all time points.
Higher brain age were associated with worse global cognition. This is the first demonstration that MRI-informed brain age models exhibit feature-
specific patterns. The greater GMV-based brain age observed in MCI converters may provide new evidence for identifying the individuals at the
early stage of neurodegeneration. Our findings added value to existing quantitative imaging markers and might help to improve disease monitoring
and accelerate personalized treatments in clinical practice.

KEYWORDS: Brain age model, ageing, magnetic resonance imaging, morphometric features, mild cognitive impairment, predictive models,
neurological diseases

RECEIVED: January 10, 2024. ACCEPTED: June 2, 2024.

TYPE: Original Research Article

DECLARATION OF CONFLICTING INTERESTS: The author(s) declared no potential conflicts
of interest with respect to the research, authorship, and/or publication of this article.

FUNDING: The author(s) disclosed receipt of the following financial support for the research,
authorship, and/or publication of this article: Thisworkwas supported by theHongKongResearchGrant
Council (RGC)-General Research Fund (GRF) (Grant No. 14111021) and Healthy Longevity Catalyst
Awards (HongKong) (ProjectNumber:HLCA/M-407/23). Thecorrespondingauthor had full access to all
the data in the study and had final responsibility for the decision to submit for publication.

AUTHOR’S NOTE: Data used in the preparation of this article was obtained from the Cambridge
Centre for Ageing and Neuroscience (Cam-CAN) project (https://www.cam-can.org/) and the
Open Access Series of Imaging Studies-Longitudinal dataset (OASIS-2) (https://www.oasis-
brains.org/). The investigators from Cam-CAN and OASIS-2 contributed to the design and
implementation of Cam-CAN andOASIS and/or provided data but did not participate in writing this
article.

SUPPLEMENTAL MATERIAL: Supplemental material for this article is available online.

CORRESPONDING AUTHOR: Hanna Lu, Department of Psychiatry, The Chinese University of
Hong Kong, G/F, Multi-Centre, Tai Po Hospital, Hong Kong, SAR 999077, China.
Email: hannalu@cuhk.edu.hk

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial
4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/11795735241266556
https://orcid.org/0000-0002-9090-258X
https://orcid.org/0000-0001-6082-7147
https://www.cam-can.org/
https://www.oasis-brains.org/
https://www.oasis-brains.org/
mailto:hannalu@cuhk.edu.hk
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


Introduction
Ageing is a dynamic, nonlinear and complex process that leads

to reductions in brain structures, including cortical atrophy

ranging from hemisphere to whole brain.1 Using magnetic

resonance imaging (MRI) scans to predict subsequent cognitive

decline and identify early-stage dementia is of major interest in

the studies of age-related neurodegenerative diseases. Over the

last decades, MRI-based biomarkers have garnered substantial

attention due to their great potential in guiding accurate di-

agnosis and brain-based interventions in clinical routine.2-4

While the diagnostic performance of MRI biomarkers is

well-studied in individuals with already present cognitive im-

pairment, their clinical significance in identifying and predicting

conversion from normal ageing adults to early-stage dementia

remains controversial.5 In the same line, given the dynamic

relationships between ageing, neurodegeneration and brain

morphometry may lead to further enhancements in the diag-

nostic, therapeutic and prognostic modelling of neurodegen-

erative diseases in real-world clinical practice.

As a family of quantitative approaches, the concept of

brain age model has been developed for thoroughly esti-

mating an individual’s chronological age from neuroimaging

data.6-10 The past decades have witnessed tremendous ad-

vances in quantifying brain features and predicting brain age,

as well as in modeling techniques relate to brain age pre-

diction. With the advances in analytical methods, compu-

tational models of brain age have become popular in

quantifying the effect of ageing on the brain. Algorithmically,

brain age prediction can take many forms in ageing pop-

ulations. Based on T1-weighted MRI data, both regression

machine learning models and deep learning (i.e., convolu-

tional neural network) models have been applied in brain age

estimation framework.11 At present, the main output of brain

age models included estimated brain age and brain-predicted

age difference (brain-PAD). The score of brain-PAD is

computed by deducting the brain age from the individual’s

chronological age.12-14 The score of brain-PAD has threefold

explanations: (1) a negative score of brain-PAD representing

decelerated brain ageing (i.e., brain age < chronological age);

