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Development of a fourth-order 
compact finite difference scheme 
for simulation of simulated-
moving-bed process
Chuanyi Yao1,2 ✉, Yanjuan Zhang3, Jinliang Chen1, Xueping Ling1,2, Keju Jing1,2, Yinghua Lu1,2 
& Enguo Fan3,4 ✉

A fourth-order compact finite difference scheme was developed to solve the model equation of 
simulated moving bed, which has a boundary condition that is updated along the calculation process 
and cannot be described as an explicit function of time. Two different methods, direct method and 
pseudo grid point method, were proposed to deal with the boundary condition. The high accuracy of 
the two methods was confirmed by a case study of solving an advection-diffusion equation with exact 
solution. The developed compact finite difference scheme was then used to simulate the SMB processes 
for glucose-fructose separation and enantioseparation of 1,1′-bi-2-naphtol. It was found that the 
simulated results fit well with the experimental data. Furthermore, the developed method was further 
combined with the continuous prediction method to shorten the computational time and the results 
showed that, the computational time can be saved about 45%.

The simulated moving bed (SMB) is a continuous preparative chromatography technique that has been widely 
used in various industries including petroleum1,2, food3,4, pharmaceutical5–10 and biotechnology11–13 to sep-
arate structurally similar compounds. To obtain an optimal operation conditions, a mathematical model is 
usually desired as it plays an essential role in the design and optimization of SMB process. Among them, the 
transport-dispersive model with linear driving force (LDF) approximation for describing mass transfer resistance 
between the mobile phase and the solid phase is believed to be the most widely used one with the following model 
equation14,15:
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This model equation is solved for every switching period to obtain the concentration profiles in the liquid and 
solid phase at any time. The initial condition of each switching period depends on the concentration profile in 
the columns at the end of the former switching period, and for the first switching period, the initial condition is:

= = =t c q0, 0 (3)

The boundary conditions at the column inlet (x = 0) and outlet (x = L) are:
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The mathematical SMB model equations have been solved using various methods such as the finite element16, 
finite difference17, finite volume (especially WENO)14,18–22, wavelet collocation15, as well as the space time conser-
vation element and solution element (CE/SE) method14,23. However, no matter the method used, the accuracy and 
efficiency are usually in a contradict manner, i.e. a method with higher accuracy generally requires extensive cal-
culations and vice verse. Therefore, developing a new method with high accuracy and efficiency, or at least making 
a suitable compromise between them is still a major issue for the design and optimization of the SMB processes.

The compact finite difference scheme (CFDS) attracts a great attention in the last twenty years24–26. In conventional 
finite difference scheme, the central difference with 2nd order precision needs 3 grid points. To construct a 4th order 
approximation, at least 5 grid points are necessary27, which would inevitably increase computation time greatly and 
add complexity for handling the boundary condition. However, CFDS can give a 4th order scheme by using only 3 grid 
points, which is achieved by coupling with the original governing equation28. That means CFDS combines a higher 
precision and fewer computation. However, the situation that derivation of CFDS needs governing equation makes it 
difficult to generalize. Usually the CFDS is constructed in a case by case manner, which is prohibitive for containing 
tedious mathematical treatment. Nevertheless, CFDS has been successfully used to solve numerous equations includ-
ing convection-diffusion equation29–35, heat equation25,36,37, Gross-Pitaevskii equation38 and Helmholtz equation39. 
However, to the best of our knowledge, there is no report yet to solve the model equation of SMB using CFDS.

The SMB model equations are typical parabolic equation with Neumann boundary conditions. For this kind 
of equations, Mohebbi & Dehghan and Cao et al. have proposed to use the 4th-order CFDS29,32. But it should be 
addressed that in their methods, the boundary condition is an explicit function of time, and the derivative of this 
function is required to deal with the boundary condition. While for the SMB equations, as shown in Eqs. 1–5, the 
value of cin in Eq. 4 is updated continuously with the calculation and as a consequence, the function of cin verse t 
cannot be explicitly described, which makes it impossible to obtain the derivative of cin. So the methods reported 
in literature29,32 cannot be used to solve the SMB model equations.

To develop a 4th-order CFDS that can be used to solve the model equation of SMB, in the present work we com-
pared two different methods for the handling of the boundary conditions. The accuracy of the developed method 
was examined by solving an equation with exact solution, and the computational efficiency was compared with the 
central difference scheme as well as the space-time solution element/conservation element method.

