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Abstract 

Phage ImmunoPrecipitation Sequencing (PhIP-Seq) is a recently developed technology to assess antibody reactiv-
ity, quantifying antibody binding towards hundreds of thousands of candidate epitopes. The output from PhIP-Seq 
experiments are read count matrices, similar to RNA-Seq data; however some important differences do exist. In this 
manuscript we investigated whether the publicly available method edgeR (Robinson et al., Bioinformatics 26(1):139–
140, 2010) for normalization and analysis of RNA-Seq data is also suitable for PhIP-Seq data. We find that edgeR is 
remarkably effective, but improvements can be made and introduce a Bayesian framework specifically tailored for 
data from PhIP-Seq experiments (Bayesian Enrichment Estimation in R, BEER).
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Introduction
Because of their high abundance, easy accessibility in 
peripheral blood, and relative stability ex  vivo, antibod-
ies serve as excellent records of environmental expo-
sures and immune responses. While several multiplexed 
methods have been developed to assess antibody bind-
ing specificities, Phage Immuno-Precipitation Sequenc-
ing (PhIP-Seq) is the most efficient technique available 
for assessing antibody binding to hundreds of thousands 
of peptides at cohort scale [1–3]. PhIP-Seq uses oligo-
nucleotide library synthesis to encode proteome span-
ning peptide libraries for display on bacteriophages. 
These libraries are immunocaptured using an individual’s 
serum antibodies, and the antibody-bound library mem-
bers are identified by high throughput DNA sequenc-
ing. The VirScan [3] assay uses the PhIP-Seq method to 
quantify antibody binding to around 100,000 peptides 
spanning the genomes of more than 200 viruses that 
infect humans. Other commonly used libraries include 

the AllerScan [4] and ToxScan libraries [5], and a focused 
library for coronaviruses, including SARS-CoV-2 [6].

We and others have utilized PhIP-Seq to successfully 
identify novel autoantigens associated with autoimmune 
diseases [7–9], to broadly characterize allergy-related 
antibodies [4], to quantitatively compare the antibody 
repertoires of term and preterm neonates [10], to assess 
changes in the anti-viral antibody response after bone 
marrow transplant [11], to characterize the self-reactivity 
of broadly neutralizing HIV antibodies [12–14], to link 
enteroviral infection with acute flaccid myelitis [15], and 
for use in large cross-sectional and longitudinal studies 
of exposure and response to hundreds of human viruses 
and thousands of bacterial proteins in healthy individuals 
and in individuals infected with HIV or measles [3, 16–
18]. In addition, we recently used PhIP-Seq to assess how 
antibody responses to endemic coronaviruses modulate 
COVID-19 convalescent plasma functionality [6] and 
evaluated the heritability of antibody responses [19].

The output from PhIP-Seq experiments are read count 
matrices, similar to RNA-Seq data, but important dif-
ferences in the data structures, experimental design, 
and study objectives exist between the two sequencing-
based methods. RNA-Seq experiments typically focus 
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on differentially expressed genes or transcripts between 
experimental groups, rather than identifying expressed 
genes for any particular sample. The objective of PhIP-
Seq experiments however is typically just that: detecting 
peptide antibody reactivity in an individual sample. Thus, 
in contrast to RNA-Seq experiments, the design of PhIP-
Seq experiments requires the use of negative controls 
(i.e. “mock” immunoprecipitations (IPs) lacking antibody 
input, also referred to as beads-only samples), which are 
typically included as 4 to 8 wells of a 96-well plate. This 
generates a “n versus 1” mock IPs versus sample compari-
son, in contrast to the most common n1 versus n2 two-
group comparison in RNA-Seq. In addition, genes with 
low read counts are presumed to have little biological rel-
evance, and RNA-Seq data workflows typically filter out 
lowly expressed genes (measured as counts-per-million) 
prior to analysis. In PhIP-Seq experiments however, pep-
tides with low read counts may have biological relevance 
and are not filtered out in advance. That said, under suit-
able assumptions, such as equality of variances in both 
groups, a two-group comparison with a single sample in 
one group can still be carried out.

