
Predicting genotype-specific gene regulatory
networks

Deborah Weighill,1,4 Marouen Ben Guebila,1 Kimberly Glass,1,2,3

John Quackenbush,1,2 and John Platig2,3
1Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA; 2Channing Division of Network Medicine, Brigham
and Women’s Hospital, Boston, Massachusetts 02115, USA; 3Harvard Medical School, Boston, Massachusetts 02115, USA

Understanding how each person’s unique genotype influences their individual patterns of gene regulation has the potential

to improve our understanding of human health and development, and to refine genotype-specific disease risk assessments

and treatments. However, the effects of genetic variants are not typically considered when constructing gene regulatory

networks, despite the fact that many disease-associated genetic variants are thought to have regulatory effects, including

the disruption of transcription factor (TF) binding. We developed EGRET (Estimating the Genetic Regulatory Effect on

TFs), which infers a genotype-specific gene regulatory network for each individual in a study population. EGRET begins

by constructing a genotype-informed TF-gene prior network derived using TF motif predictions, expression quantitative

trait locus (eQTL) data, individual genotypes, and the predicted effects of genetic variants on TF binding. It then uses a

technique known as message passing to integrate this prior network with gene expression and TF protein–protein interac-

tion data to produce a refined, genotype-specific regulatory network. We used EGRET to infer gene regulatory networks

for two blood-derived cell lines and identified genotype-associated, cell line–specific regulatory differences that we subse-

quently validated using allele-specific expression, chromatin accessibility QTLs, and differential ChIP-seq TF binding. We

also inferred EGRET networks for three cell types from each of 119 individuals and identified cell type–specific regulatory

differences associated with diseases related to those cell types. EGRET is, to our knowledge, the first method that infers net-

works reflective of individual genetic variation in a way that provides insight into the genetic regulatory associations driving

complex phenotypes.

[Supplemental material is available for this article.]

The genetic architecture of complex human traits, especially dis-
ease traits, has been widely investigated in genome-wide associa-
tion studies (GWAS), leading to the identification of genetic
variants correlated with disease traits (Buniello et al. 2019). As
the sample sizes of these studies have grown, it has become in-
creasingly clear that many diseases and the traits that contribute
to them are influenced by a very large number of variants, each
with a relatively small effect size (Loh et al. 2015; Hall et al.
2016; Boyle et al. 2017). Furthermore, these GWAS variants are
predominately located in noncoding regions of the genome and
likely influence the regulation of gene expression (Finucane et al.
2015; Zhu et al. 2016; Gusev et al. 2018).

Expression quantitative trait locus (eQTL) analyses, which
quantify associations between genetic variation and gene expres-
sion (Westra et al. 2013; TheGTExConsortium2020), have helped
to refine disease-associated genetic signals (Schaid et al. 2018) and
enabled the identification of tissue-specific genetic effects
(Barbeira et al. 2021). Whereas eQTL studies have helped to iden-
tify the genes that are potentially affected by GWAS variants, in
isolation, they are unable to determine the regulatorymechanisms
thatmediate these interactions. There is, however, recent evidence
that disease-associated genetic variants impact gene regulation,
and thus expression, by disrupting transcription factor (TF) bind-

ing (Kalita et al. 2018; Vierstra et al. 2020). In addition, work by
van de Geijn and colleagues has shown that genetic variation in
transcription factor binding sites and their flanking regions ex-
plains a substantial amount of the heritability of many diseases
and complex traits (van de Geijn et al. 2020).

Taken together, this suggests that a major consequence of
trait-associated genetic variation is the alteration of the gene regu-
latory networks (GRNs) that are formed by the regulatory relation-
ships between TFs and their target genes. Given that there are
approximately 1600 TFs in the human genome (Lambert et al.
2018), direct observation of genome-wide TF regulatory networks
is not currently experimentally feasible, particularly as patterns
of regulation can change between biological states. An alternative
is to use inferencemethods to estimate the TF-gene edges that form
GRNs (Margolin et al. 2006; Faith et al. 2007; Glass et al. 2013).
These methods have been used to identify regulatory changes
that distinguish phenotypes (Basso et al. 2005; Neph et al. 2012;
Sonawane et al. 2017), but they do not account for individual ge-
netic differences and so also fail to provide a mechanistic link be-
tween genotype and phenotype.

Here, we aim to fill this gap by developing EGRET (Estimating
the Genetic Regulatory Effect on TFs), a multi-omic network infer-
ence method that incorporates genotypes, eQTL information, and
TF binding predictions with gene coexpression and protein–pro-
tein interactions to estimate individual-specific GRNs.We endeav-
or to demonstrate EGRET’s utility through two analyses using4Present address: Lineberger Comprehensive Cancer Center,
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publicly available omics resources. In our first application,we com-
pared EGRET networks from two cell lines where a wealth of vali-
dation data are available. The second application represents a
likely use case, where we built and compared EGRET networks in
three different cell types for a population of individuals. Our aim
in selecting these applications was to demonstrate EGRET’s perfor-
mance on real-world multi-omic data and provide examples of
how to extract biological insights from these networks.

Results

The EGRET algorithm

EGRETuses several sources of information to capture the impact of
genetic variants on TF-to-gene regulatory relationships and con-
struct individual-specific GRNs (see Methods; Table 1; Fig. 1A;
Supplemental Table S1; Supplemental Fig. S1). There are two
main steps to the method: (1) generation of an individual-specific
“EGRET prior” E, which serves as an initial estimate of the regula-
tory network; and (2) integration of Ewith gene-gene coexpression
and TF–TF protein–protein interaction data usingmessage passing.
Once the integration is completed, EGRET returns an edge weight
for every TF-gene pair that reflects the confidence of a regulatory
relationship between the TF and its target gene, taking into ac-
count potential disruption by genetic variants.

