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Abstract Manipulating feeding circuits in freely moving animals is challenging, in part because

the timing of sensory inputs is affected by the animal’s behavior. To address this challenge in

Drosophila, we developed the Sip-Triggered Optogenetic Behavior Enclosure (‘STROBE’). The

STROBE is a closed-looped system for real-time optogenetic activation of feeding flies, designed to

evoke neural excitation coincident with food contact. We previously demonstrated the STROBE’s

utility in probing the valence of fly sensory neurons (Jaeger et al., 2018). Here we provide a

thorough characterization of the STROBE system, demonstrate that STROBE-driven behavior is

modified by hunger and the presence of taste ligands, and find that mushroom body dopaminergic

input neurons and their respective post-synaptic partners drive opposing feeding behaviors

following activation. Together, these results establish the STROBE as a new tool for dissecting fly

feeding circuits and suggest a role for mushroom body circuits in processing naı̈ve taste responses.

DOI: https://doi.org/10.7554/eLife.45636.001

Introduction
Drosophila melanogaster has emerged as a leading model for understanding sensory processing

related to food approach, avoidance, and consumption behaviors. However, although the gustatory

system is recognized as mediating a critical final checkpoint in determining food suitability, much

remains to be learned about the neural circuits that process taste information in the fly brain.

Like mammals, flies detect several taste modalities, each of which promotes food acceptance or

rejection (Liman et al., 2014; Marella et al., 2006; Yarmolinsky et al., 2009). Taste compounds

activate gustatory receptor neurons (GRNs) localized on the fly’s proboscis, legs, wings, and oviposi-

tor (Scott, 2018). Among the different classes of GRNs present, cells expressing the Gustatory

Receptor Gr64f respond to sweet compounds and induce strong acceptance behavior. Conversely,

GRNs labeled by Gr66a respond to bitter compounds and evoke avoidance (Dahanukar et al.,

2001; Dahanukar et al., 2007; Jiao et al., 2008; Kwon et al., 2014; Kwon et al., 2011;

Marella et al., 2006; Thorne et al., 2004; Wang et al., 2004). GRNs connect directly or indirectly

to the subesophageal zone (SEZ) of the fly brain (Ito et al., 2014; Rajashekhar and Singh, 1994;

Scott, 2018; Stocker and Schorderet, 1981). Taste processing in the SEZ involves local modulatory

interneurons (Chu et al., 2014; Pool et al., 2014), second-order neurons projecting locally or to

other brain regions (Kain and Dahanukar, 2015; Kim et al., 2017; Yapici et al., 2016), motor neu-

rons driving feeding subprograms (Gordon and Scott, 2009; Hampel et al., 2011; Manzo et al.,

2012; Rajashekhar and Singh, 1994), and command neurons driving the complete feeding program

(Flood et al., 2013).

Musso et al. eLife 2019;8:e45636. DOI: https://doi.org/10.7554/eLife.45636 1 of 23

RESEARCH ADVANCE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.45636.001
https://doi.org/10.7554/eLife.45636
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


Taste processing is not only involved in acute feeding events, but also in the formation of associa-

tive memories, which are aversive following exposure to bitter taste (Masek et al., 2015;

Kirkhart and Scott, 2015) or positive following sugar consumption (Tempel et al., 1983). Memory

formation occurs mainly in a central brain structure called the mushroom body (MB), composed

of ~2000 Kenyon cells per hemisphere (Heisenberg et al., 1985). The MBs receive sensory informa-

tion that is assigned a positive or negative output valence via coincident input from dopaminergic

neurons (DANs) (Perisse et al., 2013; Waddell, 2010). Little is known about how taste information

is relayed to the MBs, but taste projection neurons (TPNs) connected to bitter GRNs indirectly drive

activation of the paired posterior lateral cluster 1 (PPL1) DANs (Kim et al., 2017). PPL1 neurons sig-

nal punishment to MBs and are required for aversive taste memory formation (Aso et al., 2012;

Aso et al., 2010; Claridge-Chang et al., 2009; Kim et al., 2017; Kirkhart and Scott, 2015;

Masek et al., 2015). Conversely, the protocerebrum anterior medial (PAM) cluster of DANs signals

rewarding information and is involved in the formation of appetitive memories (Burke et al., 2012;

Huetteroth et al., 2015; Liu et al., 2012; Yamagata et al., 2015). Although they have well-estab-

lished roles in memory formation, PPL1 and PAM involvement in feeding has not been extensively

investigated.

Kenyon cells and DANs make connections to specific mushroom body output neurons (MBONs)

within discrete compartments of the MBs. MBONs project to protocerebral integration centers and

are required for memory formation and retrieval (Aso et al., 2014a; Aso et al., 2014b; Aso et al.,

2014b; Bouzaiane et al., 2015; Felsenberg et al., 2017; Ichinose et al., 2015; Masek et al., 2015;

Owald et al., 2015; Perisse et al., 2016; Plaçais et al., 2013; Séjourné et al., 2011;

Takemura et al., 2017; Tanaka et al., 2008). An emerging model is that DAN/MBON pairs innervat-

ing a specific MB compartment produce behavioral responses of opposing valence, and that KC-

MBON synapses in that compartment are depressed upon DAN activation (Cohn et al., 2015;

Felsenberg et al., 2017; Perisse et al., 2016; Séjourné et al., 2011; Takemura et al., 2017). While

MBONs are known to modulate innate behaviors such as taste sensitivity (Masek et al., 2015) and

food seeking behavior (Tsao et al., 2018), the possible contribution of MB input and output circuits

to feeding behavior remains unclear.

Manipulating neural activity is a powerful method for assessing neural circuit function. Silencing

neuron populations in freely behaving flies, which forces the neurons into a chronic ‘off’ state to

mimic a situation where the fly never encounters an activating stimulus, is a straightforward way to

determine their necessity in feeding. (Fischler et al., 2007; Gordon and Scott, 2009; LeDue et al.,

2015; LeDue et al., 2016; Mann et al., 2013; Marella et al., 2012; Pool et al., 2014). However,

gain-of-function experiments for feeding and taste, or any other actively sensed stimulus, are more

complicated. Behaviors produced by forcing a neuron into a stimulus- and behavior-independent

‘on’ state can be difficult to interpret. The possible exception is activation of a neuron that elicits a

stereotyped motor program, but even these situations are more easily interpreted in a tethered fly

where the effect of a single activation can be monitored (Chen and Dahanukar, 2017; Flood et al.,

2013; Gordon and Scott, 2009; Marella et al., 2006; Masek et al., 2015). To effectively probe the

sufficiency of neuron activation during feeding events, it would be ideal to temporally couple activa-

tion with feeding.