(2) a positive score of brain-PAD representing accelerated

brain ageing (i.e., brain age > chronological age); (3) brain-

PAD score equal to zero, representing normal brain ageing

(i.e., brain age = chronological age). Of note, beside of al-

gorithms, accurately inferring brain age from neuroimaging

data requires computational models that capture and quantify

the underlying age-related brain changes. Although the gray

matter-based brain age models have been well developed in

last decade, the accurate and dynamic estimation of brain age

is highly dependent on the changes of brain features during

normal and pathological ageing. For example, using a pre-

trained brain age model derived from gray matter volume,

accelerated ageing (i.e., increased brain age) was observed

in Alzheimer’s disease (AD) patients and mild cognitive

impairment (MCI).15-17 Later, Lv et al found that the in-

dividuals with greater brain age were accompanied with worse

cognitive function andMRI-based brain age can differentiate

the AD diagnostic groups.8

From a longitudinal perspective, Franke and Gaser found

that the cases with accelerated brain ageing converted to clinical

dementia within 3 years.18 It should be noted that there is a

linear pattern between advanced age and gray matter volume

loss during ageing,19,20 while another measure of gray matter,

cortical thickness, showed a curvilinear relationship with ad-

vanced age.21,22 When it comes to brain age model, volume-

based and thickness-based brain-PAD showed distinct patterns

in clinical populations.23 These results indicate that neuro-

degeneration may differentially affects different brain features

during ageing. Importantly, the brain age models constructed

based on gray matter volume and cortical thickness may reflect

the disease-specific changes in the dimensions of brain struc-

tures. In this context, several factors appeared to drive the trend

towards an increase in the surface-based mapping of gray matter

that contain both volume and thickness measure. Considering

currently emerging analytic methods, the morphometric fea-

tures of gray matter may be a critical factor contributing to the

discrepancy in brain age models, which may confound clinical

and biomarker interpretation in patients with age-related

neurodegenerative diseases.

Taken together, the limited evidence of MRI-informed

feature-based brain age prediction has brought about incon-

sistent investigations of estimated brain age at individual level,

particularly for patients with very early stage of neurodegen-

erative diseases. With respect to the complex and non-linear

structural changes during ageing, a rigorous quantitative ap-

proach is required to better characterize the brain features and

feature-based brain age models in the context of cortical at-

rophy. Hence, we proposed to examine the ageing effects on the

morphometric feature-based brain age and brain-PAD in

normal ageing adults andMCI converters, as well as to test their

predictive values in identifying the MCI converters.

Materials and methods
Study participants

We used the longitudinal structural MRI scans from the Open

Access Series of Imaging Studies (OASIS-2) (https://www.

oasis-brains.org).24 As described in previous work,25,26 the

participants who were characterized with Mini Mental State

Examination (MMSE) and scanned on 3 visits were recruited in

this study. The participants who were demented or had a history

of major brain disorders or serious cerebrovascular conditions

were excluded from this study. In general, 22 MCI converters

and 32 age-matched normal ageing (NA) adults who had valid

baseline, 1-year and 3-year follow-up assessments of global

cognition and structural MRI were recruited in this study

(Table 1). NA adults were presented with a MMSE score
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greater than 28 at baseline and the follow-up time points. MCI

converters were defined by the 3 criteria: (1) presented with a

MMSE score greater than 28 at baseline (i.e., cognitively

normal); (2) presented with cognitive decline during ageing; (3)

presented with a MMSE score less than 28 at 1-year and 3-year

follow-up time points.27

The demographic features and the scores of MMSE were

directly retrieved from OASIS-2 dataset, which were collected

byWashington University Alzheimer Disease Research Center.