Constructing the EGRET prior E

To construct the EGRET network prior E, EGRET requires four data
inputs. The first is a TF-to-gene reference motif prior network, M,
that estimates which TFs bind to promoter regions to regulate tar-
get gene expression. This can be derived, for example, from motif
scans of a reference genome (Supplemental Note S1; Grant et al.
2011). Second, EGRET requires eQTL data either from the study
population or from a public database from the cell type of interest.
Third, EGRET uses genotype information in the form of genetic
variants of the individual(s) for whichGRNs are being constructed,
and fourth, EGRET uses predictions of the effect of these genetic
variants on TF binding (Supplemental Note S2) to modify the ref-
erence motif prior M.

These data are combined as follows: For each input genotype,
EGRET selects SNPs (A in Fig. 1B) that (1) are withinmotif-based TF
binding sites in the promoter regions of genes and (2) have a statisti-

cally significant eQTL association (β in Fig. 1B; Supplemental Fig.
S2A,B) with the expression of the adjacent gene. EGRET then uses
QBiC (Martin et al. 2019) to identify SNPs within TFmotifs that sig-
nificantly affect TF binding (significant negative QBiC values, q, in
Fig. 1B) (for details, see Supplemental Note S2), thus selecting genet-
ic variants in each individual that are predicted to affect both gene
expression andTF binding (Supplemental Fig. S2C,D; Supplemental
Table S2). The effect of a SNP s on TF i’s regulation of gene j is then
defined as the product |qsijAsijbsij |. The absolute value reflects the fact
that EGRET edge weights estimate the strength of connection be-
tween a TF and its target gene but do not distinguish between dis-
ruption of activators and disruption of repressors. Modifier
weights to the reference motif prior, M, are calculated by including
these effects per TF-gene pair, allowing for the fact that a genemight
have more than one variant in its promoter region affecting the
bindingof a particular TF. The EGRETprior networkE is constructed
by subtracting the modifier from the reference motif prior

Eij = Mij −
∑
s

|qsijAsijbsij |,

thus penalizing the reference motif prior when the individual in
question contains a genetic variant with sufficient evidence to sug-
gest it may alter gene regulation (Fig. 1B; Supplemental Fig. S3).

Data integration using message passing

After constructing E, EGRET integrates this with gene expression
and protein–protein interaction data (Supplemental Note S4) us-
ing a message passing framework (Supplemental Note S5; Glass
et al. 2013). This framework takes as its input three networks: (1)
an initial estimate of the TF-gene regulatory network (in our
case, E); (2) a gene coexpression network,C, representing potential
coregulatory relationships between genes calculated as the Pearson
correlation coefficient between gene expression profiles; and (3) a
PPI network, P, representing which TFs may physically interact to
formTF–TF protein complexes. Thresholds are not applied to these
network edge weights. At each iteration, the similarity between
these networks is calculated. The edge weights in all three net-
works are then incrementally updated to reflect information
from the other networks using the availability and responsibility
functions. For each TF-gene pair ij in E, the availability of the
edge represents the similarity between the target genes of TF i in
E and the set of genes with which gene j is coexpressed in C. For

Table 1. Data types and sources used as input to EGRET; note that the application of EGRET to the 119 Yoruba individuals uses the same motif
and PPI priors as used in the cell line analysis

Data type Tissue/genotype Source

Genotype cell line comparison
eQTLs LCL https://gtexportal.org/home/datasets; Lonsdale et al. 2013
Gene expression LCL https://gtexportal.org/home/datasets; Lonsdale et al. 2013
Genotype GM12878 https://www.illumina.com/platinumgenomes.html; Eberle et al. 2017
Genotype K562 https://www.encodeproject.org/files/ENCFF538YDL/; Zhou et al. 2019
ChIP-seq GM12878, K562 https://remap.univ-amu.fr; Chèneby et al. 2018
PPI N/A https://sites.google.com/a/channing.harvard.edu/kimberlyglass/home; Sonawane et al. 2017
Motif N/A Constructed using FIMO; Grant et al. 2011

Population application: 119 Yoruba individuals
eQTLs LCL GEO: GSE107654, GSE75220, and GSE19480; Banovich et al. 2018
eQTLs iPSC/iPSC-CM GEO: GSE107654, GSE75220, and GSE19480; Banovich et al. 2018
Gene expression LCL GEO: GSE107654, GSE75220, and GSE19480; Banovich et al. 2018
Gene expression iPSC/iPSC-CM https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107654; Banovich et al. 2018
Genotype Yoruba individuals GEO: GSE107654, GSE75220, and GSE19480; Banovich et al. 2018
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the same edge in E, the responsibility represents the similarity be-
tween the set of TFs that target gene j in E and the interaction part-
ners of TF i in P. Edge weights in E are then updated with a small
fraction (α=0.1) of the average of the responsibility and availability.
Each edge in C and P is also updated with a small fraction of the
overlap of the neighbors of pairs of genes/TFs in E, respectively.
For example, the edge kl in Pwill be updatedwith the similarity be-
tween the set of target genes of TFs k and l in E. These updates of E,
and then C and P, are repeated until convergence is achieved, de-
fined as a Hamming distance between networks <10−3. Upon con-
vergence, the primary output is an individual-specific, complete,
bipartite GRN (E∗) that captures genotype-specific regulatory ef-
fects. EGRET repeats this process separately using genotype infor-
mation for each individual, producing a collection of individual-
specific genotype-informed GRNs (Fig. 1C).

In addition, a “genotype agnostic” baseline GRN (B∗) can be
constructed using the TF-gene motif scan M, instead of the
EGRET prior, E. This is achieved by applying the message passing
framework described above to inputs M, P, and C, as opposed to
E, P, and C. As M is derived from the reference genome, no geno-
type-specific information is included, providing a baseline GRN
for comparison with the genotype-specific GRNs.

These networks, E∗, can then be examined to identify features
that are unique to specific genotypes, are associatedwith particular

phenotypic states, or both. It is impor-
tant to note that EGRET GRNs E∗ are
complete graphs, meaning that an edge
exists between all TFs and genes consid-
ered. However, it is the edge weights
that indicate the strength of the relation-
ship between the respective TFs and
genes, with a higher weight indicating
a higher likelihood of a regulatory
relationship.