Recently, three new systems for closed-loop optogenetic control of feeding flies have emerged:

the optoPAD and STROBE, developed as additions to the FlyPAD system; and the optoFLIC, built

on the FLIC platform (Jaeger et al., 2018; May et al., 2019; Moreira et al., 2019; Ro et al., 2014;

Steck et al., 2018). Here, we provide a more extensive characterization of the STROBE and its util-

ity. We demonstrate that coincident activation of sweet GRNs with feeding on agar drives appetitive

behavior, and bitter GRN activation elicits aversion. These effects are modulated by starvation and

can be inhibited by the presence of chemical taste ligands of the same modality. We also show that

activation of central feeding circuit neurons produces repetitive, uncontrolled food interactions,

demonstrating the STROBE’s efficacy in manipulating both peripheral and central neurons. We then

establish that activation of PPL1 neurons negatively impacts feeding, while activating PAM neurons

promotes it. Finally, in agreement with mushroom body circuit models, activating MBONs drives

feeding responses in opposition to the DANs from the same MB compartment.
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Results

The STROBE triggers light activation temporally coupled with food
interactions
The FlyPAD produces capacitance signals that reflect a fly’s interaction with food in either of two

sensors (or ‘channels’) in a small arena (Figure 1A, Figure 1—figure supplement 1A) (Itskov et al.,

2014). When a fly physically bridges the two electrodes of a sensor by standing on one electrode

and making contact with food sitting on the other, it produces a rise in capacitance. This signal,

which is acquired at 100 Hz, is then decoded post hoc by an algorithm designed to identify sipping

events. We designed the STROBE to track the raw capacitance signal in real-time and trigger light-

ing within the arena during sips (Figure 1B). To achieve this, we built arena attachments that consist

of a lighting PCB carrying two LEDs of desired colors positioned above the channels of a FlyPAD

arena. Each PCB is surrounded by a lightproof housing to isolate the arenas from other light sources

(Figure 1—figure supplement 1B–C).

In order to trigger optical stimulation with short latency upon sip initiation, we designed an algo-

rithm that applies a running minima filter to the capacitance signal to detect when a fly is feeding. If

the capacitance surpasses a set threshold above the minimum value recorded within the preceding

10 cycles (100 ms), the LED is turned on and remains illuminated until the threshold is no longer

exceeded. By definition, this means that elevated plateaus of capacitance that last longer than 100

ms will produce a lighting response only within the first 100 ms. Because this algorithm is run on a

field-programmable gate array (FPGA), the signal to lighting transition times are theoretically on the

order of tens of milliseconds, providing a rapid response following the initiation of a sip. We con-

firmed the short latency of activation with a wire standing in for the fly’s proboscis. Based on video

captured at 178 frames per second, the latency of LED activation following a touch was 37 ± 17 ms

(Figure 1—figure supplement 2). This latency is short enough to ensure LED triggering during sips,

which generally last longer than 100 ms (Itskov et al., 2014). Indeed, video of flies feeding in the

STROBE, shot at 60 frames per second, consistently showed light activation in the same frame as the

fly’s proboscis fully extending onto the food (Figure 1—figure supplement 2 and Video 1).

The STROBE records the state of the lighting activation system (on/off) and transmits this infor-

mation through USB to the PC, where it is received and interpreted by a custom end-user program.

This program displays the capacitance signals from each fly arena in real-time, as well as its lighting

state. It also counts the number of LED activations over the course of the experiment (Figure 1C;

Figure 1—figure supplement 1D–F). To confirm that the STROBE algorithm triggers the LED during

sips detected by the original post hoc FlyPAD algorithm, we first used both algorithms to analyze

the capacitance signal from a short (~11 s) feeding bout (Figure 1D). Visually, this showed that each

time a sip is detected with the FlyPAD algorithm, the STROBE algorithm triggers the LED at a similar

time. However, we also noted that the STROBE algorithm triggers more LED activations than the

number of sips called by the FlyPAD algorithm. We confirmed these observations on a larger scale

by examining the correlation between the output of each algorithm in 1 min bins across a full 1 hr

experiment (Figure 1E). Here, there is a strong correlation between the two (R2 = 0.963), with the

number of LED illuminations triggered by the STROBE algorithm being about 1.4 times the number

of sips detected by the FlyPAD algorithm. This increased number is likely the consequence of the

FlyPAD algorithm filtering out capacitance changes not adhering to certain criteria of shape and

duration (Itskov et al., 2014). Since these parameters are, by definition, unknown at sip onset, the

STROBE cannot use them as criteria. Thus, we expect that a fraction of LED activations in the

STROBE are actually triggered by more fleeting interactions with the food. Indeed, video of flies in

the STROBE confirmed that a subset of leg touches triggered light activation (Video 1). Thus, we

defined each LED activation as representing a food ‘interaction’, the majority of which are sips. Since

flies detect tastes on multiple body parts, including the legs, even non-sip interactions are likely still

relevant to taste processing and feeding initiation.

Activation of GRNs modifies feeding behavior
To validate the utility of the STROBE, we first tested flies expressing CsChrimson, a red-light acti-

vated channel, in either sweet or bitter GRNs (Klapoetke et al., 2014). Flies were given the choice

between two identical neutral food options (plain agar), one of which triggered light activation.
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Figure 1. The STROBE setup. (A) Concept of the FlyPAD: The interaction between the fly’s proboscis and the food is detected as a change in

capacitance between two electrodes: electrode 1, on which the fly stands, and electrode 2, on which the food is placed. (B) Concept of the STROBE:

when the fly is not interacting with the food, no change of capacitance is detected and the LED is OFF (left); when the fly sips, changes in capacitance

turn the LED ON (right). (C) Flowchart of the STROBE signal processing algorithm. (D) Example of capacitance changes during a feeding bout, and the

associated sips called by the FlyPAD (blue) and STROBE lighting events (red). (E) Comparison of the sip numbers called by the FlyPAD algorithm and

LED illuminations triggered by STROBE algorithm. Sips/illuminations were counted in 1 min bins across a 1 hr experiment for 10 different channels (five

arenas). Bins with neither sips detected by the FlyPAD algorithm nor illuminations triggered by the STROBE algorithm were excluded from analysis, as

these were deemed times when the fly was not interacting with the food.

DOI: https://doi.org/10.7554/eLife.45636.002

The following source data and figure supplements are available for figure 1:

Source data 1. This file contains all the raw numerical data for Figure 1 and its associated figure supplements.

DOI: https://doi.org/10.7554/eLife.45636.005

Figure supplement 1. The STROBE setup.

DOI: https://doi.org/10.7554/eLife.45636.003

Figure 1 continued on next page
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Under these conditions, flies expressing functional CsChrimson in sweet neurons under the control

of Gr64f-GAL4 showed a dramatic preference towards feeding on the light-triggering food, while

control flies of the same genotype that were not pre-fed all-trans-retinal, and thus carried non-func-

tional CsChrimson, displayed no preference (Figure 2A–E). The number of interactions on the light-

triggering side of the chamber was dependent on light intensity, with increasing interactions up 6.5

mW/cm2, above which interaction numbers decreased as a function of intensity. However, prefer-

ence was relatively stable above a threshold of 1.85 mW/cm2 (Figure 2D–E). Additionally, interac-

tions generally accumulated linearly over time at all intensities, with a stable preference index

established within the first 15 min of a one-hour experiment (Figure 2—figure supplement 1). This

suggests that neither sensitization nor adaptation occurs during the course of the experiment. More-

over, the flies do not appear to adjust their behavior in response to the perceived mismatch

between the sweet taste and lack of energy content of the food source.