The recruitment of the participants in OASIS-2 was in ac-

cordance with the guidelines of Washington University Human

Studies Committee. Approval for public sharing of the ano-

nymized data was also specifically obtained at the study site.

Structural MRI acquisition

Details about the OASIS-2 MRI data acquisition protocol can

be seen on the official webpage of OASIS (https://www.oasis-

brains.org/). The structural MRI data of OASIS-2 was acquired

on a 1.5 T Vision scanner (Siemens, Erlangen, Germany) with a

thermo-plastic face mask to minimize head movements.24 The

T1-weighted magnetization prepared rapid gradient echo

(MPRAGE) sequence was empirically optimized for the gray-

white contrast, with repetition time (TR) = 9.7 ms, echo time

(TE) = 4.0 ms, resolution = 256 × 256 matrix, orientation =

sagittal, inversion time = 20ms, delay time = 200ms, flip angle =

10°, slices = 128 and thickness = 1.25 mm.

Quantifications of brain features

The brain features, including total intracranial volume (TIV) (i.e.,

brain parenchyma), gray matter volume (GMV) and cortical

thickness (CT), were extracted and quantified by BrainSuite 21a

at individual level (https://brainsuite.org/) (Figure 1). BrainSuite

is an automatic brain surface identification integrated compu-

tational platform with the updated version of cortical surface

extraction, which is suitable for adults with cortical atrophy.28,29

To calculate the region-specific cortical features, we followed the

standard pipeline with default settings.30 Through uploading

each subject’s structural MRI data to BrainSuite, the image

processing methods include a series of steps: (1) head motion

correction; (2) image intensity normalization; (3) removal of the

non-brain voxels; (4) segmentation of gray matter (GM), white

matter (WM) and cerebrospinal fluid (CSF); (5) tessellation of

GM/WM boundary, and topology correction.

Based on the tissue segmentation results from BrainSuite,

cortical surface of each hemisphere for each participant were

reconstructed by a deformable surface method.31 TIV, as the total

volume of brain parenchymal, was calculated as the sum of total

GM volume and total WM volume. The inner cortical surface

(GM/WM interface) was reconstructed by correcting the topo-

logical defects in the WM, and then deformed toward the re-

construction of the outer cortical surface (i.e., pial surface). The

inner cortical surface had vertex-to-vertex correspondence with the

outer cortical surface. The reconstructed inner and outer cortical

surface was used for calculating the regional morphometric fea-

tures. Cortical thickness is calculated as an average of the distance

from the WM surface to the closest point on the pial surface and

from that point back to the closest point to the WM surface.32

Brain age models

In estimation stage, pre-trained brain age model contextu-

alized the whole brain features of the training set derived

from the Cambridge Centre for Ageing and Neuroscience

(Cam-CAN) project (N = 609, age range: 18-90 years)

(https://www.cam-can.org) were firstly constructed to gen-

erate a machine learning-based pre-trained model.33 The

brain age model, including estimated brain age and brain-

PAD, were predicted using the support vector machine

(SVM) algorithm implemented in MATLAB (i.e., “fitrsvm”

function, kernel: linear). Using ten-fold cross-validation, the

Table 1. Baseline demographics, cognition and global morphometry in NA adults and MCI converters.

