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A simple and efficient one-pot three-component cascade reaction of α-amino aryl ketones,
indoles, and CBr4 in moderate to good yields has been developed. This new strategy
exhibits excellent mild reaction conditions and step-economy, easily accessible reactants,
and simultaneous construction of three different new bonds (C=N, C–C, and N-Br) in a
single step. It is worth noting that the protocol developed provides a simple and practical
tool for the construction of diverse indole-containing heterocyclic frameworks, indicating
its potential applications in medicinal and material chemistry.
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1 INTRODUCTION

As one of the most important heterocycles, indole is widely present in natural products and
medicines due to its remarkable biological activity, such as antibacterial (Van Order and Lindwall.,
1942; Bell et al., 1994), anti-obesity (Sashidhara et al., 2012), antimicrobial (Sivaprasad et al., 2006),
vaginal spermicide (Paira et al., 2009), and apoptosis in acute myelogenous leukemia (AML)
(Contractor et al., 2005). The functionalization of the indole core mainly occurs at the N1, C2,
and C3 positions (Bandini and Eichholzer, 2009; Joucla and Djakovitch., 2009; Bartoli et al., 2010;
Dalpozzo., 2015; Sandtorv., 2015; Deka et al., 2020). Among them, the C3 position modification of
indoles is mainly achieved by transition metal–catalyzed C-H bond functionalization (Phipps et al.,
2008; Leitch et al., 2017; Ye et al., 2020). In recent years, transition metal–catalyzed C-H
functionalization at the C3 position of indoles has become a field of extensive research, and
tremendous progress has been made in this regard (Kumar et al., 2021).

From the perspective of simplicity, the oxidative cross-dehydrogenation coupling reaction has
become a very good tool for constructing complex molecules through simple reaction materials (Li.,
2009; Scheuermann., 2010; Yeung and Dong., 2011; Girard et al., 2014; Song et al., 2017; Wang et al.,
2021). Easy-to-prepare and cheap α-amino carbonyl units are widely present in many natural products
and drug molecules (Ohfune., 1992). However, there are a few reports as the starting material of
oxidative cross-dehydrogenation coupling reactions. In 2012, Li group developed a C-H oxidative/
cross-coupling strategy of α-amino carbonyls with indoles to selectively obtain 2-(1H-indol-3-yl)-2-
imino-carbonyls under the Cu(I)/TBHP catalytic system (Wu et al., 2012; Scheme 1A). In the same
year, the Li group continued to use the visible light photoredox strategy to realize the C-H
functionalization of α-amino aryl ketones with indoles under Ru (bpy)3Cl2 catalysis and obtained
2-(1H-indol-3-yl)-2-amino-carbonyl compounds (Wang et al., 2012; Scheme 1B). After that, Feng
group chose a cheaper Fe(III) catalyst and also realized C-H functionalization of α-amino aryl ketones
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with indoles in 2016 (Zhang et al., 2016; Scheme 1C). However,
these synthetic methods all use transition metals and additional
oxidants, so it is necessary to explore more green ways. This field
aims to develop more efficient, green, and practical C-H
functionalization methods and expand its application range.
Very recently, our group has also repeatedly reported the
application of indoles in organic synthesis, such as direct
synthesis of 3,3-diaryl benzofuranones (Tang et al., 2019),
N-aryl-1-amino indoles (Ou et al., 2021), and 3,3′-

diindolylmethanes (DIMs) (Yang et al., 2020) by using indoles
as the starting material.

Herein, we report a more effective and green method for the
transition metal–free C-H bond functionalization reaction of α-
amino aryl ketones, indoles, and CBr4 under mild conditions
(Scheme 1D). This new methodology of green chemistry has
several advantages, such as transition metal–free, cheap, and
environmental benign reagents, mild reaction conditions, and
step-economy.