As expected, flies expressing functional CsChrimson in bitter sensing neurons under the control

of Gr66a-GAL4 strongly avoided neuronal activation in the STROBE by engaging in fewer interac-

tions with the light-triggering food source (Figure 2F–J). Once again the behavioral response was

intensity-dependent, with maximum suppression of interactions occurring at the highest intensity

tested (16.4 mW/cm2). As with sweet GRN activation, the flies’ preference develops in roughly the

first 15 min and remains relatively stable for the rest of the hour (Figure 2—figure supplement 2).

Since the light intensities eliciting maximal effect for Gr64f and the Gr66a activation are 6.5 mW/cm2

and 16.4 mW/cm2, respectively, we decided to use the intermediate value of 11.2 mW/cm2 as the

intensity for all further experiments. Using a full set of genotypic and non-retinal controls, we con-

firmed that these conditions produced robust and specific preference behaviors for both sweet and

bitter GRN activation (Figure 2—figure supplement 3).

Next, we sought to test whether GRN activation affects feeding per se, rather than simply driving

non-ingestive food interactions. We repeated sweet and bitter GRN activation in the STROBE with

the addition of blue dye to one food source and red dye to the other. We then calculated a post

hoc preference based on the number of individual flies showing blue versus red dye in their abdo-

men following the assay, and compared this to the preference calculated based on food interactions

measured by the STROBE. In all cases, these studies confirmed that the changes in food interactions

driven by GRN activation are accompanied by strong effects on food ingestion in the expected

direction (Figure 2—figure supplement 4).

Starvation modulates the
behavioral impact of GRN
activation
Starvation duration has a well-known impact on

fly feeding – the longer flies are food deprived,

the more they will initiate and sustain feeding on

sweet foods (Dus et al., 2013; Dus et al., 2011;

Inagaki et al., 2012; Inagaki et al., 2014;

Scheiner et al., 2004). To determine if similar

effects would manifest in the STROBE, we tested

GRN activation after different periods of food

deprivation (Figure 3A,B). Consistent with its

effect on sugar feeding, starvation increased

flies’ preference for the light-triggering food in

the STROBE when their sweet neurons

expressed functional CsChrimson (Figure 3C).

This elevated preference index is driven by a

dramatic increase in interaction number

Figure 1 continued

Figure supplement 2. LED illumination is triggered with short latency following touch.

DOI: https://doi.org/10.7554/eLife.45636.004

Video 1. This movie shows an individual fly feeding on

the light-triggering food in a STROBE arena.

DOI: https://doi.org/10.7554/eLife.45636.006
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Figure 2. Activation of sweet and bitter sensory neurons drives feeding preferences in the STROBE. (A)

Immunofluorescent detection of UAS-CsChrimson.mVenus driven by Gr64f-GAL4. (B) Schematic illustrating

STROBE activation of sweet neurons. (C) Experimental setup: both channels are filled with 1% agar, only one is

paired to LED activation. (D–E) Relationship between light intensity and light side preference (D) or interaction

numbers (E) for Gr64f > CsChrimson flies pre-fed retinal (blue squares) or not fed retinal (black squares). (F)

Expression of UAS-CsChrimson.mVenus driven by Gr66a-GAL4. (G) Schematic illustrating STROBE activation of

Figure 2 continued on next page
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(Figure 3D). In contrast to its impact on sweet sensory neurons, starvation had no significant effect

on light avoidance mediated by bitter neuron activation under these conditions (Figure 3E,F). Star-

vation also had little to no effect on the timing of food choice throughout the assay, with all groups

establishing their peak preference within the first 10–15 min and largely maintaining it throughout

the assay (Figure 3—figure supplements 1 and 2).

Chemical taste ligands suppress the impact of light-induced attraction
and avoidance
We next asked whether the presence of sweet or bitter ligands would interfere with light-driven

behavior in the STROBE. For example, if sugar is placed in both food options, will this reduce the

salience of sweet GRN activation by light? Indeed, adding increasing concentrations of sucrose to

both food options caused dose-dependent inhibition of GR64f > CsChrimson flies’ preference for

the light-triggering food (Figure 4A,B). This change is driven by a progressively higher number of

interactions on the no-light side, with relatively constant interaction numbers on the light side as

sucrose concentration increases (Figure 4—figure supplement 1A,B). On the other hand, the addi-

tion of sucrose mildly enhanced the negative preferences driven by STROBE activation of Gr66a bit-

ter neurons (Figure 4C). This effect appears to manifest from the increasing attractiveness of the no-

light side coupled with unwavering and near total avoidance of the light-triggering side (Figure 4—

figure supplement 1C). The same pattern is mirrored by the addition of the bitter compound dena-

tonium to both sides: dose-dependent inhibition of the aversion shown by Gr66a > CsChrimson flies

(Figure 4D,E; Figure 4—figure supplement 1D,E), and little to no effect on the attraction of

Gr64f > CsChrimson flies to the light side (Figure 4F; Figure 4—figure supplement 1F). In general,

as with other experiments, we observed no substantial change in preference after establishment in

the first 10–15 min (Figure 4—figure supplements 2–5). This suggests that flies are not displaying

satiety effects from sugar ingestion or taste-independent effects from the consumption of

denatonium.

Activation of the ‘feeding-neuron’ drives extreme sipping behavior
Can the STROBE affect feeding behavior through the activation of central neurons, in addition to

those in the periphery? Although the precise nature of higher-order taste circuits is still unclear, sev-

eral neurons have been identified in the SEZ that influence feeding behavior (Chu et al., 2014;

Inagaki et al., 2014; Inagaki et al., 2012; Jourjine et al., 2016; Kain and Dahanukar, 2015;

LeDue et al., 2016; Marella et al., 2012; Pool et al., 2014; Yapici et al., 2016). One of them, the

‘feeding-neuron’ (Fdg), acts as a command neuron for the proboscis extension response, and shows

activity in response to food stimulation only following starvation (Flood et al., 2013). Strikingly, Fdg

activation in the STROBE produced an extremely high number of interactions on the light-triggering

Figure 2 continued

bitter neurons. (H) Experimental setup: both channels contain plain 1% agar. (I–J) Relationship between light

intensity and light side preference (I) or interaction numbers (J) Gr66a > CsChrimson flies pre-fed retinal (green

squares) or not fed retinal (black squares). Values represent mean ± SEM. n = 30–37 (D–E) or 19–28 (H–I). Statistical

tests: two-way ANOVA and Bonferroni post hoc: ns p>0.05, **p<0.01, ***p<0.001. Colored asterisks represent

significance between sips on each side for the retinal group.