Significant advances in normalization and analysis 
methods for RNA-Seq data have been made in recent 
years, with edgeR, DESeq2, and voom among the most 
popular open-source software packages available [20–
23]. These methods model the number of reads using a 
negative binomial distribution to account for the inflated 
variance due to biological variability between samples 
in comparison to the expected variance of the binomial 
distribution. Parameter estimation is based on empiri-
cal Bayes methods to borrow strength across transcripts, 
stabilizing the estimates of the respective standard 
errors. Upregulated genes in RNA-Seq experiments draw 
a higher proportion of reads than expected for a given 
library size (here, total read counts), resulting in lower 
than expected read counts for other genes given that 
library size (“competing resources”). Thus, a normaliza-
tion factor for each sample is calculated in RNA-Seq 
experiments to account for this effect [24]. One assump-
tion is that the majority of genes are not differentially 
expressed when comparing cases to controls.

In this manuscript we investigated whether the publicly 
available method edgeR [20] for normalization and analy-
sis of RNA-Seq data is also suitable for PhIP-Seq data. We 
highlight some of the differences between PhIP-Seq and 
RNA-Seq experiments and data sets, which motivates the 

development of a new methodology for PhIP-Seq data 
explicitly based on the assumed data generating mecha-
nism, rather than adapting existing RNA-Seq approaches. 
To that end, we introduce a Bayesian framework specifi-
cally tailored for data from PhIP-Seq experiments (Bayes-
ian Enrichment Estimation in R, BEER). Using simulation 
studies and data sets from existing HIV and SARS-CoV-2 
studies, we investigate what improvements in sensitivity 
and specificity can be made, highlight the importance 
of empirical Bayes methods, and assess the effect of the 
number of mock IP samples on sensitivity and specificity.

Results
Simulation. Regardless of the approach used to esti-
mate prior parameters, BEER has high discriminatory 
power for identifying enriched peptides (Fig.  1, Sup-
plementary Fig. S1). In general, BEER using methods 
of moments (MOM) or maximum likelihood estimates 
(MLE) for the shape parameters in the beads-only prior 
distributions performed worse than BEER using edgeR 
parameter estimates, highlighting the importance of bor-
rowing strength across peptides for improved parameter 
estimation (Supplementary Fig. S1, Table S1). The sta-
bility of parameter estimates also affected the improve-
ment in BEER predictive performance by the number 
of beads-only samples used. While BEER with MOM 
and MLE parameter estimates greatly benefited from 
the inclusion of more beads-only samples in the experi-
ment, BEER using edgeR parameter estimates had much 
less pronounced improvements as the number of beads-
only samples was increased (Supplementary Figs. S2, S3, 
and Table S1). Using these edgeR parameter estimates, 
BEER posterior probabilities of enrichment were well-
calibrated (Supplementary Fig. S4), and estimates of fold 
changes were accurate (Supplementary Fig. S5). Thus, we 
recommend the edgeR parameter estimates as default 
and imply their use when simply referring to BEER as the 
method used.

In general, performances of edgeR and BEER for 
identifying enriched peptides were surprisingly simi-
lar (Fig.  1, Supplementary Table S1). Both methods 
yielded near perfect receiver operating characteristic 
(ROC) curves for peptide fold changes above 4 (area 
under the curves (AUCs) > 0.99), and still outstanding 
ROC curves for fold changes between 2 and 4 (AUCs 
between 0.94 and 0.98) even when a design with only 
2 beads-only samples was employed. Peptide fold 

Fig. 1  Average receiver operating characteristic (ROC; top panels) and precision-recall (PR; bottom panels) curves calculated from ten simulations, 
comparing edgeR (black lines) and BEER (red lines) across fold-change categories and number of beads-only samples available. Curves for BEER 
using the actual simulation shape parameters in the prior distributions (orange lines) are added to show the effect of sampling variability in these 
parameters. Results for fold changes above 16 are omitted since in all instances peptides were correctly classified as enriched

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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changes less than 2 were harder to detect, reflected in 
substantially lower AUCs between 0.71 and 0.74. Preci-
sion-recall (PR) curves for edgeR and BEER are notice-
ably different for intermediate fold changes between 
2 and 4, where also most improvement is (theoreti-
cally) possible for BEER if improved estimates of shape 
parameters used in the prior distributions were avail-
able. As expected from the near perfect ROC curves, 
reliable detection of peptides with fold changes above 4 
is possible with a low rate of false positives (Fig. 1, Sup-
plementary Table S2). For small fold changes less than 
2 the positive predictive value (PPV) is generally poor, 
which is expected as the ROCs are modest and most 
peptides are not enriched.