NA ADULTS (N = 32) MCI CONVERTERS (N = 22) T VALUE (χ2) P VALUE

Age (years) 75.03 ± 8.12 75.84 ± 6.57 0.46 0.503

Sex (Male/Female) 15:17 11:11 0.32 0.572

Years of education 15.58 ± 2.91 14.01 ± 3.32 0.04 0.841

MMSE score 29.32 ± 0.71 28.68 ± 2.81 1.70 0.102

Global morphometry

CSF (×103 mm3) 103.78 ± 36.42 110.12 ± 18.78 �0.84 0.341

TIV (×103 mm3) 349.15 ± 39.39 344.21 ± 45.35 0.69 0.487

GMV (×103 mm3) 242.85 ± 30.44 219.48 ± 36.23 0.98 0.349

Mean CT (mm) 4.59 ± 0.37 4.59 ± 0.31 0.02 0.984

Note. Data are raw scores and presented as mean ± SD.
Abbreviations: NA = Normal ageing; MCI = Mild cognitive impairment; MMSE = Mini Mental State Examination; TIV = Total Intracranial Volume; CSF = Cerebrospinal fluid;
GMV = Gray matter volume; CT = Cortical thickness.
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model of brain age prediction was applied to theMRI scans to

estimate a brain age score for the entire samples (N = 609).

The dependent variable was chronological age. The inde-

pendent variables encompassed the GMV of 34 cortical

regions in the left hemisphere, 34 cortical regions in the right

hemisphere, CT of 33 cortical regions in the left hemisphere,

and 33 cortical regions in the right hemisphere. The total

dimensionality of the independent variables was 134, and the

specific details of the brain regions were outlined in the

Supplemental Table 1.

Using principal component analysis (PCA), the top principal

components capturing 80% of the variances in gray matter

volumes were retained.34 The details of brain age models can be

found at Github (https://github.com/hannabrainscience/Brain-

age-prediction). The participants from the OASIS-2 with

three-wave structural MRI scans were used as testing set (N =

162) for calculating and validating the brain age models.

Considering the participants in OASIS-2 aged 66 to 87 years

(i.e., late adulthood), age-bias correction was applied in the

estimation of brain age.35 The score of brain-PAD was cal-

culated by subtracting chronological age from predicted brain

age (Figure 3(A)), indicating a state of accelerated brain ageing

(positive value) or brain resilience (negative value).6-10,12-14

Results
Demographics, cognition and morphometric features

Demographic information, global cognition, and global brain

morphometry in terms of TIV, GMV and mean CT were

comparable between the 2 groups at baseline (Table 1). The

MCI converters had lower scores of MMSE than NA adults at

the 1-year follow up (t = 2.91, P = 0.009) and 3-year follow up

(t = 4.23, P < 0.001).

Brain age models in NA and MCI converters

Model performance, including bivariate correlation between es-

timated brain age and chronological age (r) and mean absolute

error (MAE) for training set was N = 609, r = 0.73, MAE = 3.58

years, which had comparable generalizability with published brain

age models 36,37 and the testing dataset (i.e., OASIS-2). The

chronological agewas positively correlatedwith estimated brain age

in training samples (i.e., Cam-CAN) (r = 0.807, P < 0.001). At

baseline, chronological age was positively correlated with TIV-

based brain age and CT-based brain age in NA adults

(Figure 2(A)) and MCI converters (Figure 2(B)).

No groupwise differences of chronological age and TIV-

based brain-PAD were detected at the baseline and follow-up

time points (Table 2). In the context of comparable chrono-

logical age, MCI converters showed an older TIV-based brain

age than NA adults at the baseline (t = �2.401, P = 0.021), 1-

year follow-up (t = �2.149, P = 0.037) and 3-year follow-up

(t = �3.505, P = 0.001) (Figure 3).

Lateralization of brain age models

As shown in Figure 4, leftward asymmetries were observed on

the GMV-based brain age inMCI converters at baseline, 1-year

and 3-year follow-up, contrasting with the right lateralization

found in CT-based brain age in MRI converters at 3-year

Figure 1. Framework of the quantitative analysis of morphometric features. Individual’s structural MRI scans were checked and imported to BrainSuite for surface-

based morphometry (SBM) analysis (A). The brain features include brain parenchyma or total intracranial volume (TIV), gray matter volume (GMV) and cortical

thickness (CT) (B).
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follow-up (Table 3). In NA adults, no statistical differences

were found between the brain age models calculated based on

the hemispheric brain features. In MCI converters, significant

differences of CT-based brain age (left: 76.34 ± 5.06 years,

right: 78.34 ± 5.29 years, t = �2.181, P = 0.041) and CT-based

brain-PAD (left: 0.51 ± 5.38, right: 2.51 ± 4.27, t =�2.177, P =

0.043) were detected at baseline.