It is also worth noting that the data
for M, P, and C, as well as the eQTLs can
be obtained from publicly available re-
sources. Thus, one can construct an
EGRET network for a given cell type in
an individual of interest simply byprovid-
ing the genotype information for that in-
dividual and relying on publicly available
data (for example, databases such as the
Genotype-Tissue Expression Project
[GTEx] [Lonsdale et al. 2013]) for the re-
maining model inputs. The EGRET algo-
rithm is sufficiently efficient to be
applied to large populations of individu-
als (Supplemental Note S6; Supplemental
Table S3).

Regulatory disruption scores

EGRET inferred edge weights can be used
to quantitatively estimate the predicted
regulatory effects produced by SNPs on a
given gene, TF, or TF-gene relationship
(Supplemental Table S4). A higher edge
weight between a TF i and a gene j is inter-
preted as a higher confidence that the TF
binds the promoter of and regulates the
expression of gene j. To assess the effects
of SNPs on gene regulation, we define

and calculate three different regulatory disruption scores for nodes
and edges in a given genotype x (Fig. 1D). The edge disruption score
d(E)xij quantifies the extent towhich a TF-gene regulatory relationship
is disrupted by genetic variants. The gene disruption score d(G)xj assesses
the extent to which a gene has disrupted regulation due to genetic
variants in its promoter region. The TF disruption score d(TF)xi repre-
sents the cumulative impact of cis-acting variants that disrupt a
TF’s regulation of its target genes. A TF with a high disruption score
would suggest thatmanyof its TF→gene edges have been disrupted
by genetic variants, and thus the overall regulatory influence of the
TF is diminished. These scores are defined per edge/node in each ge-
notype-specific EGRETnetwork by comparing itwith a baselinenet-
work constructed using no genotype information and applying
message passing toM, P, andC (instead of E, P, andC). For example,
the edge disruption score is defined as

d(E)xij = |E∗
xij − B∗

ij|,

where E∗
xij denotes the weight of edge ij in the EGRET network for

individual x and B∗
ij is the edgeweight for edge ij in the baseline net-

work predicted without using genotype information. This score
quantifies the extent to which edges are disrupted by variants in a
given individual-specific network (E∗) compared with a baseline ge-
notype-agnostic regulatory network (B∗).

A B C

D

Figure 1. EGRET integrates multiple data types to construct individual-specific GRNs. (A) EGRET takes
as input several data types (population-level inputs circled in blue, individual-specific inputs circled in or-
ange) to construct individual-specific GRNs: an initial estimate of the binding locations of TFs in the form
of a reference motif prior (Mij), the beta values of eQTL associations between “eSNPs” and “eGenes” (β),
the genetic variants (s) harbored by the individual in question, PPI data as an estimate of TF–TF cooper-
ativity (P), and gene expression to estimate a gene coexpression matrix (C). (B) An individual’s genetic
variants are used to modify the reference motif prior to produce an individual-specific EGRET prior (E)
by penalizing motif-gene connections in which that individual carries a variant allele (A) in the relevant
promoter-region motif such that the variant is an eQTL for the adjacent gene (β) and the variant is pre-
dicted byQBiC to affect TF binding at that location (q). (C) Message passing is used to integrate the coex-
pression (C) and PPI (P) networks with the EGRET prior (E) resulting in a final, unique GRN per individual
(E∗). (D) Regulatory disruption scores can be calculated to quantify the extent to which an edge or node
in the network is disrupted by variants. Edge disruption scores are calculated by subtracting a genotype-
agnostic baseline network (B∗) from the individual’s EGRET network and taking the absolute value. TF or
gene disruption scores are calculated taking the sum of the edge disruption scores around the TF or gene
in question.
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Similarly, TF disruption scores d(TF)xi and gene disruption
scores d(G)xj are calculated by taking the sum of edge disruption
scores around the specific TF or gene in question

d(TF)
xi =

∑
j

|E∗
xij − B∗

ij|

d(G)xj =
∑
i

|E∗
xij − B∗

ij|.

It is worth noting that disruption scores are all greater than or
equal to zero and that a higher edge disruption score corresponds
to a larger difference between the EGRET and baseline edge
weights for a particular TF-gene edge. However, because of the
manner in which the EGRET prior is created—by penalizing edges
involving a TF motif that contains an eQTL variant with a signifi-
cant negative QBiC effect—only regulatory disruptions are mod-
eled and not the creation of “new” regulatory relationships
where none potentially existed before (see Supplemental Note S2).

EGRET finds regulatory differences between two genetically

distinct cell lines

We tested whether EGRET could distinguish patterns of differen-
tial gene regulation by comparing two EGRET networks recon-
structed from two blood-derived cell lines: GM12878 and K562.
We chose these cell lines because high-quality genome sequences
are available for both cell lines (Eberle et al. 2017; Zhou et al. 2019),
providing high-confidence variant calls; this was especially useful
for K562 because the cell line is aneuploid (Zhou et al. 2019). In ad-
dition, both cell lines have had relatively large numbers of TFs
mapped by ChIP-seq (110 TFs for GM12878 and 204 TFs for
K562 in the ReMap 2018 database [Chèneby et al. 2018]), allowing
us to use differential TF binding as a way of validating regulatory
differences. These cell lines may have many regulatory differences
that are due to difference in cell type of origin and not differences
in genotype. However, in previous work comparing TF regulatory
networks from related tissues (Sonawane et al. 2017), we have ob-
served a higher number of shared edges across tissues than expect-
ed by chance. As a result of this and the high-fidelity data available
for these cell lines, we felt a comparison of the two cell line net-
works would provide useful insights despite the limitations listed
above.

To build genotype-specific EGRET priors (E) for GM12878
and K562, respectively, we generated a reference motif priorM us-
ing FIMO (Grant et al. 2011) identifying TFmotifs in the promoter
regions of genes ([−750, +250] relative to transcription start sites)
and modified this using eQTL data for lymphoblastoid cell lines
(LCLs) from GTEx (Lonsdale et al. 2013), the cell lines’ respective
genotypes, and SNP effect predictions from QBiC (Supplemental
Notes S1–S3). Comparing edges in E against M predicted 1520 ge-
notype-altered prior edges for GM12878 and 1182 for K562
(Supplemental Fig. S3) out of a total of 39,690,052 possible edges.