The Fourth-Order Compact Finite Difference Scheme
By discretization on spatial domain, the Eqs. 1–2 can be transformed to a set of ordinary differential equations 
with time as an independent variable that can be solved by traditional methods, such as the “odeint” method in 
Scipy modula of Python. We thus first present the compact finite difference scheme for the spatial derivatives by 
considering the partial differential equation as follows:
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The spatial domain [0, L] was discretized as follows:

= − = x i h i n( 1) , 1, 2, , (9)i

with a constant step size h = L/(n − 1).
For the interior points, Mohebbi and Dehghan32 have derived the 4th order CFDS as below (the derivation can 

also be found in the Supplemental Materials):
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To construct the 4th order equations for the boundary points x1 and xn, the forward and backward difference 
schemes were used by denoting c x t( , )jx

i∆  and ∇ c x t( , )jx
i  as the forward and backward difference schemes of 

order j for the ith derivatives of c(x, t) about x, respectively. The formulas for i = 1, 2 and j = 1, 2 can be easily 
obtained from the Taylor expansions of c(x, t) at the points adjacent to xi and are listed in Table 1, some of them 
can also be obtained from literature27.
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Two methods for handling of the boundary points were proposed here. In the first method, the derivatives 
at the boundary points were approximated by the forward or backward finite difference schemes directly thus 
named as “direct method”. While in the second method, a pseudo grid point (x0) was assumed to be exist at the 
left side of the boundary point x1, and on the contrary, a pseudo point (xn+1) is located at the right side of xn. So 
the second method was named as “pseudo grid point method”.

Direct method.  The equation dealing with the left boundary was deduced first. With the Taylor expansions 
of c(x2, t) and c(x3, t), the first derivative of c(x, t) at x1 can be expressed as:
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To construct a 4th order formula for ∂ ∂c x t x( , )/1 , an approximation of 2nd order for ∂ ∂c x t x( , )/3
1

3 is needed, 
but for ∂ ∂c x t x( , )/4

1
4, the 1st order approximation is enough. By use of the control equation, Eq. 6, we have:
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Using Eqs. 12–13, and substituting the derivatives by the forward difference schemes (Table 1) with appropri-
ate order, the following equations are obtained:
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Combining Eqs. 14–15, Eq. 11 and the boundary condition in Eq. 7 gives:
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Similarly, for the right boundary conditions, it can be obtained:
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Pseudo grid point method.  For the left boundary point, it is assumed that there exists a pseudo grid point 
x0 at the left hand of x1. Then x1 can be looked as an interior point, and by using Eq. (10) the following equation 
was obtained:
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Table 1.  The forward and backward difference schemes of order 1 and 2 for the 1st and 2nd derivatives of c about x.
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It should be emphasized that, in the right hand of Eq. (18), only the forward difference schemes were used for 
approximation of the derivatives of f(x1, t). This is because the partial difference of c about time was included in f, 
∂ ∂c x t t( , )/  is meaningless at x0. Nevertheless, the replacement of central difference schemes (δx

1 and δx
2) by for-

ward difference schemes (∆ x2
1  and ∆ x2

2 ) will not lead to the loss of accuracy, because all these four difference 
schemes have an accuracy of 2nd order.

In Eq. (18), c(x0, t) is implicitly included in the operators δx
1 and δx

2. It needs be eliminated by using the bound-
ary condition Eq.(7). For this purpose, the first order and third order of c(x1, t) are expressed as follows:
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where Eq.(19) can be obtained by using the Taylor expansions at c(x1, t) and c(x2, t), while Eq. (20) is similar to Eq. (14) 
except that the operator δx

2 is used to substitute ∆ x2
2 , both of them have a truncation error of O(h2).

Combining Eqs. 19–20, Eq. 11 and omitting the error term gives:
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The right boundary conditions can be handled in a similar way, except that the backward difference schemes 
are used, the finally obtained equation is as follows:
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Solution of SMB model equations.  For the model equation of SMB process, the function f(x, t) in Eq. (6) 
is as follows:
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While using the “direct method” for handling the boundary conditions, Eqs. 24–26 are introduced into Eq. 11 
and Eqs. 16–17. Then the SMB model equations are transformed to a system of ordinary equations as follows:
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If the pseudo grid point method was used to treat the boundary conditions, the resulted equations have the 
same pattern as Eqs. 27–28, but the vectors g(t), A and B are different from Eqs. 32–34, which are as follows:
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The resulted ordinary differential equations are solved by the method of “odeint” in Scipy modula of python 
3.6.4. All the calculations in this work were conducted on a PC with CPU 3.60 GHz, RAM 16.0 GB.