DOI: https://doi.org/10.7554/eLife.45636.008

The following source data and figure supplements are available for figure 2:

Source data 1. This file contains all the raw numerical data for Figure 2 and its associated figure supplements.

DOI: https://doi.org/10.7554/eLife.45636.013

Figure supplement 1. Behavioral dynamics during sweet GRN stimulation.

DOI: https://doi.org/10.7554/eLife.45636.009

Figure supplement 2. Behavioral dynamics during bitter GRN stimulation.

DOI: https://doi.org/10.7554/eLife.45636.010

Figure supplement 3. Genetic controls for Gr66a and Gr64f do not show any preference in the STROBE.

DOI: https://doi.org/10.7554/eLife.45636.011

Figure supplement 4. GRN activation in the STROBE drives ingestion behavior.

DOI: https://doi.org/10.7554/eLife.45636.012
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Figure 3. Behavioral impact of GRN activation is modulated by starvation. (A) Protocol: flies are subjected to

increasing period of starvation (12 hr, 24 hr, 48 hr) prior to the STROBE experiment. (B) Experimental setup: both

channels contain plain 1% agar. (C–D) The effect of starvation on light side preference (C) and food interaction

numbers (D) of flies expressing CsChrimson in sweet neurons. (E–F) The effect of starvation on preference for the

light side (E) and interaction numbers (F) of flies expressing CsChrimson in bitter neurons. Values represent

mean ± SEM. n = 21–30. Statistical tests: two-way ANOVA with Bonferroni post hoc. ns p>0.05, *p<0.05, **p<0.01,

***p<0.001. Colored asterisks represent significance between sips on each side for the retinal group.

DOI: https://doi.org/10.7554/eLife.45636.014

The following source data and figure supplements are available for figure 3:

Source data 1. This file contains all the raw numerical data for Figure 3 and its associated figure supplements.

DOI: https://doi.org/10.7554/eLife.45636.017

Figure supplement 1. Behavioral dynamics during sweet GRN stimulation following different starvation times.

DOI: https://doi.org/10.7554/eLife.45636.015

Figure supplement 2. Behavioral dynamics during bitter GRN stimulation following different starvation times.

DOI: https://doi.org/10.7554/eLife.45636.016
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food, resulting in a nearly complete preference for that side (Figure 5; Video 2). Thus, the STROBE

can effectively modulate feeding behavior via the activation of either peripheral or central neurons.
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Figure 4. Chemical taste ligands suppress impact of light evoked GRN activity. (A) Experimental setup: both

channels contain the same sucrose concentration (1, 10, 100, or 1000 mM) in 1% agar. (B–C) The effect of sucrose

concentration on the light side preference of Gr64f > CsChrimson (B) or Gr66a > CsChrimson (C). (D) Experimental

setup: both channels contain the same denatonium concentration (0, 0.1, 1, or 10 mM). For Gr66a > CsChrimson

activation, both channels also contain 50 mM sucrose. (E–F) The effect of denatonium concentration on the light

side preference of Gr66a > CsChrimson (E) or Gr64f > CsChrimson (F). Values represent mean ± SEM. n = 25–51.

Statistical tests: two-way ANOVA with Bonferroni post hoc. ns p>0.05; ***p<0.001.

DOI: https://doi.org/10.7554/eLife.45636.018

The following source data and figure supplements are available for figure 4:

Source data 1. This file contains all the raw numerical data for Figure 4 and its associated figure supplements.

DOI: https://doi.org/10.7554/eLife.45636.024

Figure supplement 1. Chemical taste ligands suppress impact of light evoked GRN activity.

DOI: https://doi.org/10.7554/eLife.45636.019

Figure supplement 2. Behavioral dynamics during sweet GRN stimulation with sugar-containing food.

DOI: https://doi.org/10.7554/eLife.45636.020

Figure supplement 3. Behavioral dynamics during bitter GRN stimulation with sugar-containing food.

DOI: https://doi.org/10.7554/eLife.45636.021

Figure supplement 4. Behavioral dynamics during bitter GRN stimulation with bitter-containing food.

DOI: https://doi.org/10.7554/eLife.45636.022

Figure supplement 5. Behavioral dynamics during sweet GRN stimulation with bitter-containing food.

DOI: https://doi.org/10.7554/eLife.45636.023

Musso et al. eLife 2019;8:e45636. DOI: https://doi.org/10.7554/eLife.45636 9 of 23

Research advance Neuroscience

https://doi.org/10.7554/eLife.45636.018
https://doi.org/10.7554/eLife.45636.024
https://doi.org/10.7554/eLife.45636.019
https://doi.org/10.7554/eLife.45636.020
https://doi.org/10.7554/eLife.45636.021
https://doi.org/10.7554/eLife.45636.022
https://doi.org/10.7554/eLife.45636.023
https://doi.org/10.7554/eLife.45636


A
(light) 

1% agar or

sucrose 100 mM

B

0

2000

4000

6000

8000

10000

In
te

ra
c

ti
o

n
s L
ig

h
t

L
ig

h
t

0 6030

6030

1000

2000

3000

4000

5000

In
te

ra
c

ti
o

n
s

0

C D

No ret Ret

-1.0

-0.5

0.0

0.5

1.0

P
re

fe
re

n
c

e
 I

n
d

e
x

Retinal - +

Fdg > CsChrimson

***

G

-1.0

-0.5

0.0

0.5

1.0

P
re

fe
re

n
c

e
 I

n
d

e
x

Retinal - +

Fdg > CsChrimsonH

***

E

No ret Ret

0

-1.0

-0.5

0.0

0.5

1.0

P
re

fe
re

n
c

e
 I

n
d

e
x

No ret Ret

0 6030

-1.0

-0.5

0.0

0.5

1.0

P
re

fe
re

n
c

e
 I

n
d

e
x

(no light)

1% agar or

sucrose 100 mM

F

agar

agar

sucrose

sucrose

Fdg > CsChrimson

Fdg > CsChrimson Fdg > CsChrimson

Fdg > CsChrimson Fdg > CsChrimson

c
a

p

Time (min)

Time (min) Time (min)

No retRet

Light

No light

Figure 5. Activation of feeding command neurons elicits extreme sipping behavior. (A) Immunofluorescent

detection of Fdg > CsChrimson. (B) Experimental setup: both channels contain either 1% agar or 100 mM sucrose.

(C) Cumulative food interaction numbers for the population of Fdg > Chrimson flies over the course of a 1 hr

experiment. (D) Total interaction numbers for individual flies. (E–F) Preference index for Fdg > Chrimson flies over

the course of a 1 hr experiment averaged (E) or for ten individual flies (F). (G–H) Preference index for

Fdg > Chrimson flies after one hour spent in the STROBE with agar (G) or 100 mM sucrose (H) . Values are

mean ± SEM. n = 14–33. Statistical tests: t-test. ***p<0.001.