Under commonly employed false discovery rate 
(FDR) control, BEER has a higher probability of cor-
rectly identifying enriched peptides than edgeR across 
all fold-changes, and the difference in probability is most 
pronounced for moderate fold changes between 2 and 8 
(Fig. 2). For example, under a FDR control of 5%, on aver-
age, the probability of identifying a peptide with a 4 fold 
change is 53% for BEER, but only 21% for edgeR. Simi-
larly, BEER has a probability of at least 50% to detect fold 
changes above 3.7 under this FDR control, while edgeR 

requires a fold-change of at least 5.5. Of note, the BEER 
posterior probability cut-offs in the ten simulations to 
achieve a 5% FDR (see Section  4) were between 0.25 
and 0.49; thus, using a commonly employed posterior 
probability cut-off of 0.5 leads to fewer false positives on 
average.

HIV elite controllers. Both BEER and edgeR had no 
false positives across the six mock IP samples using a 
posterior probability cut-off of 0.5 for BEER and an FDR 
control of 5% for edgeR (corresponding to p-value cut-
offs between 1.0× 10−3 and 2.4 × 10−3 across the eight 
samples). As the non-replicated serum samples are from 
individuals infected with HIV subtype B, we expected 
stronger antibody reactivity to proteins from HIV sub-
type B, and indeed, BEER and edgeR detect more enrich-
ments to peptides tiling proteins from HIV subtype B 
than proteins of any other HIV strain represented in the 
library (Fig. 3). Notably, for any particular subtype B pro-
tein, BEER detects more enriched peptides than edgeR 
(while expected to have a lower type I error with a pos-
terior probability cut-off of 0.5, see above). Some anti-
body reactivity to proteins from other HIV subtypes is 
expected due to cross-reactivity (Supplementary Fig. S6).

Fig. 2  Estimated probabilities for correctly identifying enriched peptides (y-axis) as a function of the fold-change (x-axis) for each of ten simulated 
data sets based on logistic regression models. BEER posterior probability cut-offs were selected to achieve a false discovery rate of 5% in each 
simulation (see Section 4). Thin lines indicate the individual simulations, thick lines the respective averages
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BEER and edgeR detected enrichments generally 
agreed across two technical replicates of a sample from 
an HIV subtype A infected individual (Supplementary 
Fig. S7). Using the same cut-offs as above for declaring 
enrichment, both methods had high agreement (concord-
ance about 0.90–0.95) between the two samples among 
the top 100 peptides ranked by posterior probabilities 
and p-values, respectively (Supplementary Fig. S8). This 
is not surprising as the BEER posterior probabilities for 
peptides ranked 100 in the two technical replicates were 
0.99 and 1.00 respectively, and the edgeR p-values were 
3.1× 10−4 and 9.4 × 10−5 with respective 5% FDR cut-
offs of 1.5× 10−3 and 1.8× 10−3 , respectively. Thus, 
both methods exhibit high confidence that most of the 
peptides among the top 100 are truly enriched (Supple-
mentary Fig. S9). While BEER concordance decreases but 
remains above 0.90 when considering the lists of peptides 
with ranks up to 200, the edgeR concordance does drop 

more noticeably (Supplementary Fig. S8), potentially 
indicating a higher sensitivity in BEER for peptides with 
smaller fold changes. Comparing subtype A peptides 
across technical replicates, BEER and edgeR had very 
similar performance. Compared to other subtypes, both 
methods also showed less discordance among subtype A 
peptides (Supplementary Table S3).

CoronaScan. In a round-robin, leaving one mock IP 
sample out in turn, no false positives (i.e., peptides falsely 
called enriched) were produced by BEER or edgeR across 
the eight mock IPs in the CoronaScan data using a poste-
rior probability cutoff of 0.5 for BEER and an FDR control 
of 5% for edgeR (p-value cutoffs ranged from 3.3× 10−4 
to 1.1× 10−3 ). Among the six serum samples from indi-
viduals prior to the COVID-19 pandemic, BEER and 
edgeR show more enrichment to peptides tiling human 
coronaviruses, but generally no enrichment of SARS-
CoV-2 peptides (VRC 1 – VRC 6, Supplementary Fig. 