Results and Discussion
Advection-diffusion equation with analytical solution.  To test the accuracy of the CFDS developed in 
this work, the transient one-dimensional advection-diffusion equation was first solved as follows29,32,40:

∂
∂

= −
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∂
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∂

c x t
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This equation governs the distribution of concentration c at position x (1 ≥ x ≥ 0) at time t in a fluid moving 
with fixed advective speed v and subject to diffusion governed by the coefficient Da. The initial condition is a 
Gaussian pulse of unit height centered at x = 0.2. The exact solution of the equation is as follows:

=
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For this equation, the ordinary equation Eq. 27 is simplified to:

= +′Ac Bc gt t t( ) ( ) ( ) (43)

in which, while using the “direct method” to treat the boundary conditions,

=g t D g t h D g t h( ) [ ( )/ , 0, , 0, ( )/ ] (44)a a1 2
T



A is the same as in Eq. 33, and B is as follows:
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when using the pseudo grid point method for treating the boundary conditions,
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A is the same as in Eq. 36, and B is as follows:
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The advection-diffusion equation was solved by the CFDS with two different methods for handling the bound-
ary conditions. It was found that both methods have a high accuracy. As an example, the solutions obtained by 
the direct method at final time t = 1 with v = 0.3, h = 1/28, and different Pe numbers (Pe = vL/Da) are shown in 
Fig. 1. It can be observed that the calculated concentration profiles are in a good accordance with the exact solu-
tions, even for a higher Peclet number of 1000 (Fig. 1c). When using the pseudo grid point method to handle 
the boundary conditions, the solution has no significant difference compared with that shown in Fig. 1. Then the 
maximum error was evaluated with the maximum difference between the concentrations obtained from CFDS 
and analytical solution while x ranging from 0 to 1, it was found appear at x = 0.5. The maximum errors of the two 
methods were shown in Fig. 2. Of course, for a fixed h value, the maximum error will increase with the increase 
of Pe number. This is reasonable because a higher Pe number results in a sharper peak, and as a consequence, 
a denser mesh (smaller h value) along with the x-axis is usually needed. Meanwhile, the two methods for han-
dling the boundary condition have a similar accuracy at higher Pe numbers ( > 100), but at lower Pe number 
(say Pe = 10) the pseudo grid point method gives a higher accuracy than the direct method. So, the pseudo grid 
point method is recommended and hereinafter was used for further analysis. However, it should be noted that 
the CFDS presented in this work has a very high accuracy at lower Pe numbers, such as the maximum errors at 
Pe = 10 shown in Fig. 2 were 2.4×10−7 and 2.6×10−8 for the direct and pseudo grid point methods, respectively. 
So even the direct method is accurate enough for most of the applications.

To examine the convergence rate of the method developed above, the advection diffusion equation was solved 
at h = 1/26, 1/27, 1/28, and 1/29. For a method with n-order accuracy, the solution error (E) at any point is pro-
portional to hn and so the date log(E) vs. log(h) should be asymptotic to a straight line with slope n. Therefore, 
the solution errors at different h are shown in a double logarithmic plot (Fig. 3) by measuring the error at x = 0.5, 
which is the maximum error along the x-axis. It can be seen that the points have a good linear relationship. By 
linear regression, the slope was found to be 3.996, which thus confirms that the method developed in this work 
has a convergence rate of 4th-order. As a comparison, the central differential scheme41 was also used to solve this 
advection diffusion equation at different h values, and as expected, a convergence rate of 2-order was confirmed 
with a slope of 2.012 as shown in Fig. 3.

We also used the CFDS that was developed by Cao et al.29 to solve the equations defined in Eqs. 38–41. The 
results showed that the maximum errors at different h values are the same as that of our method (Fig. 3) thus 
suggesting that the two methods have a similar accuracy. Because in Cao′s method, the vector A in Eq. 33 is 
tri-diagonal (for detailed information, please refer to the original paper), this makes their methods favorable for 
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the stability analysis. However, the differential function of boundary conditions, i.e. g′(t), is needed, thus makes 
Cao’s method not possible for some applications, such as the SMB equation, where cin is included in the boundary 
conditions (Eq. 4). Because cin can only be obtained with calculation, its differential function and so g′(t) cannot 
be obtained. This is our aim in the present work to develop a compact finite difference scheme to solve SMB equa-
tion. Of course we believe our method can also be used for other applications because the differential function of 
boundary conditions is not needed. However, we have to point out that the matrix A in Eq. 33 is not tri-diagonal 
thus the stability analysis becomes difficult. Nonetheless, the stability and small stencil of CFDS have been widely 