GRAPHICAL ABSTRACT |

SCHEME 1 | C-H bond functionalization of α-amino aryl ketones and indoles.
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2 RESULTS AND DISCUSSION

Initially, the reaction of 1-phenyl-2-(phenylamino)ethan-1-one
(1a), CBr4 with 1H-indole (2a) was selected as a model reaction
to optimize the reaction conditions. The different bases,
temperatures, times, and solvents were attempted to synthesize
(E)-2-(1-bromo-1H-indol-3-yl)-1-phenyl-2-(phenylimino)ethan-
1-one (3a). The results are listed in Table 1. It was found that the
reaction readily proceeded in CH2Cl2 using NaOH as a base leading
to produce (E)-2-(1-bromo-1H-indol-3-yl)-1-phenyl-2-
(phenylimino)ethan-1-one (3a) in 37% yield (Table 1, entry 1).
This result prompted us to further search for the optimal reaction
conditions. Then, we investigated the organic solvents, such as
PhMe, DMF, MeCN, DCE, DMSO, THF, 1,4-dioxane, CYH
(cyclohexane), Et2O, MeOH and EtOH (Table 1, entries 2–12).
The most effective solvent was MeCN, which could give 3a in 61%
yield (entry 4). Furthermore, temperature also affected the reaction.
It was found that room temperature was an appropriate
temperature for the reaction, and 3a was obtained in 68% yield
(Table 1, entry 13). Higher temperatures did not significantly
improve the yield (Table 1, entry 14). Lithium diisopropylamide
(LDA) replaced NaOH as the dehydrogenation medium, and it was
found that it did not participate in the reaction (Table 1, entry 15).
In order to improve 3a yield, we have also checked the reaction
using two additional bases, LiOH and KOH. However, the low yield

of 3a (37%, 41%) was obtained, respectively (Table 1, entries
16–17). Reaction time played an important role in the reaction.
However, in this reaction, no matter whether prolonged or
shortened the reaction time, the yield of 3a could not be
improved (Table 1, entries 18–19).

On the basis of the optimized reaction conditions, the
synthesis of various 2-(1-bromo-1H-indol-3-yl)-2-imino-
carbonyls was examined by the reactions of a-amino aryl
ketones and CBr4 with 1H-indole (2a) in MeCN at room
temperature by using NaOH as a base. The results are listed
in Table 2. It was found that α-amino aryl ketones containing
electron-donating groups, such as Me and OMe, on the ortho- or
para-positions of aromatic rings afforded the corresponding
products in moderate to good yields (3b−3d). The α-amino
aryl ketones containing electron-withdrawing groups, such as
Cl, Br, I, and CF3, on the ortho-, meta-, or para-positions of the
phenyl group could also give satisfactory yields (3e−3L).
Naphthyl α-amino aryl ketones can also produce
corresponding products in moderate yields (Table 2, 3m). The
aromatic amines containing electron-donating groups or
electron-withdrawing groups, such as Me and Cl, on the meta-
or para-positions could also give satisfactory yield (3n−3p). The
5-Me and 6-Cl of substituted indoles were selected as indole
substitution groups to be tested. The corresponding products
yields of 3q-3r were found to be good. After comparison, we

TABLE 1 | Optimization of the reaction conditions.a

Entry Solvent Temperature (°C) Base Yield (%)b

1 DCM 40 NaOH 37
2 PhMe 40 NaOH 21
3 DMF 40 NaOH Trace
4 MeCN 40 NaOH 61
5 DCE 40 NaOH 39
6 DMSO 40 NaOH Trace
7 THF 40 NaOH Trace
8 1,4-dioxane 40 NaOH 23
9 CYH 40 NaOH 11
10 Et2O 40 NaOH Trace
11 MeOH 40 NaOH N.R
12 EtOH 40 NaOH N.R
13 MeCN RT NaOH 68
14 MeCN 50 NaOH 27
15 MeCN RT LDA N.R
16 MeCN RT LiOH 41
17 MeCN RT KOH 37
18c MeCN RT NaOH 28
19d MeCN RT NaOH 68

aReaction condition: All reactions were carried out with 1-phenyl-2-(phenylamino)ethan-1-one (1a) (0.3 mmol), 1H-indole (2a) (0.3 mmol), CBr4 (0.6 mmol), and base (1.2 mmol) in solvent
(2 ml) at certain temperature for 12 h.
bIsolated yield.
cReaction for 6 h.
dReaction for 18 h.
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found that different electron-donating groups and electron-
withdrawing groups have little effect on the reaction, and the
yields of the reaction are all in the middle to good range. These
results indicate that the electronic effect has no obvious influence
on the yield. In addition, aryl-alkyl α-amino aryl ketones, such as
1-(phenylamino)propan-2-one and 2-(isopropylamino)-1-
phenylethan-1-one, were selected as the starting material
groups to be tested. Unfortunately, the reactions did not

proceed smoothly, and these compounds were unable to
obtain the corresponding target products.