Associations between brain age model and cognition

In NA adults, right GMV-based brain age was significantly

associated with the total score of MMSE at 3-year follow-up

(r =�0.468, P = 0.008). No significant association was detected

between CT-based brain age or brain-PAD and the total score

of MMSE total. In MCI converters, the total score of MMSE

at 1-year follow-up was significantly correlated with the left

GMV-based brain-PAD at all time points (Baseline:

r =�0.477, P = 0.039; 1-year follow-up: r =�0.618, P = 0.005;

3-year follow-up: r = �0.604, P = 0.006).

The classification model of MCI converters

To classify NA adults and MCI converters at baseline, the

values of the area under the ROC curve (AUC) were applied to

test the discriminative power of the MRI-informed brain age

models. At baseline, the MCI converters had significant greater

brain age than NA adults when chronological age and sex were

adjusted as covariates (TIV-based brain age: P = 0.02, left

GMV-based brain age: P = 0.017) (Figure 5(A)). Based on

these findings, we constructed the classification models of MCI

conversion showed an acceptable performance (TIV-based

brain age: AUC = 0.698, sensitivity = 0.737, specificity =

0.742; left GMV-based brain age: AUC = 0.703, sensitivity =

0.789, specificity = 0.548). The score of brain-PAD could not

Figure 2. Correlation matrix for chronological age and morphometric feature-based brain age in normal ageing adults (A) and mild cognitive impairment (MCI)

converters (B). * Presents P < 0.05. Abbreviations: TIV = Total intracranial volume; BA = Brain age; GMV = Gray matter volume; CT = Cortical thickness.
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distinguish MCI converters from NA adults at baseline

(Figure 5(B)).

Discussion
To the best of our knowledge, this study is first to investigate the

MRI-informed morphometric feature-based brain age models

and their values to predict the conversion from normal ageing to

MCI in a well-characterized cohort. Our findings demonstrated

a robust brain age prediction (r = 0.81, MAE = 3.58) of normal

ageing adults. In the context of comparable chronological age,

MCI converters had an older estimated brain age than normal

ageing adults at baseline, 1-year and 3-year follow-ups. The

brain age models calculated based on the hemispheric

morphometric features showed different patterns in MCI

converters. Furthermore, only the TIV-based and left GMV-

based brain age resulted in the robust performance of the

classification models between normal ageing adults and MCI

converters at baseline.

The ageing effects on an individual’s brain is characterized by

a dynamic non-linear pattern of morphometric changes that are

detectable with structural MRI. The past decades have wit-

nessed the magnificent advances in quantifying brain structures

(i.e., method), as well as in explaining the structural changes in

Table 2. TIV-based brain age models in NA adults and MCI converters.

BRAIN FEATURES NA ADULTS (N = 32) MCI CONVERTERS (N = 22) T VALUE DF P VALUE

Chronological age

Baseline 75.03 ± 8.12 75.84 ± 6.57 �0.367 48 0.715

1-year FU 76.81 ± 8.13 77.84 ± 6.85 �0.463 48 0.645

3-year FU 78.87 ± 8.31 79.84 ± 7.18 �0.421 48 0.675

Total intracranial volume (TIV)

TIV-based brain age

Baseline 75.24 ± 4.28 78.34 ± 4.69 �2.401 48 0.021

1-year FU 76.84 ± 4.72 79.41 ± 3.69 �2.149 46.55 0.037

3-year FU 77.11 ± 4.05 80.85 ± 2.91 �3.505 48 0.001

TIV-based brain-PAD

Baseline 0.21 ± 7.32 2.49 ± 6.19 �1.138 48 0.261

1-year FU 0.07 ± 7.12 1.57 ± 7.04 �0.728 45.74 0.471

3-year FU �1.76 ± 7.48 1.06 ± 7.11 �1.321 48 0.193

Note. Data are raw scores and presented as mean ± SD.
Abbreviations: NA = Normal ageing; MCI = Mild cognitive impairment; df = Degree of freedom; FU = Follow-up; TIV = Total intracranial volume; brain-PAD = brain predicted
age difference.