Next, we used human protein–protein interactions between
TFs from STRINGdb (Mering et al. 2003) (as used by Sonawane
et al. 2017) to construct P, and LCL gene expression data from
GTEx to construct C (Supplemental Note S4). Genes and TFs
with low expression, defined as having nonzero values in <50 sam-
ples, were filtered out. Performing message passing between E, P,
and C produced the final genotype-specific EGRET networks E∗

for GM12878 and K562 (Supplemental Note S5). For comparison,
we constructed a baseline GRN using M as input to the message
passing with P and C. We calculated the edge disruption score
for each TF-gene pair in each cell line’s EGRET network. Because

of the relatively small number of genotype-altered edges in the
EGRET priors, the majority of edge disruption scores are very close
to zero in both cell lines (Supplemental Fig. S4).

For each cell line, we compared both EGRET’s predictions of
TF binding and the baseline networks to an empirical network
based on ChIP-seq data (Supplemental Note S7.1; Chèneby et al.
2018). At multiple cutoffs for the edge disruption scores, EGRET
networks outperformed the baseline network prediction of TF
binding for variant-disrupted edges (Supplemental Tables S5, S6;
Supplemental Note S7.2). Based on these analyses, we considered
variant-impacted scores to be those ≥0.35 (Supplemental Table
S2).

To capture changes in the disruption score between different
genotype-specific networks, we calculated a “regulatory difference
score” R(E)

ij (Supplemental Table S4) for each edge between geno-
types GM12878 (g) and K562 (k), defined as

R(E)
ij = |d(E)gij − d(E)kij

|.

The magnitude of this score is the difference in edge disrup-
tion scores between GM12878 d(E)gij and K562 d(E)kij

and reflects the
assumption that genetic differences between cell lines will cause
differences in predicted regulatory TF-gene interaction strength.
A high value of R(E)

ij suggests a difference in the edge disruption
scores for the edge TFi−Gj between the two cell lines, which is in-
terpreted as that relationship being disrupted in one cell line but
not the other. Conversely, a value of R(E)

ij close to zero indicates
that the edge disruption scores for the edge TFi−Gj are similar
and therefore that the regulatory relationship is either disrupted
in both cell lines or remains unaltered in both cell lines.

We again used the cell line–specific ChIP-seq regulatory net-
works (Supplemental Note S7.1) to construct a differential ChIP-seq
regulatory network by taking the absolute value of the difference be-
tween the GM12878 ChIP-seq network and the K562 ChIP-seq
network. This allows us to assign a score of 1 to edges that showdif-
ferential TF binding (a TF binds the promoter region of a gene in
one cell line but not the other) and a score of 0 to edges that
show the same pattern of TF binding (a TF either binds the promot-
er region of a gene in both cell lines, or neither). This scoring al-
lows us to validate the framework modeled by the regulatory

difference score R(E)
ij . We found that edges with high R(E)

ij scores

(those in the top 10%) were enriched for edges showing differen-
tial TF binding in the differential ChIP-seq regulatory network
(Fisher’s exact test P-value=2.4 ×10−226); this enrichment was
also observed when we considered all scores using a t-test (t-test
P-value=2.296× 10−7).

We highlight two examples of promoter binding of TFs iden-
tified through the EGRET network analysis that are likely geno-
type-specific. First, the edge between the TF RELA and the gene
SLC16A9 (ENSG00000165449) has a regulatory difference score
of 6.099744, with d(E)gij = 0.000256 in GM12878 and d(E)

kij
= 6.1 in

the K562. These scores suggest that the binding of RELA to the pro-
moter region of SLC16A9 is disrupted in K562 but not in
GM12878. The positions of eQTLs, genetic variants, and ChIP-
seq binding regions for RELA in both genotypes (Fig. 2A) indicate
that an eQTL variant is present in the promoter region of SLC16A9
(purple track in Fig. 2A), is associated with the expression of
SLC16A9, resides within a RELA binding motif, and is predicted
byQBiC to affect the binding of RELA at that location; the disrupt-
ing variant is present only in K562 (orange track in Fig. 2A) and not
in GM12878; this prediction is supported by the presence of a
RELA ChIP-seq binding range in GM12878 but not in K562 (teal
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track in Fig. 2A). As a second example, consider the edge between
of the TFARID3A and the gene PMS2CL (ENSG00000187953), with
a regulatory difference score of 1.0564 and d(E)gij = 0.0096 in
GM12878 and d(E)kij

= 1.066 in K562, suggesting that the binding
of ARID3A to the promoter region of PMS2CL is disrupted in
K562 but not in GM12878. This prediction is supported by
ChIP-seq-derived TF binding data in the region (Fig. 2B).
LocusZoom plots of these regions can be seen in Supplemental
Figures S5 and S6. Both of these examples of likely genetic disrup-
tions of TF binding are within the top 20 edge disruption scores for
K562 for edges with confirmed differential binding between K562
and GM12878 ChIP-seq experiments.

Because an edge in an EGRET network implies a regulatory re-
lationship, as opposed to simply presence of binding by a TF, we
wanted to further test our network predictions against assays
that captured changes in gene regulation. To do this, we defined
a gene-level regulatory difference score R(G)

j , which is the sum of
regulatory difference scores impinging on the gene

∑
i R

(E)
ij

( )
. To

test thismetric, we used data from an in vitro allele-specific expres-
sion (ASE) assay (Biallelic Targeted Self-Transcribing Active Regula-
tory Region sequencing—BiT-STARR-seq) performed in LCLs
(Supplemental Note S7.3; Kalita et al. 2018). We calculated regula-
tory difference scores per gene (R(G)

j ) and found that the 101 genes
having high (top 10%) R(G)

j were enriched for genes harboring ASE-
causing variants located within promoter region TF motifs (Fish-

er’s exact test P-value =2.5 ×10−3) (see Supplemental Table S2 for
details). As a second independent validation, we compared data
from a published chromatin accessibility QTL (caQTL) analysis
in LCLs (Banovich et al. 2018) to the genes with high regulatory
difference scores (again, top 10%) and found that these genes hav-
ing high R(G)

j values were enriched for having caQTLs within mo-
tifs in their promoter regions (Fisher’s exact test P-value= 1.4 ×
10−4) (see Supplemental Note S7.4 and Supplemental Table S2
for details). This suggests that many of the predicted regulatory
SNPs alter their associated regulatory networks by affecting chro-
matin accessibility. It is worth noting that our results are based
only on the genotypes of two cell lines; we anticipate that using
a larger number of genotyped cell lines with available ChIP-seq,
caQTL, and ASE data would increase both the specificity and
sensitivity of predicting genotype-mediated effects in gene
expression.