Fig. 3  Bland-Altman (MA) plots for the proportion of enriched peptides by protein, for eight elite controller samples. Points represent individual 
proteins, point colors indicate protein virus types, point diameters indicate the number of peptides tiling the respective proteins. All subjects shown 
here were infected with subtype B (red)
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S10). In contrast, among the four samples from a single 
individual infected with SARS-CoV-2, taken at 10, 11, 
12 and 13 days since symptom onset, an enrichment of 
SARS-CoV-2 protein tiling peptides is apparent. Particu-
larly on day 13 after symptom onset, the patient presum-
ably has produced a large number of antibodies which 
were detected by both BEER and edgeR. Of note, this was 
the first day the a SARS-CoV-2 antibody test was positive 
(D13, Supplementary Fig. S10), further demonstrating 
the power and utility of the PhIP-Seq approach.

Comparing peptide replicates in the CoronaScan 
library, concordance among the most enriched peptides 
(when ranked by posterior probabilities and p-values for 
BEER and edgeR, respectively) was generally above 0.80 
(Supplementary Fig. S11). For example, in sample VRC 4 
both methods show high confidence that the top 35 pep-
tides are truly enriched (posterior probabilities of 0.97 and 
1.00 for BEER, and p-values of 8.6× 10−5 and 1.9× 10−6 
for edgeR, well below the 5% FDR cut-off derived p-value 
of 4.2× 10−4 , Supplementary Fig. S12). BEER and edgeR 
perform very similarly in this example (with BEER slightly 
better between peptides 10 and 20), showing concordance 
above 0.80 before dropping significantly after about 50 
peptides. The somewhat lower concordances compared to 
the same ranking metric derived from the two technical 
replicates in the HIV elite controllers above can possibly 
explained by the smaller range of proportions of reads 
pulled in the CoronaScan platform, and therefore higher 
correlation among these proportions comparing the tech-
nical replicates in the HIV data (Supplementary Fig. S8 
left, versus Supplementary Fig. S11 left). Among all Coro-
naScan samples the overall concordance of peptide pair 
enrichment calls was outstanding, with less than 1% dis-
cordant calls in each sample, for both BEER using a poste-
rior probability cutoff of 0.5 and 5% FDR cutoffs for edgeR 
(corresponding to p-value cutoffs between 3.3× 10−4 and 
1.1× 10−3 , Supplementary Table S4).

Discussion
In this manuscript we investigated whether the publicly 
available method edgeR [20] for normalization and analy-
sis of RNA-Seq data is also suitable for PhIP-Seq data. 
With the exception of calculating one-sided p-values to 
infer peptide reactivity, no “tweaks” were necessary in the 
implementation, and we found the approach to be effective. 
However, using simulation studies we showed that substan-
tial improvements are possible with a Bayesian framework 
specifically tailored for data from PhIP-Seq experiments 
(Bayesian Enrichment Estimation in R, BEER). In particular 
for peptides showing weaker reactivity, we saw an improve-
ment of sensitivity with lower false positive rates when 
standard cut-offs were employed (posterior probability > 
0.5 for the Bayesian method and a Benjamini-Hochberg 

false discovery rate control of 5% for edgeR). This com-
parison might be perceived as somewhat unfair, as the data 
were simulated from a model similar to that underlying 
BEER, which we recognize. However, BEER was imple-
mented in a way we believe reflects the true data generat-
ing mechanism, which is also corroborated by the posterior 
predictive assessment [25] of the HIV EC 1 data, as the 
observed read counts are well supported by the distribu-
tions derived under the model (Supplementary Fig. S13). 
BEER also showed better performance on real data such 
as the data from the HIV elite controllers, where BEER 
detected more enriched peptides of the correct HIV sub-
type than edgeR. This improved performance comes at a 
price of increased computational cost. While edgeR deliv-
ers almost instantaneous results, the Markov chains under-
lying BEER are time consuming. However, since laboratory 
prep and sequencing are expensive and certainly take more 
time than running such Markov chains, we believe utiliz-
ing extra CPU time to run BEER, as shown in our workflow 
(https://​github.​com/​athch​en/​beer_​manus​cript), may yield 
worthwhile additional discoveries.