In order to investigate the reaction mechanism, several control
experiments were carried out (Scheme 2). 1) After adding 2,2,6,6-
tetramethyl piperidine nitroxide (TEMPO) to the model reaction,
the yield of the target product 3a dropped from 68 to 5%, and the
reaction was basically completely inhibited. It means that this
reaction may be a free radical reaction; 2) when 2-(methyl

TABLE 2 | Synthesis of 2-(1-bromo-1H-indol-3-yl)-2-imino-carbonyls from α-amino aryl ketones.a,b

aReaction condition: All reactions were carried out with α-amino aryl ketones (1) (0.3 mmol), 1H-indole (2a) (0.3 mmol), CBr4 (0.6 mmol), and NaOH (1.2 mmol) in MeCN (2 ml) at room
temperature for 12 h.
bIsolated yield.
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(phenyl)amino)-1-phenylethan-1-one is used instead of 1-phenyl-
2-(phenylamino)ethan-1-one (1a) under the standard conditions,
the possible product (S)-2-(1-bromo-1H-indol-3-yl)-2-(methyl
(phenyl)amino)-1-phenylethan-1-one was not observed; 3) in
addition, the 1-phenyl-2-(phenylamino)ethan-1-one (1a) reacted
with CBr4 for 12 h under standard conditions, and the solution was
monitored by GC-MS to detect (E)-1-phenyl-2-(phenylimino)
ethane-1-one. This result implied that (E)-1-phenyl-2-
(phenylimino)ethane-1-ketone possibly is also an intermediate
of three-component reaction.

Based on the aforementioned control experiments and
literature reports (Liu et al., 2018; Zhou et al., 2017), a
plausible mechanism is proposed for the one-pot synthesis of
2-(1-bromo-1H-indol-3-yl)-2-imino-carbonyls (Scheme 3).
Initially, 1-phenyl-2-(phenylamino)ethan-1-one (1a) undergoes
nucleophilic substitution reaction under the action of NaOH as a
base to obtain intermediates A. Then intermediate A forms
intermediate B in the presence of CBr4, and intermediate B
undergoes reduction and elimination to form imine
intermediate C (Liu et al., 2016). At the same time,

SCHEME 2 | Control experiments.

SCHEME 3 | Proposed mechanism for one-pot synthesis of 3a.
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intermediate C reacts with intermediate D from indole (2a) in
the presence of sodium hydroxide to give the Michael addition
product E. Then intermediate E forms intermediate F in the
presence of CBr4, and intermediate F undergoes reduction and
elimination to form imine intermediate G. Finally, G can easily
afford 3a as a final product involving oxidation of CBr4. It
should be noted that HCBr3 easily reacts with two equivalents
of NaOH to form HC(O)Br, which can be captured by aniline
as PhNHC(O)H (N-formanilide) and is clearly detected by
GC-MS (see SI). In addition, since only two equivalents of
CBr4 were added in the reaction system, we proposed that
HCBr3 could be working as CBr4 to react with A or E in
some cases.

3 CONCLUSION

In summary, a mild C-H functionalization for the one-pot three-
component synthesis of 2-(1-bromo-1H-indol-3-yl)-2-imino-
carbonyls is described. The reaction provides an efficient
and practical method for the synthesis of biologically
significant 2-(1-bromo-1H-indol-3-yl)-2-imino-carbonyls in an
atom-economic manner under mild and simple reaction
conditions. We are currently focusing on applying this C-H
bond functionalization to other inert bond cleavage reactions
and further exploring research in the construction of more
variable compounds.

3.1 Experimental Section
3.1.1 General Information
All commercially available reagents were used without further
purification. Nuclear magnetic resonance (NMR) spectra were
acquired at 298 K on 1H NMR (400 MHz) and 13C NMR
(101 MHz) Bruker NMR spectrometer with the sample
dissolved in DMSO-d6. All values of chemical shift were
reported in parts per million (ppm) relative to the solvent
signal with the coupling constant (J) reported in Hertz. All
compounds were characterized by 1H NMR, 13C NMR, and EI
or HRMS (double focusing mass analyzer). Column
chromatography was performed on silica gel (300–400
mesh) using petroleum ether (PE)/ethyl acetate (EA) as a
developing solvent.