Overall, these results indicate that EGRET is capable of syn-
thesizing diverse sources of data to model gene regulatory process-
es and can predict genotype-associated patterns of gene regulation.

Data integration is required for accurate prediction

of regulatory networks

We ran a selection of EGRET versions in order to investigate the
contributions of different data types that EGRET uses. First, we
ran EGRET using data for GM12878, leaving out the gene expres-
sion and PPI information in the message passing, and assessed
the ability of the resulting EGRET edge weights to predict ChIP-
seq-derived TF binding in GM12878 for the subset of the network
where ChIP-seq data were available, using the ChIP-seq regulatory
network described in Supplemental Note S7.1. EGRET edge
weights using all data types showed almost 5% improvement in
ROC-AUC for predicting the validation ChIP-seq network when
compared with the EGRET network run without expression and
PPI data in the message passing.

We also tested versions of EGRET that left out data types from
the prior modification. For example, we ran a version of EGRET,
leaving out QBiC effects, thus only requiring genetic variants to
be eQTLs and not requiring those variants to have significant
QBiC effects. Similarly, we ran a version leaving out eQTL data,
only requiring variants in an individual to have a significant
QBiC effect, and not requiring the variants to be eQTLs. In validat-
ing the ability of disrupted edges (d(E)xij ≥ 0.35) to predict the corre-
sponding ChIP-seq edges, we found that all data types were crucial
in improving the accuracy of prediction and that leaving out either
eQTLs or QBiC effects was detrimental to the validity of the net-
work structure (Supplemental Fig. S7). Further sensitivity analysis
of EGRET to different input parameters can be found in Supple-
mental Note S8 and Supplemental Figures S8 and S9.

EGRET networks for a population of individuals identify

cell type–specific disease associations

A growing body of work indicates that cell type–specific gene reg-
ulatory processes affect gene expression (Sonawane et al. 2017;
Lopes-Ramos et al. 2018) and do so in a manner dependent
on an individual’s genotype (Fagny et al. 2017; The GTEx
Consortium2020; Kim-Hellmuth et al. 2020), resulting in changes
that alter the structure of functional “communities” or “modules”
comprised of TFs and genes, and are enriched for genes associated
with tissue-specific biological processes (Padi and Quackenbush
2018). Banovich et al. (2018) had previously analyzed RNA-seq
data derived from three cell types: lymphoblastoid cell lines,

B
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Chr10:61469549 in motif RELA adjacent SLC16A9
eQTL

GM12878 SNPs

Chr10:61469549
K562 SNPs

ENCSR664POU.RELA.GM12878
GM12878 ChIP-seq

K562 ChIP-seq

SLC16A9

SLC16A9

GENCODE genes v28
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Figure 2. EGRET identifies likely variant-impacted TF binding disrup-
tions. (A) Example of RELA binding in K562 but not in GM12878.
Positions of eQTLs (purple track), genetic variants (orange track), ChIP-
seq binding regions from ReMap2 (teal track) (Chèneby et al. 2018),
and genes (blue track) are shown in the region of SLC16A9. (B) Example
of ARID3A binding in K562 but not in GM12878. Positions of eQTLs (pur-
ple track), genetic variants (orange track), ChIP-seq binding regions from
ReMap2 (teal track) (Chèneby et al. 2018), and genes (blue track) are
shown in the region of PMS2CL. The eQTL track is labeled according to
the TF motif in which the eSNP resides as well as the adjacent eGene.
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induced pluripotent stem cells (iPSCs), and cardiomyocytes (CMs;
differentiated from the iPSCs). They demonstrated that genes pref-
erentially expressed in CMs were enriched for processes associated
with coronary artery disease, and those enriched in LCLs were as-
sociated with immune-related conditions. Within this data set,
there was a large proportion of cell type–specific eQTLs
(Supplemental Fig. S10), and our working hypothesis was that
these effects should be linked to cell type–specific regulatory pro-
cesses affected by an individual’s genetic background.

To test this, we constructed 357 individual-specific EGRET
networks using expression, genotype, and eQTL data from 119
Yoruba individuals for all three cell types used in the Banovich
et al. (2018) study (Supplemental Note S9). We also constructed
a baseline GRN for each cell type (Supplemental Note S9.1). We
calculated TF disruption scores (defined in Supplemental Table
S4) for each TF in each individual EGRET network to identify TFs
whose regulatory influence was disrupted by variants. TF disrup-
tion scores (d(TF)xi ) were then scaled per individual and cell type to
have amean of zero and standard deviation of one and are denoted
d(TF)

′
xi (Supplemental Note S9.2). We then labeled TFs as associated

with Crohn’s disease (CD) and coronary artery disease (CAD)
(Supplemental Tables S7, S8; Supplemental Fig. S11) based on an-
notation from theNHGRI-EBI GWAS catalog (Buniello et al. 2019).
We tested to seewhether disease-associated TFs weremore likely to
have significant disruption scores in relevant cell types. Using a t-
test, we found that TF disruption scores were significantly higher
in cardiomyocytes for TFs associated with CAD than were disrup-
tion scores for non-CAD-related TFs (P=4.5256× 10−6); this CAD
enrichment was not observed in LCLs (P=0.99831). Similarly,
we found TF disruption scores in LCLs, but not CMs, were substan-
tially higher for TFs linked to CD than for non-CD-linked TFs (P=
5.3374×10−16 in LCL networks, P=1 in CM networks) (Table 2).
This analysis leads to an important observation:Genotype-mediat-
ed, disease-related TF disruptions are cell type–specific and can be
identified using networks inferred by EGRET. Indeed, we found
that the highest TF disruption scores for CAD TFs occur in CMs
(Fig. 3A) and that the highest TF disruption scores for CD TFs occur
in LCLs (Fig. 3B).