It was initially surprising to us how well edgeR fared 
on PhIP-Seq data despite being designed specifically for 
RNA-Seq data. While important differences between 
PhIP-Seq and RNA-Seq data structures exist, as previ-
ously described, edgeR captures some of the most impor-
tant effects that exist in both types of data. For example, 
unlike RNA-Seq, the PhIP-Seq experimental protocol 
requires the use of negative controls (i.e. samples with 
no serum) on a 96-well plate. The observed read counts 
mapped to the peptides among those negative controls 
show a very strong peptide-dependent bias in library rep-
resentation and/or “background” binding to the beads, 
such that some peptides consistently draw a much higher 
proportion of reads than others (Supplementary Fig. 
S14). However, in a “n versus 1” mock IPs versus sam-
ple comparison where inference is drawn for each pep-
tide, these differences among peptides are similar to the 
biological variability observed between genes in RNA-
Seq [26]. In addition, edgeR models read counts using 
a negative binomial distribution to account for larger 
than binomial variability between samples, an effect 
we also observe in PhIP-Seq data (Supplementary Fig. 
S15). And while we expect reactive peptides in a serum 
sample to pull a large number of reads, and thus – after 
adjusting for library size – expect non-reactive peptides 
in a serum-sample to have fewer reads on average than 
the corresponding beads-only sample peptides (Supple-
mentary Fig. S16), the resulting attenuation constant in 
essence is the same as the scale factors derived from the 
trimmed mean of M-values approach in edgeR [20, 24].

Our findings also highlight the importance of empiri-
cal Bayes methods for parameter estimation. Methods 

https://github.com/athchen/beer_manuscript
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of moments and maximum likelihood estimates for 
individual peptide prior distribution shape parameters 
performed substantially worse than those obtained by 
borrowing strength across peptides. By also using the true 
shape parameters in our simulations to assess sensitivity 
and specificity, we were able to demonstrate that, particu-
larly for intermediate fold changes, better performance 
could be achieved by improving procedures to estimate 
these parameters. Our findings also give guidance for 
experimental design, such as the chosen number of mock 
IPs per 96-well plate. Allocating more beads-only samples 
to a plate improves estimation of these shape parameters 
that largely quantify between sample variability of the 
probabilities of a specific peptide to pull a read. Choos-
ing more beads-only samples means reduced number of 
biological samples assayed per plate, which for the practi-
tioner means additional cost and labor for more plates. In 
previous experiments, the number of mock IPs per plate 
was typically between 4 and 8. Our simulation studies 
showed that this is appropriate, as the observed difference 
in performance between 8 and 4 beads-only samples was 
much less than the observed difference between 4 and 2 
mock IPs, indicating diminishing returns.

A few technical details should also be discussed fur-
ther. As described in the Section  4, reads from highly 
reactive peptides (initial fold change estimate above 15) 
are removed from the data of mock IPs and the actual 
sample before BEER analysis, and the respective library 
sizes are recalculated. The main reason for doing so 
is simply to stabilize the inference and improve scala-
bilty, as allowing for extreme fold changes in the Bayes-
ian model for a few peptides can affect these features. 
We verified that there were “no false positives” in the 
sense that all posterior probabilities for these highly 
reactive peptides were 1 if not excluded from the analy-
ses. Thus, the chosen “highly enriched” threshold of 
15 is likely conservative. We also note that the Bayes-
ian model can be extended to run Markov chains for 
multiple samples against the beads-only samples. How-
ever, the resulting increase in parameter space makes 
this a challenging endeavor, especially with regards to 
scalability. It could be argued that for the same reasons 
stated above an increase in CPU time should be accept-
able if this leads to an improvement detecting reactive 
peptides. However, we did not observe an improve-
ment in detecting antibody reactivities in simulation 
studies we performed (data now shown). No notable 
improvements were observed when the same peptide 
was simulated as enriched in all samples compared to 
the beads-only, and a deterioration was observed when 
reactivity was not common to all peptides. Since in 

real life experiments we seldom expect the exact same 
peptides to be reactive, we did not pursue this line of 
research further.

In summary, antibodies commonly serve as indicators 
of environmental exposures and immune responses, and 
Phage ImmunoPrecipitation Sequencing allows for quan-
tification of antibody binding to hundreds of thousands of 
peptides, in individuals and large cohorts. We believe that 
this technology will play an even more prominent role in 
the future, addressing questions about exposures and 
health outcomes in populations, as well as individualized 
medicine. In this manuscript, we introduce a method and 
a software package for analyzing data from this technology, 
contrast it with an existing RNA-Seq software package that 
can be retooled for PhIP-Seq data, and share a workflow 
with practitioners to successfully carry out their own analy-
ses of data resulting from PhIP-Seq experiments.