Figure 3. Comparisons of chronological age (CA) and estimated brain age (BA) in normal ageing (NA) adults and mild cognitive impairment (MCI) converters at

baseline, 1-year and 3-year follow-ups. At individual level, each person has 2 measures of age: CA calculated based on participant’s calendar and birth date; BA

calculated based on morphometric features (A). MCI converters had comparable CA, but older BA than NA at baseline, 1-year and 3-year follow-ups (B).
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an integrated framework (i.e., concept). For better interpreting

the clinical significance of brain age models in ageing pop-

ulations, we should firstly understand the concept of brain

reserve. Brain reserve is a neuroanatomic resource that reflects

the structural substrate of the brain that afford a surplus capacity

to maintain cognitive function and allows the individuals to be

resilient to the effects of ageing or neuropathological

factors.38-41 Briefly, it is accepted that the individual with

sufficient structural substrate (i.e., brain parenchyma) tends to

be capable of preserving normal cognition despite the presence

of neuropathological factors, such as amyloid-beta peptide

(Aβ).38,41 Similar to brain age prediction, the most commonly

used brain features used to quantify brain reserve was the volume

of brain parenchyma (i.e., TIV),42,43 and recently have extended

to the surface-based features of cortex, including both volume

and cortical thickness.44 Thus, the morphometric feature-based

brain age models may also reflect the diverse organization of

brain reserve.

In our results, normal ageing adults and MCI converters

had comparable chronological age and brain parenchyma

volume (i.e., TIV), but MCI converters had significantly

older TIV-based brain age than normal ageing adults at

baseline, 1-year and 3-year follow-up. In addition, TIV-

based brain age, rather than TIV and global cognition

(i.e., MMSE), demonstrated acceptable classification

performance, which can differentiate the MCI converters

from normal ageing adults at baseline. These results indicate

that although the MCI converters had comparable chrono-

logical age and brain reserve (i.e., TIV) at the stage of normal

ageing (i.e., MMSE >28), their brain age had already in-

creased at least 1 years prior to their MCI diagnosis.

Compared to total brain parenchyma (i.e., TIV), GMV

and CT are brain features with diverse neuroimaging mea-

sures and clinical significance. For instance, similar to TIV,

GMV, as another volumetric proxy of brain reserve, reflects

the maximum attained cortical gray matter, which has been

found to change as a function of normal ageing or emergence

of neurodegenerative diseases, such as MCI and

AD.15-17,45,46 In our results, we found that the MCI con-

verters had a significantly older GMV-based brain age than

normal ageing adults at baseline, 1-year and 3-year follow-

up, but had older CT-based brain age at 3-year follow-up (see

Table 3). The results imply that the individual differences in

estimated brain age may not be captured by single brain

feature. Moreover, it seems that volumetric changes can be

captured by structural MRI earlier than the cortical thickness

changes during ageing and disease progression. Consistent

with the changes of brain features, volume-based brain age

and brain-PAD (i.e., TIV and left GMV), rather than CT-

based brain age models, was associated with accelerated

Figure 4. Comparisons of hemispheric morphometric feature-based brain age in normal ageing (NA) adults and mild cognitive impairment (MCI) converters at

baseline, 1-year and 3-year follow-up (FU), including left gray matter volume (GMV)-based brain age (A), right GMV-based brain age (B), left cortical thickness-

based brain age (C) and right cortical thickness-based brain age (D).
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cognitive decline (i.e., lower score of MMSE at 1-year and 3-

year follow-up) even after adjusting for baseline chrono-

logical age.