Further supporting this observation, the TF disruption signal
in CAD is dominated in a subset of the study population by a single
TF, ERG, which is a member of the erythroblast transformation-
specific (ETS) gene family and known to be involved in angiogen-
esis (Shah et al. 2016). In these individuals, the high TF disruption
scores for CADTFs in CMs are driven by the presence or absence of
a mutation on Chromosome 1 (Chr 1: 201,476,815, an eQTL for
CSRP1) that lies in the bindingmotif for the TF ERG in the promot-
er region of the gene CSRP1 (ENSG00000159176). Whereas ERG is
identified as CAD-related in the GWAS catalog (Supplemental Fig.

S12), CSRP1 (synonym CRP1) is not. However, CSRP1 is a known
smooth muscle marker (Henderson et al. 1999) and has been
found by GTEx (Lonsdale et al. 2013) to be highly expressed in
smooth muscles, especially in arteries (Supplemental Fig. S13).
CSRP1 has also been associated with the bundling of actin fila-
ments (Tran et al. 2005), cardiovascular development (Chang
et al. 2003), and with response to arterial injury (Lilly et al.
2010). Furthermore, knockdown of CSRP1 in zebrafish caused car-
diac bifida (Miyasaka et al. 2007), and a frameshift mutation in
CSRP1 has been linked to congenital cardiac defects in a large hu-
man pedigree (Kamar et al. 2017). The results of our EGRET analy-
sis support a previously unreported mechanism of action for ERG
that may be disrupted in heart disease—that ERG regulates the ex-
pression of CSRP1 and that this regulation can be disrupted by ge-
netic variation. Specifically, we hypothesize that the SNP located
at Chr 1: 201,476,815 is related to CAD because it both influences
the binding site of ERG and is an eQTL for a gene involved in relat-
ed phenotypes (CSRP1).

We also tested the hypothesis that the network effects of ge-
netic variants have the potential to subtly change the modular
structure of genotype-specific networks, altering the functional
network modules active in an individual. ALPACA (Padi and
Quackenbush 2018) is a method that compares the modular struc-
ture of two networks and identifies modules that differ between
the networks. The resulting gene differential modularity (DM)
scores indicate which genes have undergone the greatest change
in their “modular environment.” We used ALPACA to compare
the modular structure of the cell type– and individual-specific
EGRET GRNs with the baseline GRN for the corresponding cell
type and calculated the DM score for each gene in each network
(Supplemental Note S9.3; Supplemental Fig. S14).

Given that individual 18 had the greatest TF disruption score
for ERG in CMs, we further investigated cellular processes predict-
ed by EGRET to be variant-perturbed within this individual’s three
cell type–specific EGRET networks. For each cell type, we ranked
this individual’s genes by their DM scores from highest to lowest
in each cell type, reflecting their predicted impact on altering
the modular structure of each cell type–specific network.
We used GOrilla (Supplemental Note S9.4; Supplemental Table
S2; Eden et al. 2009) with these ranked lists to identify

Table 2. P-values from t-test of differences between the TF disrup-
tion scores of disease (CD- or CAD-related TFs, determined from the
GWAS catalog) versus nondisease TFs in different cell types

Disease Cell type P-value

CAD LCL 0.99831
CAD CM 4.5256 ×10−6

CD LCL 5.3374 ×10−16

CD CM 1

CAD TFs have significantly higher TF disruption scores than non-CAD
TFs in CMs, but not in LCLs. CD TFs have significantly higher TF disrup-
tion scores than non-CD TFs in LCLs, but not in CMs.

B

A

Figure 3. Disease-related TFs are disrupted in relevant cell types. Scaled
TF disruption scores d(TF)′

xi are shown for 119 Yoruba individuals for TFs as-
sociated with coronary artery disease (CAD) (A) or Crohn’s disease (CD)
(B). Each point represents the scaled TF disruption score for a disease-relat-
ed (CD or CAD) TF, for a given individual for a given cell type (LCL, CM, or
iPSC). Disease-related TFs were identified using the GWAS catalog
(Buniello et al. 2019). Scaled TF disruption scores for CAD-related TFs
are highest in the cardiac-related cell type (CM). Scaled TF disruption
scores for CD-related TFs are highest in the immune cell type, LCL.
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Gene Ontology (GO) biological process functions associated with
modules altered by the presence of specific genetic variants. Sever-
al GO terms relevant to CMs and cardiovascular functioning and
development, including “regulation of actomyosin structure orga-
nization,” “prepulse inhibition,” “ephrin receptor signaling path-
way,” “maintenance of postsynaptic specialization structure,” and
“actin cytoskeleton reorganization” were enriched in CMs from
this individual (Fig. 4; Supplemental Table S9) but not in their
LCLs or iPSCs (Fig. 4; Supplemental Tables S10, S11). For full en-
richment results, see Supplemental Note S9.4 and Supplemental
Figures S15–S21. Further evidence of cell type–specific alteration
of functional modules can be seen by examining the DM scores
of disease-associated target genes (as annotated by the NHGRI-
EBI GWAS catalog [Buniello et al. 2019]). Coronary artery disease
genes with high DM scores in CMs had low DM scores in iPSCs
and LCLs (Fig. 5A). In contrast, genes associated with Crohn’s dis-
ease, which has a strong immune component, that had high DM
scores in LCLs had low DM scores in iPSCs and CMs (Fig. 5B).

EGRET also predicts dosage effects of regulatory SNP variants
on network structure. Consider CSRP1, which we previously dis-
cussed as having a regulatory SNP in its promoter region that can
affect binding of the transcription factor ERG. EGRET shows that
the presence of a genetic variant in the promoter region of
CSRP1 affects not only regulation by ERG (as seen by a substantial
TF disruption score) but also the role that CSRP1 plays in altering
the functional modules in cardiomyocyte GRN models. As seen

by CSRP1’s DM scores in Supplemental
Figure S22, EGRET predicts that the ge-
netic variant exerts its influence on net-
work structure in a dosage-specific
manner; individuals homozygous for
the disrupting variant are predicted to
exhibit the greatest impact on the modu-
larity, those who are heterozygous pre-
dicted to have an intermediate effect,
and those homozygous for the wild-
type predicted to exhibit minimal or no
effect on modularity.