Methods
A Bayesian model for detecting antibody enrichment. 
A succinct summary of the model notation is provided 
in Supplementary Table S5. On a 96-well plate suppose 
we observe Yij read counts for peptide i ∈ {1, 2, . . . ,P} 
in sample j ∈ {1, 2, . . . , 96} . Let nj = i Yij denote the 
total read count (library size) for sample j. Without loss 
of generality, assume samples {1, 2, . . . ,N } are mock IP 
(beads-only) samples. To infer reactivity, we compare one 
sample to all beads-only samples on the same plate. Our 
hierarchical model to infer peptide reactivity in a sample 
j ∈ {N + 1, . . . , 96} is described as follows.

The main parameter of interest Zij is a binary indicator 
denoting whether peptide i elicits an enriched antibody 
response in sample j (a 0 indicates no, a 1 indicates yes). 
The prior is a Bernoulli with success probability πj . For 
all mock IP samples, this success probability is zero. For 
sample j, πj is modeled as a beta distribution. The shape 
parameters aπ and bπ of the Beta prior distributions are 
chosen as 2 and 300 in our applications, to reflect pep-
tide enrichment seen in previous studies, but also make 
it sufficiently diffuse to support a range of proportions 
(Supplementary Fig. S17). The parameter φij is the fold 
change observed for peptide i in sample j. It is equal 
to 1 if Zij = 0 , i.e., peptide i does not elicit an enriched 
antibody response in sample j. Enriched peptides are 

Yij|θij ∼ Binomial(nj , θij)

θij|ai0, bi0, cj ,φij ∼ Beta(fa(cjφijµi0, σ
2
i0), fb(cjφijµi0, σ

2
i0))

cj ∼ Beta(ac, bc)

φij|Zij ∼ (1− Zij) · 1+ Zij(φmin +Gamma(aφ , bφ))

Zij|πj ∼ Bernoulli(πj)

πj ∼ Beta(aπ , bπ )
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expected to pull a larger proportion of reads, so only fold 
changes larger than 1 are considered. Here, we model 
the fold-change as a shifted gamma distribution (with 
shape parameters aφ = 1.25 and bφ = 0.1, Supplemen-
tary Fig. S17), with the magnitude of the shift φmin being 
the minimum fold-change assumed for an enriched pep-
tide (chosen as 1 in our applications). In the presence of 
reactive peptides pulling reads, non-reactive peptides 
in sample j will have less reads than expected from the 
beads-only samples where no reactive peptides exist by 
definition. We denote this attenuation constant for sam-
ple j, which is similar to the trimmed mean of M-values 
(TMM) scale factor used in edgeR [24], with cj . Typically, 
only a minority of peptides in a sample show reactivity 
and the attenuation constant usually is between 0.5 and 1 
(being equal to 1 in mock IP samples). In this application, 
we chose a Beta prior with scaling constants ac = 80 and 
bc = 20 (Supplementary Fig. S17; the attenuation con-
stant is equal to 1 in the mock IP samples). The observed 
read counts Yij are modeled using a Binomial(nj , θij) dis-
tribution, where θij denotes the probability that peptide 
i pulls a read in sample j, and nj denotes the total library 
size in sample j. This Binomial probability is modeled 
using a Beta prior distribution, and the shape parameters 
depend on the expected peptide read counts observed in 
the mock IP samples (estimation procedures described 
below), the fold change φij , and the attenuation constant 
based on the reads pulled by all reactive peptides in the 
sample.

Shape parameter estimation. We define two functions, 
fa and fb , used for the description of the Beta shape param-
eters a and b given a mean µ and a variance σ 2.

The parameterization for the Beta shape parameters 
above is the same as used in the methods of moments 
estimation, and the mean and variance for peptide i in 
a beads-only sample (e.g., for a Beta distribution with 
shape parameters ai0 and bi0 ) are given by

Since each sample generally contains more than a million 
of reads, estimates of the Binomial probabilities θ̂ij =

Yij
nj

 
in the mock IP samples j ∈ {1, 2, . . . ,N } are very precise. 
Method of moments (MOM) estimates for the peptide i 
shape parameters ai0 and bi0 can be derived by equating 
the mean and variance of the above Binomial estimates 
across all beads-only samples to the mean and variance of 
the Beta(ai0, bi0) distribution.

fa(�, �
2) =

�
2(1 − �)

�2
− � and fb(�, �

2) = fa(�, �
2)

(

1

�
− 1

)

.

µi0 =
ai0

ai0 + bi0
and σ 2

i0 =
ai0bi0

(ai0 + bi0)2(ai0 + bi0 + 1)
.