Except for different brain features, another related the-

oretical concern is whether hemispheric brain reserve changes

differently over time as a function of chronological ageing.

Indeed, left-right hemispheric asymmetry is 1 of the cardinal

features of the brain, and also a critical aspect of healthy brain

organization.47 Decades of research have revealed that the

lateralization of brain structures may be altered in brain

disorders. For example, compared to young adults, old adults

have significantly decreased brain volume in the left hemi-

sphere.48 Similar findings have also been reported in AD

patients,49 suggesting that atrophy in left hemisphere may be

a feature of ageing and AD effect on the brain. Our models

revealed that left GMV-based brain age, rather than right

GMV-based brain age, was significantly greater in MCI

converters than normal ageing adults, indicating the decline

in brain reserve, predominantly within left hemisphere. Of

note, in normal ageing adults, we found older right GMV-

Table 3. MRI-informed morphometric feature-based brain age models in NA adults and MCI converters.

BRAIN FEATURES NA ADULTS (N = 32) MCI CONVERTERS (N = 22) T VALUE DF P VALUE

Gray matter volume (GMV)

Left GMV-based brain age

Baseline 75.06 ± 5.71 79.52 ± 4.65 �2.613 48 0.012

1-year FU 76.18 ± 6.21 79.58 ± 6.31 �2.162 45.93 0.036

3-year FU 76.78 ± 6.22 80.01 ± 4.72 �2.075 45.62 0.044

Right GMV-based brain age

Baseline 75.39 ± 4.59 78.09 ± 5.85 �1.814 48 0.076

1-year FU 77.17 ± 4.43 79.65 ± 7.16 �1.513 48 0.137

3-year FU 77.53 ± 5.71 79.89 ± 5.94 �0.808 48 0.423

Left GMV-based brain-PAD

Baseline �0.63 ± 8.99 1.68 ± 8.36 �0.903 48 0.371

1-year FU 0.03 ± 9.28 3.74 ± 9.02 �1.387 48 0.172

3-year FU �2.09 ± 8.47 0.17 ± 8.24 �0.924 48 0.361

Right GMV-based brain-PAD

Baseline 0.36 ± 8.63 2.24 ± 8.64 �0.749 48 0.457

1-year FU 0.37 ± 8.03 1.81 ± 9.17 �0.583 48 0.563

3-year FU �1.34 ± 9.63 �0.95 ± 8.23 �0.148 48 0.883

Cortical thickness (CT)

Left CT-based brain age

Baseline 76.39 ± 4.51 76.35 ± 5.06 0.029 48 0.977

1-year FU 77.81 ± 5.39 78.41 ± 4.37 �0.408 48 0.685

3-year FU 78.06 ± 4.62 81.73 ± 5.28 �2.581 48 0.013

Right CT-based brain age

Baseline 75.71 ± 4.43 78.34 ± 5.29 �1.892 48 0.065

1-year FU 77.31 ± 4.51 79.01 ± 3.61 �1.391 48 0.171

3-year FU 77.52 ± 4.41 80.12 ± 3.37 �2.431 48 0.019

Left CT-based brain-PAD

Baseline 1.35 ± 6.77 0.51 ± 5.38 0.464 48 0.645

1-year FU 0.99 ± 6.67 0.56 ± 7.11 0.219 48 0.828

3-year FU 0.81 ± 6.81 1.88 ± 8.65 �1.226 48 0.226

Right CT-based brain-PAD

Baseline 0.68 ± 6.97 2.51 ± 4.27 �1.025 47.99 0.311

1-year FU 0.49 ± 6.95 1.17 ± 6.28 �0.343 48 0.733

3-year FU �1.62 ± 7.17 0.28 ± 6.69 �0.931 48 0.357

Note. Data are raw scores and presented as mean ± SD.
Abbreviations: NA = Normal ageing; MCI = Mild cognitive impairment; df = Degree of freedom; FU = Follow-up; brain-PAD = brain predicted age difference.
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based brain age was associated with worse global cognition at 3-

year follow-up. The compensatorymechanismsmight explain the

lateralized brain age during ageing and disease progression, which

might be in-depth examined in future studies.