Collectively, these results suggest
that phenotype- and disease-associated
variants can act through disruption of
TF binding leading to regulatory changes
that manifest themselves both through
altered expression of specific target genes
and the modification of GRN functional
modular structure.

Discussion

One of the fundamental tenets of genet-
ics is that genotype influences pheno-
type. For many traits, especially those
related to human disease, this connec-
tion is not straightforward. The vast ma-
jority of phenotype-associated genetic
variants are noncoding and have small
effect sizes (Hall et al. 2016; Gallagher
and Chen-Plotkin 2018), and a recent
analysis found that most (71%–100%)
1-Mbwindows in the genome contribute
to schizophrenia heritability (Loh et al.
2015). This suggests that many variants

must act in concert to produce complex trait phenotypes, but
the mechanisms by which they exert their influence are unclear.
Functional genomics studies have provided some insights into
roles of these variants: Variants are enriched in regulatory ele-
ments (Maurano et al. 2012; Farh et al. 2015; Vierstra et al.
2020); disease heritability tends to be enriched in tissues relevant
to the disease (Boyle et al. 2017); and TF binding plays an impor-
tant role in explaining heritability of human traits (van de Geijn

Figure 4. Variant-disrupted gene regulation affecting network modularity is enriched for coronary-/
heart-related functions in CMs for an individual with a CAD disruption signature. GO terms enriched
in genes with high DM scores for individual 18, the individual with the highest TF disruption score for
ERG. Several GO terms related to coronary/cardiac function are enriched in highly ranked DM genes
in CMs but not in LCLs and iPSCs. Point size corresponds to the number of high-DM genes annotated
with the corresponding GO term. For display purposes, several generic GO terms enriched only in
CMs were omitted in this figure. The entire set of enriched GO terms can be seen in Supplemental
Figure S18, as well as Supplemental Tables S9–S11.
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Figure 5. Variant-disrupted disease genes affect the modularity of the
individual’s regulatory network in the relevant cell type. Differential mod-
ularity (DM) scores indicate the extent to which a gene’s modular environ-
ment in the network changes between the genotype-specific EGRET
network and the genotype-agnostic network. (A) CAD-related genes
with high DM scores in cardiomyocytes (CMs) have low DM scores in
the other cell types. (B) CD-related genes with high DM scores in LCLs
have low scores in the other cell types (see Supplemental Table S2).
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et al. 2020). Despite this progress at the population level, questions
remain regarding the influence of an individual’s genotype on
these regulatory processes. Answers to these questions will be im-
portant for translating population-level insights into clinically ac-
tionable information.

EGRET is the first method, to our knowledge, that directly ad-
dresses these issues. EGRET beginswith a referencemotif prior net-
work based on mapping transcription factor binding sites to the
regulatory regions of genes. EGRET extends this by modifying
the reference motif network based on evidence that SNPs in a
gene’s regulatory region may influence TF binding as well as
gene expression. Subsequently, EGRET uses a previously devel-
oped message passing framework (Glass et al. 2013) to iteratively
seek consistency between a genotype-altered regulatory network
model, TF–TF protein–protein interaction data (acknowledging
that TFs can form protein–protein complexes), and gene coexpres-
sion data (based on the assumption that genes regulated by the
same TFs are likely to exhibit correlated expression). The coexpres-
sion matrix is not used to impart any individual specificity to the
EGRET networks but to obtain an initial estimate of genes that are
likely to be coregulated by TFs. EGRET then outputs edge weights
for all TF-to-gene edges. These edge weights reflect the confidence
of a regulatory relationship between a TF and gene, given an indi-
vidual’s genotype. We demonstrate EGRET using publicly avail-
able eQTL, gene expression, and PPI data and show that the
algorithm provides powerful insights regardless of whether or
not the individual genotypes are sample matched with other
data types. A limitation to the data-integration approach used in
EGRET is the difficulty of establishing formal statistical testing
frameworks. Because of the variety of input data types, the com-
plex nature of message passing, and genome-wide network scale,
estimating uncertainty for these networks remains an open and
important challenge.

We validated EGRET in two ways. In the first, we inferred ge-
notype-specific gene regulatory networks for two genotyped cell
lines and identified genes that differed in their TF-gene edges,
meaning that the model predicts differences in binding of specific
TFs to upstream regions of individual genes. When we cross-refer-
enced EGRET’s predictions with ChIP-seq data for these cell lines,
we found concordance between the predictions and ChIP-seq
data, demonstrating that EGRETwas able to accurately identify dif-
ferent TF binding patterns and effectively altered the structure of
the regulatory network. We also found that genes with high regu-
latory difference scores between the two cell lines—those predict-
ed to be differently regulated by EGRET—were enriched for QTLs
associatedwith chromatin accessibility and enriched for allele-spe-
cific expression, suggesting that the EGRET-predicted regulatory
changes are likely to have broader regulatory effects.

Our second validation looked at three different cell types in
119 genotyped individuals. We found distinct cell type–specific
and genotype-specific differences in the gene regulatory networks
that were linked to disease. Most notable among these were regu-
latory differences associated with Crohn’s disease in lymphoblas-
toid cell lines and others linked to coronary artery disease in the
regulatory networks in cardiomyocytes. Not only were individual
TF-gene connections disrupted, but these disruptions led to high-
er-order changes in the network community structure, reorganiz-
ing the network in ways that predict changes in cell type– and
disease-specific functional network communities. Our finding of
enrichment of CAD-related signals in CM cells supports the results
from Banovich et al. (2018), who found that genes more specifi-
cally expressed in CMs were enriched in GWAS signals for CAD.