Figure 5 continued on next page
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Manipulating mushroom body extrinsic neurons modifies feeding
behavior
Given the important role of the MB in assigning valence to stimuli during learning, we next asked

whether MB circuits acutely impact attractive and aversive feeding responses. PPL1 DANs signal

punishment or aversive information to the MBs, and thus their activation in the STROBE is predicted

to drive avoidance of the light-triggering food (Figure 6A) (Aso et al., 2012; Aso et al., 2010;

Das et al., 2014; Kirkhart and Scott, 2015; Masek et al., 2015). Flies expressing functional

CsChrimson in the a3/a’3 subset of PPL1 dopaminergic neurons (MB308B-GAL4) showed a negative

preference towards light when 100 mM sucrose was present in both options, but not if the food was

plain agar (Figure 6C; Figure 6—figure supplement 1A–C). Performing the same experiment with

activation of a broader subset of PPL1 neurons (MB065B-GAL4) led to stronger avoidance in the

presence of 100 mM sucrose or plain agar (Figure 6—figure supplement 1A–C). Interestingly, acti-

vation of MBONs post-synaptic to PPL1 (MB093C-GAL4 and MB026B-GAL4) produced strong

attraction in either context (Figure 6D; Figure 6—figure supplement 1A–C).

The PAM cluster of DANs is generally thought to signal appetitive reward to the MBs

(Burke et al., 2012; Huetteroth et al., 2015; Lin et al., 2014; Liu et al., 2012; Yamagata et al.,

2015). Following the same principle described above, PAM activation should drive appetitive behav-

ior, while stimulation of MBONs within the same compartment is predicted to elicit aversion

(Figure 6E). Indeed, activating the b2m,b’2 p PAM subset (MB056B-GAL4 and MB301B-GAL4) in

the STROBE led to attraction (Figure 6F,G; Figure 6—figure supplement 2). On the other hand,

activating the corresponding b2m,b’2 p,g5 MBONs (MB011B-GAL4 and MB210B-GAL4) produced

avoidance when sucrose was present (Figure 6H, Figure 6—figure supplement 2).

Another subset of PAMs, targeting the g3 compartment, was recently shown to encode a nega-

tive valence and induce appetitive memories following transient inhibition by the satiety peptide

Allatostatin-A (Yamagata et al., 2016). Consistent with these results, activation of PAM g3 neurons

(MB441B-GAL4 and MB195B-GAL4) in the STROBE produced light avoidance (Figure 6I; Figure 6—

figure supplement 3), while activating the corresponding b’1,g3 MBONs (MB083C-GAL4 and

MB110C-GAL4) was attractive (Figure 6J; Figure 6—figure supplement 3). Thus, PAMs targeting

different MB compartments can be either attrac-

tive or aversive in the context of feeding.

Finally, we chose the PPL1 cluster and their

corresponding MBONs to examine the impact of

MB circuits on feeding in greater detail. First, we

asked whether the interaction preferences driven

by activating these populations reflected genu-

ine changes in feeding behavior. Strikingly, dye

ingestion in the STROBE consistently produced

stronger measures of preference than those cal-

culated with interaction numbers, mirroring the

effects seen with GRN activation (Figure 7). This

was true across a range of stimulus intensities,

even when the differences in interaction num-

bers were quite low. Interestingly, in contrast to

sweet GRN stimulation, which elicited peak

interaction numbers midway in the series of

intensities tested, MB026B-GAL4 MBON activa-

tion produced linearly increasing interactions

across the range of intensities (Figure 7H).

Figure 5 continued

DOI: https://doi.org/10.7554/eLife.45636.025

The following source data is available for figure 5:

Source data 1. This file contains all the raw numerical data for Figure 5.

DOI: https://doi.org/10.7554/eLife.45636.026

Video 2. This movie shows the full STROBE system.

Each chamber contains a fly expressing CsChrimson

under the control of Fdg-GAL4. The flies on the left

side have been fed all-trans retinal. The flies on the

right have not been fed retinal.

DOI: https://doi.org/10.7554/eLife.45636.007
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Figure 6. Manipulation of mushroom body extrinsic neurons modifies feeding behavior. (A) Model for PPL1 input to the MB and corresponding

output: PPL1 neurons signal punishment and are predicted to drive aversive behavior, while corresponding MBONs are predicted to be appetitive. (B)

Experimental setup: both channels contain 100 mM sucrose in 1% agar. (C) Light side preference and interactions of flies expressing CsChrimson in

PPL1 neurons a3,a’3 (MB308-GAL4). (D) Light side preference and interactions of flies expressing CsChrimson in MBON a3,a’two neurons (MB093C-

GAL4). (E) Model for PAM input to the MB and corresponding output: PAM neurons signal reward and are predicted to drive appetitive behavior while

corresponding MBONs are predicted to be aversive. (F) Experimental setup: both channels contain 100 mM sucrose in 1% agar. (G) Light side

preference and interactions of flies expressing CsChrimson in PAM b2,b’two neurons (MB056B-GAL4). (H) Light side preference and interactions of flies

Figure 6 continued on next page
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Second, given the important role that PPL1s play in aversive conditioning, we examined whether

activation of either population caused a shift in behavior over the course of the one-hour assay. How-

ever, as with GRN activation, relative interaction numbers remained quite stable throughout (Fig-

ure 7—figure supplements 1 and 2). Third, we tested whether silencing each population with

expression of the inward rectifier potassium channel Kir2.1 would affect feeding behavior. After dis-

abling LED activation in the STROBE, we counted flies’ interactions with either a low concentration

of sucrose or plain agar (Figure 7—figure supplement 3). This failed to reveal an effect of PPL1 or

MBON silencing on food choice, indicating that, while activation of these populations is sufficient to

affect food choice, they are not necessary in the particular task tested.

Discussion
Leveraging real-time data from the FlyPAD, we built the STROBE to tightly couple LED lighting with

sipping and other food interactions, thereby allowing us to optogenetically excite specific neurons

during feeding. The primary advantage of the STROBE over existing systems for neural activation

during fly feeding is its temporal resolution, which provides two key benefits. First, acutely activating

neurons while the fly is choosing to interact with one of two available food sources allows us to

explore the impact of neural activation on food selection in a way that is impossible with chronic acti-

vation. Second, by tightly coupling stimulation with food interaction events, light-driven activity from

the STROBE should more closely mimic the temporal dynamics of taste input. Conceptually, these

advantages are similar to those achieved by expression of the mammalian TRPV1 in taste sensory

neurons and lacing food with capsaicin (Caterina et al., 1997; Chen and Dahanukar, 2017;

Marella et al., 2006). Importantly, however, the STROBE allows activation of either peripheral or

central neurons.

The implementation of interaction detection and light triggering on an FPGA allows the STROBE

to trigger LED activation with minimal latency, well within the time frame of a single sip. Thus, neural

excitation is tightly locked to the onset and offset of food interactions, providing the means to

manipulate circuits during active feeding. Our decision to implement an algorithm that terminates

illumination during capacitance plateaus exceeding 100 ms has both advantages and disadvantages.