Limitations and future directions
The findings in this study should be interpreted with caution

due to its limitations, with the major limitation being the small

sample size of the cohort (i.e., OASIS-2). Other limitations of

this study include: (1) Heterogeneity in participants: The ab-

sence of the subtypes of MCI converters may limit the inter-

pretations of the clinical significance of feature-based brain age

in disease-specific populations. For instance, vascular MCI and

amnestic MCI might have similar symptoms of cognitive

deficits at early stage (e.g., decreased processing speed), but with

different etiologies. This divergence makes it difficult to

compare the brain age model between these 2 populations. (2)

Uneven follow-up time points: by looking only at 2 times (1-

year and 3-year) of follow-up assessments per participant, we

were unable to detect the annual changes in brain morphometry

and lateralized feature-based brain age in ageing populations.

(3) Single modality of neuroimaging: in this study, we calculated

the brain age model based on the structural features, which does

not completely account for individual’s whole brain features. For

example, other modalities of MRI, including functional MRI,

transverse relaxation rate R2* and susceptibility-weighted im-

aging (SWI), can catch the features of brain connectivity, white

matter integrity and brain iron (i.e., Quantitative Susceptibility

Mapping, QSM),50 which could be used to incorporate mor-

phometrical analyses to enable the whole brain features mapping

in Alzheimer’s disease and Parkinson’s disease.51-53 (4) The

absence of other variables, such as genetic information and

domain-specific functions (i.e., learning, memory) in the dataset

may limit the investigation of the relationship between brain

age, genetic factors and cognitive function in current study.

Nevertheless, it is somewhat significant that we found a rela-

tively robust brain age prediction and patterns of hemispheric

brain features-based brain age models, which further alludes to

lateralized structural changes with mid-term follow-up periods

during normal and pathological ageing.Meanwhile, our study is

limited, as data on other variables related to participants’ genetic

factors and medical history were not provided in the OASIS-2

dataset; thus, we did not attempt to examine the brain-genetic

relationships in this study.

Beyond normal ageing adults and MCI converters, future

studies will aim to investigate the diagnostic and prognostic

values of brain age models in patients with neurodegenerative

diseases, such as Alzheimer’s disease (AD), Parkinson’s disease

(PD), and frontotemporal dementia (FTD). This would con-

tribute to the development of the disease-specific brain age

references and further expand the clinical applications of

imaging-based brain features in detecting the progression of

neurodegenerative diseases and providing multi-scale

morphometric features to facilitate disease-specific brain-based

interventions. Focusing on methodology, the differences of brain

age models calculated based onmachine learning or deep learning

methods might also be an interesting topic in neuroscience.

Moreover, methods such as postulating the individual variances

of multi-modal brain features, or metabolic features (i.e., QSM),

may represent a next frontier in decoding the complex interlinks

between ageing, brain age models and disease progression.

Conclusion
In sum, we found that MRI-informed feature-based brain age

and brain-PAD are good candidate biomarkers for capturing

accelerated cognitive decline at individual level. The findings

highlight the relevance between cortical surface morphometry

and MCI conversion, laying the foundation for in vivo tracking

of the disease progression in ageing populations. Novel clas-

sification models based on volume-based brain age show great

potential for early dementia detection and might be useful for

developing personalized and clinically useful biomarkers for

neurological and psychiatric disorders in the future.

Figure 5. Receiver-operator characteristic (ROC) curves for the morphometric feature-based brain age and brain-PAD. The TIV-based and left GMV-based brain

age (A), rather than brain-PAD (B), could differentiate the MCI converters from normal ageing adults at baseline.
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