3.1.2 Synthesis of 2-(1-bromo-1H-indol-3-yl)-2-imino-
carbonyls 3
The mixture of α-amino aryl ketones (0.3 mmol), 1H-indole (2a)
(0.3 mmol), CBr4 (0.6 mmol), and NaOH (1.2 mmol) in MeCN
(2 ml) was stirred at room temperature for 12 h. The reaction was
monitored by TLC. After the completion, the resulting mixture
was separated with EA. Water was added for washing, and then
15 ml of EA was used three times for extraction and liquid
separation. The collected organic phase was dried with
anhydrous Na2SO4, filtered, and the organic phase was
distilled off under reduced pressure. The obtained products 3
were separated by a silica gel column layer, and mobile phase
using petroleum ether with the fraction at 60–90°C, and three

purified products were obtained. The characterization data of all
the products are given as follows.

3.1.2.1 (E)-2-(1-bromo-1H-indol-3-yl)-1-phenyl-2-
(phenylimino)ethan-1-one (3a)

Yellow oil. Yield 62 mg (68%) at 0.3 mmol scale. 1H NMR
(400 MHz, DMSO-d6) δ 8.41 (d, J = 7.8 Hz, 1H), 7.81 (d, J = 7.5
Hz, 2H), 7.71 (s, 1H), 7.64 (t, J = 7.2 Hz, 1H), 7.55 (d, J = 7.1 Hz,
1H), 7.43 (dq, J = 15.1, 7.6 Hz, 4H), 7.14 (t, J = 7.2 Hz, 2H), 6.93 (t,
J = 7.1 Hz, 1H), 6.85 (d, J = 7.5 Hz, 2H). 13C NMR (101 MHz,
DMSO-d6) δ 190.35, 150.42, 146.08, 136.22, 134.54, 133.64,
130.05, 129.93, 129.35, 129.31, 126.29, 125.58, 124.93, 124.67,
121.35, 119.73, 116.49, 98.36. HRMS-ESI (m/z): calcd for
C22H15BrN2O [M + H]+: 403.0441; found, 403.0444.

3.1.2.2 (E)-2-(1-bromo-1H-indol-3-yl)-2-(phenylimino)-1-
(o-tolyl)ethan-1-one (3b)

Yellow oil. Yield 87 mg (86%) at 0.3 mmol scale. 1H NMR
(400MHz, DMSO-d6) δ 8.42 (d, J = 7.8 Hz, 1H), 7.78 (s, 1H), 7.64
(d, J = 7.2 Hz, 1H), 7.54 (d, J = 6.2 Hz, 2H), 7.41 (q, J = 6.9, 6.3 Hz,
3H), 7.27 – 7.16 (m, 4H), 7.11 (t, J = 7.7 Hz, 2H), 6.90 (t, J = 7.6 Hz,
1H), 6.76 (d, J = 7.7 Hz, 2H), 2.37 (s, 3H). 13C NMR (101MHz,
DMSO-d6) δ 191.94, 151.49, 146.16, 140.96, 134.83, 134.68, 132.84,
132.71, 129.38, 129.14, 127.06, 126.17, 125.85, 124.73, 124.56,
121.15, 119.68, 116.53, 98.25, 21.40. HRMS-ESI (m/z): calcd for
C23H17BrN2O [M + H]+: 417.0597; found, 417.0587.

3.1.2.3 (E)-2-(1-bromo-1H-indol-3-yl)-2-(phenylimino)-1-
(p-tolyl)ethan-1-one (3c)

Yellow oil. Yield 70 mg (69%) at 0.3 mmol scale. 1H NMR
(400 MHz, DMSO-d6) δ 8.42 (d, J = 7.9 Hz, 1H), 7.73 (d, J = 7.8
Hz, 2H), 7.67 (s, 1H), 7.55 (d, J = 7.3 Hz, 1H), 7.42 (p, J = 7.1
Hz, 2H), 7.28 (d, J = 7.8 Hz, 2H), 7.17 (t, J = 7.5 Hz, 2H), 6.95
(t, J = 7.3 Hz, 1H), 6.88 (d, J = 7.7 Hz, 2H), 2.30 (s, 3H). 13C
NMR (101 MHz, DMSO-d6) δ 189.73, 150.56, 147.39, 146.16,
134.52, 131.27, 130.56, 130.21, 129.33, 129.31, 126.25, 125.51,
124.89, 124.61, 121.35, 119.72, 116.47, 98.30, 21.87. HRMS-
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ESI (m/z): calcd for C23H17BrN2O [M + H]+: 417.0597; found,
417.0603.