Figure 1.  The exact solution (line) of the advection diffusion equation defined in Eqs. 38–41 and the solution 
(points) obtained by the compact finite difference method with direct method for handling the boundary 
conditions at t = 1, v = 0.3, h = 1/28, and Pe = 10 (a), Pe = 100 (b), and Pe = 1000 (c).
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accepted. For the detailed discussion of the stability while using CFDS for solving the convection-diffusion equa-
tions, please refer to the literature.29,32,42,43

Numerical solution of simulated-moving-bed model equation.  We then sought to use the com-
pact finite difference scheme to solve the model equation of simulated moving bed. Two SMB processes, 
glucose-fructose separation and enantioseparation of 1,1’-bi-2-naphtol, were used as the case studies. The param-
eters of the two systems were obtained from literature4,7,44,45 as summarized in Table 2. The adsorption isotherms 
of sugar separation process is nearly linear:

= .⁎q c0 675 (48)A A

= . + .⁎q c c c0 32 0 000457 (49)B B A B

while the adsorption isotherms of enantioseparation process is highly nonlinear:

=
.

+ . + .
+

.
+ +
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Figure 2.  Comparison of the maximum error of the solution while using the direct method and pseudo grid 
point method for handling the boundary conditions. The advection diffusion equation defined in Eqs. 38–41 is 
solved at t = 1, v = 0.3, h = 1/28 and different Pe numbers.

Figure 3.  Double logarithmic plots of maximum error vs. h for central differential scheme (CDS) and the 
compact finite differential schemes (CFDS) presented in this work and Cao’s work29. Lines are obtained by 
linear regression. The advection diffusion equation defined in Eqs. 38–41 is solved at t = 1, v = 0.3, Pe = 100 and 
different h values.
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In the simulation, the step sizes are set to be h = L/64 and L/40 for the sugar separation and enantioseparation 
processes respectively14,15,23. Furthermore, the criterion for achieving the cyclic steady state (CSS) is set to be that 
the maximum difference between the concentrations in two consecutive iterations is lower than 10−4 of feed con-
centration. It is found that the sugar separation process needs 91 switches for achieving CSS upon this criterion, 
while it is generally acknowledged that 80 switches are sufficient to reach CSS in this SMB process4,15. So it is 
believed that this criterion is appropriate and is used in the simulation of the two case studies.

The simulated concentration profiles at half of a switching period after reaching CSS are shown in Fig. 4. It 
can be seen that the simulation results fit the experimental data well for both the two SMB systems. For compar-
ison, the space-time conservation element and solution element (CE/SE) method23 was also used to simulate the 

Items Sugar separation Enantioseparation

Column i.d. 2.6 cm × 52.07 cm i.d. 2.6 cm × 10.5 cm

Configuration 2/2/2/2 2/2/2/2

Bed porosity 0.41 0.4

Switching time, min 16.39 2.75

Feed concentration, g L−1 = =c c363, 322A B = = .c c 2 9A B

Mass transfer coefficient, min−1 = . = .k k0 72, 0 9e,A e,B = = .k k 6 0e,A e,B

Flow rate in four zones, mL min−1 15.89, 11.0, 12.67, 9.1 56.83, 40.83, 44.47, 35.38

Apparent dispersion coefficient in 
four zones, cm2 min−1 1.105, 0.765, 0.881, 0.633 0.281, 0.202, 0.220, 0.175

Table 2.  Parameters of the simulated moving bed processes for sugar (fructose-glucose) separation and 
enantioseparation of 1,1′-bi-2-naphtol.

Figure 4.  Concentration profiles of glucose-fructose separation (a) and enantioseparation (b) processes at 
middle of a switching period after reaching cyclic steady state calculated by compact finite difference method 
developed in this work. The experimental results are obtained from literature4,44.
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two SMB processes. The results are listed in Table 3. Obviously, the products purities and recoveries obtained by 
different methods are similar. But the calculation time of CFDS is much longer than that of CE/SE method. This 
is reasonable because a higher accuracy is usually accompanied by an expensive computation. So, for the applica-
tions where the simulation efficiency is desired, the CE/SE method is preferred, while for the applications where 
high accuracy is desired, the CFDS method is a very good option.