The main advantage is avoiding the LED becoming ‘stuck’ in the on state during shifts in baseline

capacitance that could result in constant illumination for seconds or even minutes during which the

fly may not be interacting with the food. A possible disadvantage is LED illumination that does not

last the entirety of an interaction. This could produce insufficient activation to mimic specific proper-

ties of long sips. It could also result in suboptimal light-mediated silencing, although the efficacy of

neural inhibition in the STROBE has not been tested.

These temporal qualities of light triggering are the primary difference between the STROBE and

another recently described optogenetic FlyPAD, termed ‘optoPAD’ (Moreira et al., 2019;

Steck et al., 2018). OptoPAD carries out sip detection and light control on a USB-connected com-

puter. The benefits of this strategy are the ability to implement a more complex feeding detection

algorithm, and more flexible control of the lighting response timing (Moreira et al., 2019). However,

Figure 6 continued

expressing CsChrimson in MBON neurons post-synaptic to PAM b2,b’two neurons (MB011B-GAL4). (I) Light side preference and interactions of flies

expressing CsChrimson in PAM g3 neurons (MB441-GAL4). (J) Light side preference and interactions of flies expressing CsChrimson in MBON neurons

post-synaptic to PAM g3 neurons (MB083C-GAL4). Values are mean ± SEM. n = 18–29. Statistical test: t-test. **p<0.01, ***p<0.001.

DOI: https://doi.org/10.7554/eLife.45636.027

The following source data and figure supplements are available for figure 6:

Source data 1. This file contains all the raw numerical data for Figure 6 and its associated figure supplements.

DOI: https://doi.org/10.7554/eLife.45636.031

Figure supplement 1. Manipulation of PPL1 DANs and their corresponding output neurons modifies feeding behavior.

DOI: https://doi.org/10.7554/eLife.45636.028

Figure supplement 2. Manipulation of PAM DANs and their corresponding output neurons modifies feeding behavior.

DOI: https://doi.org/10.7554/eLife.45636.029

Figure supplement 3. Manipulation of PAM g3 DANs and their corresponding output neurons modifies feeding behavior.

DOI: https://doi.org/10.7554/eLife.45636.030
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Figure 7. Activation of mushroom body circuits drives ingestion behavior. (A) Schematic of the PPL1 driver used. (B) Experimental setup: one channel

contains 1% agar with blue dye, and the other has 1% agar with red dye. Fly abdomen color is determined following the experiment. (C) Food

interactions from flies expressing CsChrimson in PPL1 DANs in the STROBE with increasing light intensity. Green lines indicate flies pre-fed retinal, and

black/gray lines are non-retinal controls. (D–E) Light side preference indices calculated using interactions (D) or dye ingestion (E). (F) Schematic of the

MBON driver used. (G) Experimental setup: one channel contains 1% agar with blue dye, and the other has 1% agar with red dye. Fly abdomen color is

determined following the experiment. (H) Food interactions from flies expressing CsChrimson under control of MB026B-GAL4 in the STROBE with

increasing light intensity. Blue lines indicate flies pre-fed retinal, and black/gray lines indicate non-retinal controls. (I–J) Light side preference indices

calculated using interactions (I) or dye ingestion (J). Values are mean ± SEM. n = 19–30 for (C–E) and 14–27 for (H–J). Statistical test: two-way ANOVA

Figure 7 continued on next page
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the tradeoff is longer and more variable latencies of LED activation. Moreover, the set illumination

period further decouples the timing of illumination from the fly’s behavior. Each of these systems

may have specific advantages, depending on the application. While they have not been directly

compared, it is likely that tight temporal coupling of the STROBE to food contact will be more useful

for studying the effects of acutely activating core taste and feeding circuit neurons, while the longer,

adjustable, light pulse from the optogenetic FlyPAD may be better for silencing neurons or activat-

ing reinforcement circuits.

Interestingly, similar closed-loop optogenetic paradigms have recently been developed for

rodents. Lick-triggered blue light stimulation of taste receptor cells or circuits in the amygdala is suf-

ficient to drive appetitive and aversive taste behaviors in mice (Wang et al., 2018; Zocchi et al.,

2017). Thus, the same principle is able to reveal important insight into consummatory behaviors in

multiple animals.

Although optogenetic neuronal activation is artificial, light-driven behavior in the STROBE shows

some important properties that mimic natural feeding. For example, the number of food interactions

evoked by stimulation of sweet sensory neurons increased in response to starvation, demonstrating

a dependence on internal state that mirrors what is seen for sugar feeding (Dus et al., 2013;

Dus et al., 2011; Inagaki et al., 2014; Inagaki et al., 2012; Scheiner et al., 2004). One curious

observation is that the number of interactions driven by activation of sweet neurons peaks at a sub-

maximal stimulus intensity, with fewer interactions observed at higher levels of illumination. Com-

pensatory decreases in feeding are known to occur at high food concentrations, but this is likely

from consumption of nutrients that are not present in the STROBE experiment (Deshpande et al.,

2014). Since we observe no evidence of sensory-specific satiety over the time course of our experi-

ments, we suspect that suppression of interactions may occur either from non-physiological neuron

responses at high intensities or an interaction between visual cues from the increased light intensity

and the sweet taste-mediated attraction. Regardless of the mechanism, the non-linear intensity-

dependence of sweet neuron activation contrasts with that of bitter neurons and the MB neurons

tested, which all show the largest behavioral responses at the highest light intensity. This demon-

strates the important practical point that different neuron types can produce maximal effects at dif-

ferent stimulus intensities. Thus, it will be important for anyone using the STROBE or a similar

optogenetic system to carefully calibrate the light intensity for their specific neurons of interest with

the goal of matching either the neurons’ physiological responses, or the animals’ behavioral

responses, to natural stimuli.

We also showed that the behavioral impact of sweet and bitter GRN activation in the STROBE

could be abolished by the presence of natural taste ligands. Interestingly, this property did not gen-

erally hold true for attraction mediated by PAM or appetitive MBON activation, which was typically

similar in the presence or absence of sugar. This may suggest that sweet taste input and PAM or

MBON activation drive attraction via parallel circuits, producing an additive effect when both are

present. Or perhaps suppression would be observed at higher sucrose concentrations or lower light

intensities. It is also notable that flies preferred 1 M sucrose alone over 1 M sucrose coupled to opto-

genetic activation of sweet GRNs. We suspect that optogenetic activation of sweet GRNs in the

STROBE plateaus below the excitation achieved with 1 M sucrose, and somehow prevents further

Figure 7 continued

with Bonferroni post hoc. ns p>0.05, *p<0.05, **p<0.01, ***p<0.001. Colored asterisks represent significance between sips on each side for the retinal

group.

DOI: https://doi.org/10.7554/eLife.45636.032

The following source data and figure supplements are available for figure 7:

Source data 1. This file contains all the raw numerical data for Figure 7 and its associated figure supplements.

DOI: https://doi.org/10.7554/eLife.45636.036

Figure supplement 1. Behavioral dynamics during PPL1 DAN stimulation.