The MOM estimates for ai0 and bi0 are then given by

Maximum likelihood estimates (MLEs) for ai0 and bi0 
were derived using the Broyden, Fletcher, Goldfarb and 
Shanno quasi-Newton optimiziation algorithm with 
box constraints [27], as implemented in the R optim() 
function.

Numerous papers have demonstrated the benefits of 
shrinkage or variance stabilization in high throughput 
genomics experiments, borrowing strength across units 
such as genes and proteins [20, 22, 28, 29]. This can be 
particularly important when the sample sizes are small, 
such as the number of mock IP experiments on each 
plate in our application, but neither the MLEs nor the 
MOM estimates described above make use of this. In 
contrast for example, edgeR uses an emprical Bayes 
approach [30] to approximate the larger than binomial 
variability observed in the RNA-Seq read counts, and to 
stabilize these variance estimates, which are character-
ized by the tagwise dispersion parameter (the squared 
coefficient of variation of θ̂ij , denoted here as τ edgeRij  ) [20]. 
We note that we can use the estimates of these tagwise 
dispersion parameters to derive new estimates of the var-
iances for our Binomial probabilities θij . Specifically, for 
peptide i we have 

(

σ̂
edgeR
i0

)2
= τ

edgeR
ij ∗ θ̂2i0 , and thus

The Beta parameters a and b can be thought of as the 
number of successes and the number of failures, respec-
tively, in a+ b trials. The Markov Chain Monte Carlo 
(MCMC) sampler Just Another Gibbs Sampler (JAGS) 
can encounter numerical issues when either of those is 
less than 1. In PhIP-Seq experiments a is much smaller 
than b as a peptide only pulls a fraction of the total num-
ber of reads even when reactive. Thus, to avoid these 
numerical problems, we set a to be the larger number of 
the estimated value and 1, and then estimate b.

Markov chain Monte Carlo. The model was imple-
mented in JAGS (4.3.0) and run using the R interface for 

θ̂i0 =
1

N

N
∑

j=1

θ̂ij

σ̂ 2
i0 =

1

N − 1

N
∑

j=1

(θ̂ij − θ̂i0)
2.

âMOM
i0 =fa(θ̂i0, σ̂

2
i0)

b̂MOM
i0 =fb(θ̂i0, σ̂

2
i0).

â
edgeR
i0 =fa

(

θ̂i0,
(

σ̂
edgeR
i0

)2
)

b̂
edgeR
i0 =fb

(

θ̂i0,
(

σ̂
edgeR
i0

)2
)
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JAGS, rjags [31–33]. JAGS is a Gibbs sampler based 
on slice sampling as decribed in Neal (2003) [34]. We use 
maximum likelihood estimates to select starting values of 
θij ,Zij ,φij , cj , and πj to initialize the Markov chain for non 
beads-only sample j. As described above, θ̂ initij = θ̂ij is the 
MLE of the binomial probability calculated from the read 
counts. Since Zij is needed to update cj ,πj ,φij , we set Ẑinit

ij  
= 1 if its observed read count is at least twice as large as 
the expected read count in a beads-only sample. That is, 
Ẑinit
ij  = 1 if Yij ≥ 2nj θ̂i0 , and 0 otherwise. The initial value 

for the attenuation constant is derived by regressing the 
observed read counts on the expected reads count for all 
non-enriched peptides in that sample, with ĉinitj  being the 
slope estimate

The initial value for the proportion of enriched peptides 
is the average of all enrichment indicators

and the respective peptide fold changes are initialized as

Since cj and πj are modeled using Beta distributions with 
no support at values 0 and 1, we use a small offset in the 
event that cinitj = 1 and π init

j = 0.
In PhIP-Seq experiments we commonly observe very 

reactive peptides [17, 35]. Allowing for extreme fold 
changes in the Bayesian model for a few peptides can 
affect the inference for other less reactive peptides, and 
can have negative consequences for numerical stability 
and scalability. In our applications, clearly enriched pep-
tides defined as φ̂init

ij > 15 were filtered out before starting 
the Markov chain. Reads from such peptides in the mock 
IP and actual samples were removed, and the library sizes 
were recalculated.