However, one should note that it is possible that the enrichment
of TFs related to CAD, a vascular disease, could be driven by the
limited number of cell types available for study and the fact that
the similarity of expression profiles of smoothmuscle cells of arter-
ies could be simply more similar to that of CMs than that of LCLs.
Taken together, these results from EGRET present a compelling
picture of the way in which small-effect, noncoding SNPs work to-
gether to influence phenotype. These SNPs have the potential to
subtly alter the binding of TFs to their target genes. The direct ef-
fect of these individual SNPs is to alter which TFs regulate specific
genes. However, their indirect, and possibly more important ef-
fect, is to alter the structure and membership of functional com-
munities in the overall regulatory networks. Indeed, it is known
that even a small number of TF-gene regulatory edge additions
or deletions can lead to significant changes in networkmodular or-
ganization (Padi and Quackenbush 2018).

EGRET is capable of inferring gene regulatory networks spe-
cific to an individual’s genotype, synthesizing genetic and gene ex-
pression data in a way that, for the first time, allows verifiable,
disease-associated regulatory changes to be inferred for individual
research subjects. As such, EGRET has the potential to substan-
tially advance our understanding of genetic effects on disease
risk, development, and response to therapeutic interventions.
EGRET currently onlymakes use of significant eQTLs, which limits
themethod to commonvariants. For a future version of EGRET, we
would like to include estimates of rare variant effects from meth-
ods such as RIVER (Li et al. 2017). Potential applications of
EGRET are wide ranging. EGRET can be used to infer a specific
gene regulatory network for any individual for whom genotype
data are available, even without associated gene expression data
—provided there are expression and eQTL data from a relevant
cell type obtained from a sufficiently large population to infer ac-
curate regulatory network models. This implies that EGRET can be
used in interpreting disease-linked variation where the variant
colocalizes with an eQTL signal, provided that the eQTL signal
overlaps with a TF motif and there is an effect on that motif as es-
timated by QBiC.

Given EGRET’s ability to synthesize both cis- and trans-regu-
latory information, EGRET edge weights may also be useful for im-
proving gene expression prediction models. Recent work by Patel
and Bush (2021) has shown that TF regulatory networks recon-
structed using the underlying message passing approach (Glass
et al. 2013) for EGRET improve prediction of gene expression com-
pared with other baselinemodels. EGRET can also be used to retro-
spectively analyze large cohort GWAS studies to tease out
mechanistic associations for phenotype-linked genetic variants,
as well as in the context of new studies that seek to understand dis-
ease mechanisms and the regulatory role of noncoding genetic
variants.

Methods

To generate the reference motif prior network, we scanned the
hg19 human reference assembly for the presence of TF motifs us-
ing FIMO (Grant et al. 2011) and applying a P-value cutoff of
10−4. Motifs that were present within the promoter regions of
genes were selected to construct M (Supplemental Note S1). We
chose to use the hg19 reference genome because, at the time of
analysis, all of the eQTL data used, including the latest version of
GTEx (v7 at the time), as well as the Banovich et al. (2018) data
were mapped to hg19. Since completion of this analysis, version
8 of GTEx has been released, which is mapped to GRCh38
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(hg38), andwewould recommend using the latest version of GTEx
and the most current genome build (hg38) for future analyses. By
design, EGRET can be applied to data of any reference genome pro-
vided that the positions of genome variants, eQTLs, gene promot-
ers, and motifs are all mapped to the same reference genome.
However, we note that, whereas there are some differences be-
tween hg19 and hg38, the key elements for EGRET, including
mapping of SNPs to promoter regions, are largely unchanged,
with 99% of SNPs from hg19 mapping to hg38 and most discord-
ant SNPs being low-confidence (Pan et al. 2019). Expression QTLs
for LCLs from GTEx version 7 (Lonsdale et al. 2013) were down-
loaded from https://gtexportal.org/home/datasets and filtered to
select eQTLs where the variant resided within a TF motif within
a promoter region and where the eGene was the gene adjacent to
(and associated with) the promoter. Genotypes for NA12878 (cor-
responding to the GM12878 cell line) and K562 were downloaded
from https://www.illumina.com/platinumgenomes.html and
https://www.encodeproject.org/files/ENCFF538YDL/, respective-
ly. Using the eQTL variants within motifs, we selected those vari-
ants where at least one of the cell lines (K562 or GM12878) had at
least one alternate allele of the eQTL variant. QBiC (Martin et al.
2019) was then run on these eQTLs, using hg19 as a reference ge-
nome (Supplemental Note S2). Amodified EGRET prior Ewas then
defined as

Eij = Mij −
∑
s

|qsijAsijbsij |,

where Asij is the alternate allele count of the individual at that lo-
cation, bsij is the beta value of the eQTL, and qsij is the QBiC effect
of the SNP on the binding of the TF corresponding to the motif in
which the variant resides (Supplemental Note S3). Gene expres-
sion data as TPMs (transcripts per million) for lymphoblastoid
cell lines from the Genotype-Tissue Expression Project (GTEx) ver-
sion 7 (Lonsdale et al. 2013) were downloaded from https
://gtexportal.org/home/datasets and pruned to keep only genes
that had nonzero expression values in at least 50 samples. The pro-
tein–protein interaction network used in Sonawane et al. (2017)
was then filtered to keep only proteins whose corresponding genes
met the same expression requirements described above (nonzero
expression values in at least 50 samples) (Supplemental Note S4).
The message passing framework (Glass et al. 2013) from the
pandaR package was then used to combine the EGRET prior E,
PPI prior P, and gene expression data C, resulting in a predicted ge-
notype-specific gene regulatory network for an individual
(Supplemental Note S5).

Additional detail regarding the methods is available in the
Supplemental Material.

Software availability

The analysis presented here uses publicly available data sources
as outlined in the Methods. The network models inferred
using EGRET and presented here have been deposited into the
GRAND database (Ben Guebila et al. 2022; https://grand
.networkmedicine.org/downloads/) and are freely available for
download (search “EGRET”). An implementation of EGRET in R
(R Core Team 2019) is available through the Network Zoo R pack-
age (netZooR v0.9; https:// netzoo.github.io/zooanimals/egret/)
with a step-by-step tutorial. EGRET analysis scripts from this
work are provided as Supplemental Code.
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