DOI: https://doi.org/10.7554/eLife.45636.033

Figure supplement 2. Behavioral dynamics during MBON stimulation.

DOI: https://doi.org/10.7554/eLife.45636.034

Figure supplement 3. Silencing PPL1 or MB026B neurons has no effect on sugar feeding.

DOI: https://doi.org/10.7554/eLife.45636.035
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activation by very high sugar concentrations. We favor this interpretation over the alternative that

the combination of 1 M sucrose with optogenetic activation of sweet neurons becomes ‘too sweet’;

however, both remain formally possible.

One interesting question is whether the valence of GRN activation in the STROBE is mediated by

hedonics or effects on the feeding program itself. For example, sweet neuron activation is thought

to carry appetitive hedonics, and therefore the flies may continue feeding because consequent light

activation of Gr64f neurons is somehow pleasurable. On the other hand, these neurons also initiate

feeding (and conversely, activation of Gr66a neurons terminates it). Thus, it is possible that each

food contact evokes light-driven activation of a subsequent contact, and so on, creating a positive

feedback loop. This is undoubtedly true of Fdg neuron activation, which is known to initiate a com-

plete feeding sequence, likely downstream of any hedonic effects (Flood et al., 2013). Flies appear

to become ‘trapped’ in a feeding loop until the end of the experiment, suggested by the very high

number of evoked food interactions (see Figure 5).

Activation of MB input and output neurons also modulates feeding in the STROBE. PPL1 stimula-

tion in the STROBE produces avoidance, while appetitive PAM stimulation produces attraction, con-

sistent with the established valence of each population in memory formation and a previously

reported role for PAMs in foraging behavior (Aso et al., 2012; Burke et al., 2012; Aso et al., 2010;

Das et al., 2014; Huetteroth et al., 2015; Kirkhart and Scott, 2015; Landayan et al.,

2018; Lin et al., 2014; Liu et al., 2012; Masek et al., 2015; Yamagata et al., 2015). Moreover,

MBON activation drives feeding behavior in the opposite direction to activation of DANs from the

same compartment. This relationship supports the current model that DAN activity depresses KC to

MBON synapses in their respective compartments (Cohn et al., 2015; Felsenberg et al., 2017;

Perisse et al., 2016; Séjourné et al., 2011; Takemura et al., 2017). Interestingly, not all PAM neu-

rons convey a positive signal upon activation. PAM g3 neurons are excited by electric shocks

(Cohn et al., 2015) and inhibited by sucrose stimulation (Cohn et al., 2015; Yamagata et al., 2016).

Our findings that PAM g3 activation drives aversive feeding behavior is consistent with these neurons

signaling negative valence to the MBs. Finally, it is worth noting that, although silencing experiments

failed to reveal any requirement for PPL1s and their post-synaptic MBONs in the feeding paradigm

used, it is possible that effects would be seen with silencing of broader neuron populations.

Although the mechanisms by which DANs affect feeding behavior remain unclear, MBONs can

modulate innate behavior such as taste sensitivity (Masek et al., 2015), naı̈ve response to odors

(Owald et al., 2015), place preference (Aso et al., 2014b), and food seeking behavior (Tsao et al.,

2018). Could the modulation of feeding by DAN activation result from learning? This seems unlikely

with our current experimental design, as both food options were always identical, and thus there

would be no predictive cues to associate with appetitive or aversive DAN stimulation. We think it is

more likely that the same reward or punishment signals that underlie memory formation also acutely

modify feeding behavior. However, the possibility of pairing circuit activation with specific food cues

may offer a new paradigm for studying food memories, and neuronal activation via self-administra-

tion opens new avenues for the study of operant conditioning and addiction.

Materials and methods

STROBE system
The STROBE system consists of a field programmable gate array (FPGA) controller attached to a

multiplexor board, adaptor boards, fly arenas equipped with capacitive sensors and lighting circuits.

The hardware, with the exception of the lighting circuit units, is based on the FlyPAD design

(Itskov et al., 2014). Each fly arena is paired with a lighting circuit and an opaque curtain (to prevent

interference from external light). This pair will be referred to as a fly chamber unit. The entire system

accommodates 16 fly chamber units (16 fly arenas and 16 lighting circuits), through eight adaptor

boards. The FPGA used is a Terasic DEV0-Nano mounted onto a custom-made multiplexor board.

The multiplexor board is one of the intermediate connection components between the fly cham-

bers and the FPGA controller. The multiplexor board has eight 10-pin ports each of which facilitate

communications between two fly chambers and the FPGA controller. The board also has a FTDI

module allowing data transfer over serial communications with a computer. The other intermediate

connection component is the adaptor board which connects on one side to the multiplexor board
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via a 10-pin line, and splits the 10-pin line from the multiplexor board into four 10-pin ports which

connects to two fly arenas and two lighting circuits. The fly arena consists of two annulus shaped

capacitive sensors and a Capacitance to Digital Converter (CDC) chip (AD7150BRMZ) that the main

multiplexer board communicates with to initiate and collect data (and ultimately to stop collecting

data). The CDC interprets and converts capacitance data from the two sensors on the fly-arena to a

digital signal for the FPGA to process (Itskov et al., 2014).

The lighting circuit consists of a two-pin connector to receive power from an external power sup-

ply, a 10-pin connector to receive signals from the FPGA controller via the intermediate compo-

nents, a 617 nm light emitting diode (LUXEON Rebel LED – 127lm @ 700mA; Luxeon Star LEDs

#LXM2-PH01-0060), two power resistors (TE Connectivity Passive Product SMW24R7JT) for LED cur-

rent protection, and two metal oxide semiconductor field effect transistors (MOSFETs; from Infineon

Technologies, Neubiberg, Germany, IRLML0060TRPBF) allowing for voltage signal switching of the

LEDs.

When a fly performs a sip and triggers a high signal on a capacitive sensor, the CDC chip on the

fly arena propagates a signal via the multiplexor to the FPGA controller. The FPGA processes the

capacitive sensor signal, decides a legitimate food interaction took place, and sends a high signal

through the multiplexor to the MOSFET of the lighting circuit. The MOSFET then switches its light-

ing circuit on, allowing current to flow and turning on the monocolor LED positioned directly above

the capacitive sensor. The process for determining a legitimate food interaction is described next.

In order to trigger optical stimulation with short latency upon food contact, we designed a run-

ning minima filter that operates in real-time to detect when a fly is feeding. We implemented this fil-

ter by modifying the state machine on the FPGA. When a fly feeds, its contact with the capacitance

plate generates a ‘step’, or rising edge in the capacitance signal. Our filter determines the minimum

signal value in the last 100 ms and checks whether the current signal value exceeds that minimum by

a set threshold. This threshold (100 capacitance units) was selected to be large enough to discrimi-

nate rising edges of capacitance representing true food interactions from noise, but small enough to

not miss true interactions. If this condition is true, the filter will prompt the lighting activation system

to activate the LED (or keep it on if it is already on).