Peptide reactivity detection with edgeR. To iden-
tify reactive peptides, each serum sample is compared to 
all beads-only samples from the same plate. Differential 
expression in edgeR is assessed for each unit (here, each 
peptide) using an exact test analogous to Fisher’s com-
paring means between two groups of negative binomial 
random variables, but adapted for overdispersed data 
[36]. Two-sided p-values were subsequently converted 
to one-sided p-values as the alternative to the null of no 
reactivity (fold change = 1) is reactivity, leading to read 
count enrichment and thus, fold-changes larger than 

ĉinitj =

∑P
i=1(1− Ẑinit

ij )× Yij × nj × θ̂i0
∑P

j=1(1− Ẑinit
ij )× (nj θ̂i0)2

.

π̂ init
j =

1

P

P
∑

i=1

Ẑinit
ij ,

φ̂init
ij = (1− Ẑinit

ij )+ Ẑinit
ij

Yij

nj × ĉinitj × θ̂i0
.

1. Multiple comparisons corrections were based on the 
Benjamini-Hochberg procedure, using false discovery 
rates to delineate enrichment across all peptides.

Simulation study. We simulated ten data sets based 
on the read counts observed in the HIV elite controller 
data described below. Each of these data sets had eight 
beads-only samples and twelve simulated serum sam-
ples. The twelve samples contain one beads-only sam-
ple run as an actual sample and two technical replicates 
(samples generated from the same parameters). For each 
simulated serum sample, we randomly selected 50 pep-
tides as reactive. Among those, 10 peptides each had fold 
changes between 1 and 2, between 2 and 4, between 4 
and 8, between 8 and 16, and between 16 and 32. Each 
data set was analyzed using the first two, four, and all 
eight beads-only samples to assess the sensitivity of the 
results to the number of beads-only used for analysis. For 
each data set and number of beads-only sample combi-
nation, we ran BEER with the true beads-only Beta a0, b0 
prior parameters, estimated beads-only parameters using 
maximum likelihood, method of moments, and edgeR 
derived estimates.

Performance was primarily assessed using ROC and 
PR curves on the full data and fold-change subsets of 
the data. For each fold-change bin, curves were gener-
ated using all non-enriched peptides and enriched pep-
tides within the specified fold-change group from the 
simulated serum samples (no peptides from beads-only 
samples were included). To ensure that all curves had 
the same support points, we used linear interpolation to 
approximate the sensitivity or positive predictive value 
respectively at each support point for each simulation. 
ROC curves started at 0 sensitivity and 0 false-positive 
rate, while PRC curves started at 0 sensitivity and perfect 
positive-predictive value. The interpolated curves were 
averaged point-wise to generate an average curve for 
each condition. The area under each ROC curve was cal-
culated using trapezoidal approximation from the inter-
polated data points. We also used logistic regression to 
model the probability of identifying and enriched peptide 
by fold-change in each data set. Multiple comparisons 
for edgeR p-values were addressed using the Benjamini-
Hochberg procedure to ensure a 5% FDR. Cut-offs for the 
posterior probabilities were selected in each data set to 
achieve 5% false positive calls.

Examples. Antibody reactivity counts for eight plates 
of data were generated using the PhIP-Seq assay and the 
VirScan library on serum samples from HIV elite con-
trollers with HIV subtype A and B infections, and ana-
lyzed by Kammers et al. [14] to assess antibody profiles 
in HIV controllers and persons with treatment-induced 
viral suppression. We used count data for the 3,395 
phage-displayed peptides spanning the HIV proteome 
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in the VirScan library for ten samples and six-beads-
only samples from one plate of data. Two of the ten 
samples are identical, run in duplicate on the same 
plate. To quantify the false-positive rate of each algo-
rithm, we also ran each beads-only sample against the 
remaining five-beads-only samples in a round-robin.

The CoronaScan data consists of counts for 6,932 pep-
tides for 10 serum samples and 8 beads-only samples 
from one plate of data [6]. Among the ten samples, six 
were pre-pandemic samples and four samples were from 
one individual infected with SARS-CoV-2. Samples from 
this individual were collected on days 10 through 13 
since symptom onset. By design, each peptide is present 
in duplicate in the CoronaScan library, enabling us to 
assess the concordance of the fold-change estimates and 
the enrichment status within samples. We again ran each 
beads-only sample against the remaining 7 beads-only 
samples to assess false positive rates.

The example in the Discussion to highlight the strong 
peptide-dependent background binding to the beads 
was from a previous study to evaluates HIV antibody 
responses and their evolution during the course of HIV 
infection [17] and to generate a classifier for recent HIV 
infections [35].
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