In our previous work, a continuous prediction method was developed to improve the simulation efficiency 
of SMB process46. The key point of this continuous prediction method is the construction or prediction of the 
concentration at CSS using the concentrations in the last two iterations. The formula is as follows:

θ= + − −u u u u[ ] (52)m m m m
CSS
( ) ( ) ( )

CSS
( 1)

Here, state variable u contains the concentrations of two solutes in the mobile phase and in the stationary 
phase, i.e. cA, cB, qA, and qB. The superscript m means the mth iteration and the acceleration factor θ is an empirical 
parameter. Then, the predicted state variable, u m

CSS
( ), is used as the initial value for the next iteration. Through this 

method, the iterations needed to achieve CSS can be reduced and thus the calculation time can be shortened. So, 
the continuous prediction method was used to improve the efficiency of CFDS in this work. The iteration num-
bers needed to reach CSS at different θ values are shown in Fig. 5. It can be seen that the computational efficiencies 
of the two SMB processes were both significantly improved with the aid of continuous prediction method. For the 
sugar separation process, an acceleration factor θ = 0.8 will lead to an iteration number of 50 for reaching CSS. 
While without the continuous prediction method used, i.e. θ = 0, the iteration number is 91. Accordingly, the 
calculation time was saved about 45% due to the CPU time is proportional to the iteration number46. As for the 
enantioseparation process, the calculation time can also be saved about 44% with θ = 0.7 (46 iterations) compared 
to θ = 0 (82 iterations). But to our surprise, the optimum θ values are much higher than the value (θ = 0.5) that we 
have previously recommended23,46. For comparison, the dependence of iteration number on θ when using CE/SE 
method was also shown in Fig. 5. The optimum θ values are 0.5 and 0.6 for the enantioseparation and sugar sep-
aration processes respectively, which is in consistence with our previous results46. The optimum θ values in CFDS 
are shifted 0.2 higher than that in CE/SE method for both the two SMB processes (0.5 to 0.7 for enantioseparation 
and 0.6 to 0.8 for sugar separation processes). The reason for this shift is unclear, but it is reasonable to draw a 
conclusion that the optimum θ value depends on the methods that are used to solve the model equation, even for 
the same SMB process.

SMB process
Simulation 
method

Purity, % Recovery, % Calculation 
time, sExt. Raf. Ext. Raf.

Sugar separation

Experimental4 81.6 92.9 96.4 80.4 —

CE/SE 90.5 97.3 97.8 88.3 58.4 ± 2

CFDS 87.9 98.3 98.7 84.5 354 ± 5

Enantioseparation

Experimental36 93.0 96.2 99.1 94.1 —

CE/SE 95.4 97.1 96.9 95.7 80.8 ± 3

CFDS 93.6 96.8 96.8 93.4 1240 ± 30

Table 3.  Simulation results and calculation times of CFDS and CE/SE methods for two SMB processes of sugar 
(glucose-fructose) separation and enantioseparation of 1,1′-bi-2-naphtol.

Figure 5.  Dependence of iteration number needed for reaching cyclic steady state on acceleration factor while 
using the compact finite difference scheme (CFDS) or space-time conservation element and solution element 
method (CE/SE) to solve the model equation of SMB processes for separation of fructose and glucose and 
enatioseparation of 1,1′-bi-2-naphtol.
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Conclusion
In the present work, a fourth-order compact finite difference scheme was successfully developed to solve the 
advection diffusion equations with Neumann boundary conditions, which do not need the boundary conditions 
to be differentiable function. Two different methods, direct method and pseudo grid point method, were pro-
posed and used to handle the boundary conditions. The higher accuracy of the compact finite difference scheme 
was confirmed by a case study with analytical solution. It was found that the pseudo grid point method results in 
a higher accuracy than the direct method when the Pe number is low (such as 10). But for a moderate and high Pe 
numbers (such as 100 and 1000), the two methods give the same accuracy.

It should be pointed out that although the CFDS method can be used to solve the SMB model equations, the 
calculation time is much longer than the space-time conservation element and solution element method. This 
problem, however, can be solved by use of the continuous prediction method, which improves the calculation 
efficiency of CFDS significantly meanwhile saves the calculation time about 45%. In summary, it is tempting to 
speculate that the combination of 4th-order compact finite difference scheme described in the present work and 
the continuous prediction method can be used for most of the SMB processes and has a wide application poten-
tial, especially when a higher accuracy is desired.
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