By design, this means that the control system will send a signal to deactivate the lighting upon

the falling edge of the capacitance signal, or if the capacitance signal has plateaued for 100 ms,

whichever comes sooner. At this point, a low signal is sent to the MOSFET which pinches off the cur-

rent flowing through the lighting circuit, turning off the light. The signal to lighting response transi-

tion times are on the order of tens of milliseconds, providing a nearly instantaneous response.

After each lighting decision (on/off/no change), the system will then automatically record the

state of the lighting activation system (on/off) and transmit this information through USB to the com-

puter, where it is received and interpreted by a custom end-user program (built using Qt framework

in C++) which can display and record both the activation state and signal measured by the STROBE

system for each channel of every fly arena, in real-time.

All STROBE design materials are available as a supplemental download.

All STROBE software is available for download from Github:

FPGA code: https://github.com/rcwchan/STROBE-fpga (copy archived at https://github.com/eli-

fesciences-publications/STROBE-fpga).

All other code: https://github.com/rcwchan/STROBE_software/ (copy archived at https://github.

com/elifesciences-publications/STROBE_software).

Latency measurements
A wire was attached to the outer electrode of the light-triggering channel, and agar was placed on

the inner electrode as one would for a normal experiment. Video was captured at 178 frames/s,

which corresponds to 5.6 ms per frame. Eight individual touches were analyzed by identifying the

last frame where the wire was clearly not touching the agar. The subsequent frame was taken as the

time of touch. The number of frames between the touch frame and the frame where LED activation

is observed were then counted and multiplied by 5.6 ms to generate the latency of activation for

that touch. We consider this a maximal estimate of latency, since the optics of the camera made

close proximity and touch difficult to discriminate in some frames, in which case it was assumed that

touch was occurring.
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Fly strains
Fly stocks were raised on standard food at 25˚C and 60% relative humidity under a 12:12 hr light:

dark cycle. For neuronal activation experiments we used the 20XUAS-IVS-CsChrimson.mVenus (in

attP40 insertion site) from the Bloomington Drosophila Stock Center (stock number: 55135). For neu-

ronal silencing experiments we used UAS-Kir2.1 (Baines et al., 2001). Specific GRN expression was

driven using Gr64f-GAL4 (Dahanukar et al., 2007) and Gr66a-GAL4 (Wang et al., 2004).

GMR81E10-Gal4 was used for expression in Fdg neurons (Jenett et al., 2012; Pool et al., 2014). All

MB split-GAL4 lines (MB011B-GAL4; MB026B-GAL4; MB056B-GAL4; MB065B-GAL4; MB083C-

GAL4; MB093C-GAL4; MB10C-GAL4; MB195B-GAL4; MB210B-GAL4; MB308B-GAL4; MB310B-

GAL4; MB441B-GAL4) were described in a previous study (Aso et al., 2014b) and obtained directly

from Janelia. The expression patterns of the lines from the Flylight collections are available from the

Flylight project websites.

Fly preparation and STROBE experiments
All experiments were performed with female flies to reduce variability, given that sex differences

were not a subject of investigation. After eclosion, flies were kept for several days in fresh vials con-

taining standard medium, and were then transferred at 25˚C into vials covered with aluminum foil

containing 1 ml standard medium (control flies) or 1 ml standard medium mixed with 1 mM of all-

trans-retinal (retinal flies) for 2 days. Flies were then subjected to a 24 hr fasting period where they

were transferred to covered vials containing 1 ml of 1% agar (control flies) or 1 ml of 1% agar mixed

with 1 mM of all-trans-retinal (retinal flies).

For the starvation curve experiment (Figure 3), flies were transferred into vials containing 1 ml of

standard medium ±all trans-retinal for 24 hr (fed group); or 1 ml of 1% agar ±all trans-retinal for 12-

24-48 hours.

All flies were 5–9 days old at the time of the assay, and experiments were performed between

10:00 am and 5:00 pm. Both channels of STROBE chambers were loaded with 4 ml of 1% agar with

or without sucrose (0, 1, 10, 100, 1000 mM) or denatonium (0, 0.1, 1, 10 mM). For aversive assays

using denatonium, 50 mM sucrose was also added to increase food interactions.

Acquisition on the STROBE software was started and then single flies were transferred into each

arena by mouth aspiration. Experiments were run for 60 min, and the preference index for each fly

was calculated as: (interactions with Food 1 – interactions with Food 2)/(interactions with Food

1 + interactions with from Food 2). The red LED is always associated to the left side (Food 1). For

temporal curves, data are pooled within 1 s time-period.

Sucrose, denatonium, agar and all-trans-retinal were obtained from Sigma-Aldrich.

For experiments done in Figure 2, light intensity used are 0, 0.12, 1.85, 6.56, 11.26 and 16.44

mW/cm2. All the other experiments were performed with a light intensity of 11.2 mW/cm2.

Dye feeding assay
Both channels of the STROBE chambers were loaded with 4 ml of 1% agar, which contained either

0.125 mg/ml blue (Erioglaucine, FD and C Blue#1) or 0.5 mg/ml red (Amaranth, FD and C Red#2)

dye. Half the replicates for each experiment were done with the dyes swapped to control for any

dye preference. After the experiment, flies were frozen and scored for abdomen color. Preference

Index (PI) was scored as « 1 » for color associated to the light channel ; « �1 » for color associated

to the no-light channel ; and « 0 » for both colors.

Immunohistochemistry
Brain immunofluorescence was carried out as described previously (Chu et al., 2014). Primary anti-

bodies used were chicken anti-GFP (1:1000, Abcam #13970) and mouse anti-brp (1:50, DSHB

#nc82). Secondary antibodies used were goat anti-chicken Alexa 488 (1:200, Abcam #150169) and

goat anti-mouse Alexa 568 (1:200, Thermo Fisher Scientific #A11004).

All images were acquired using a Leica SP5 II Confocal microscope with a 25x water immersion

objective. All images were taken sequentially with a z-stack step size at 2 mm, a line average of 2,

line-scanning speed of 200 Hz, and a resolution of 1024 � 1024 pixels.

Musso et al. eLife 2019;8:e45636. DOI: https://doi.org/10.7554/eLife.45636 18 of 23

Research advance Neuroscience

https://doi.org/10.7554/eLife.45636


Statistical analysis
Statistical tests were performed using GraphPad Prism six software. Descriptions and results of each

test are provided in the figure legends. Sample sizes are indicated in the figure legends.

Sample sizes were determined prior to experimentation based on the variance and effect sizes

seen in prior experiments of similar types. All experimental conditions were run in parallel and there-

fore have the same or similar sample sizes. All replicates were biological replicates using different

individual flies. Data for behavioral experiments were performed with flies from at least two indepen-

dent crosses. There was one condition where data were excluded, which were determined prior to

experimentation and applied uniformly throughout: the data from individual flies were removed if

the fly did not pass a set minimum threshold of interactions (15), or the data showed hallmarks of a

technical malfunction (rare).
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