3.1.2.4 (E)-2-(1-bromo-1H-indol-3-yl)-1-(4-methoxyphenyl)-
2-(phenylimino)ethan-1-one (3d)

Yellow oil. Yield 78 mg (74%) at 0.3 mmol scale. 1H
NMR (400 MHz, DMSO-d6) δ 8.41 (d, J = 8.1 Hz, 1H), 7.79
(d, J = 8.8 Hz, 2H), 7.65 (s, 1H), 7.53 (d, J = 8.2 Hz, 1H), 7.45 –
7.35 (m, 2H), 7.16 (t, J = 7.8 Hz, 2H), 6.95 (dd, J = 13.3, 8.1 Hz,
3H), 6.87 (d, J = 7.5 Hz, 2H), 3.76 (s, 3H). 13C NMR (101 MHz,
DMSO-d6) δ 187.75, 165.04, 150.26, 145.79, 134.02, 132.27,
128.83, 128.79, 126.15, 125.71, 125.02, 124.34, 124.04, 120.83,
119.19, 115.97, 114.85, 97.69, 55.79. HRMS-ESI (m/z): calcd for
C23H17BrN2O2 [M + H]+: 433.0546; found, 433.0562.

3.1.2.5 (E)-2-(1-bromo-1H-indol-3-yl)-1-(4-fluorophenyl)-2-
(phenylimino)ethan-1-one (3e)

Yellow oil. Yield 73 mg (58%) at 0.3 mmol scale. 1H NMR
(400 MHz, DMSO-d6) δ 8.46 (d, J = 7.6 Hz, 1H), 7.96 (d, J = 6.7
Hz, 2H), 7.78 (s, 1H), 7.59 (d, J = 7.3 Hz, 1H), 7.47 (q, J = 8.3 Hz,
2H), 7.33 (t, J = 8.6 Hz, 2H), 7.20 (t, J = 7.7 Hz, 2H), 6.98 (t, J =
7.3 Hz, 1H), 6.88 (d, J = 7.3 Hz, 2H). 13C NMR (101 MHz,
DMSO-d6) δ 188.77, 167.96, 150.26, 146.08, 134.57, 133.47 (d,
J = 10.3 Hz), 130.57 (d, J = 2.5 Hz), 129.35, 126.30, 125.72,
124.97, 124.71, 121.30, 119.71, 117.33, 117.11, 116.58, 98.39.
HRMS-ESI (m/z): calcd for C22H14BrFN2O [M + H]+: 421.0346;
found, 421.0337.

3.1.2.6 (E)-2-(1-bromo-1H-indol-3-yl)-1-(3-chlorophenyl)-2-
(phenylimino)ethan-1-one (3f)

Yellow oil. Yield 72 mg (55%) at 0.3 mmol scale. 1H NMR
(400 MHz, DMSO-d6) δ 8.48 (d, J = 7.9 Hz, 1H), 7.85 – 7.78 (m,
3H), 7.74 (d, J = 8.1 Hz, 1H), 7.59 (d, J = 7.7 Hz, 1H), 7.49 (tt, J =
15.1, 7.3 Hz, 3H), 7.20 (t, J = 7.3 Hz, 2H), 6.99 (t, J = 7.5 Hz, 1H),
6.88 (d, J = 7.8 Hz, 2H). 13C NMR (101 MHz, DMSO-d6) δ
189.35, 149.82, 145.98, 135.82, 135.36, 134.64, 134.61, 131.92,
129.68, 129.43, 129.31, 128.90, 126.32, 125.89, 125.10, 124.76,

121.34, 119.70, 116.68, 98.44. HRMS-ESI (m/z): calcd for
C22H14BrClN2O [M + H]+: 437.0051; found, 437.0052.

3.1.2.7 (E)-2-(1-bromo-1H-indol-3-yl)-1-(4-chlorophenyl)-
2-(phenylimino)ethan-1-one (3g)

Yellow oil. Yield 73 mg (68%) at 0.3 mmol scale. 1H NMR
(400 MHz, DMSO-d6) δ 8.44 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 8.4
Hz, 2H), 7.75 (s, 1H), 7.52 (dd, J = 12.0, 7.9 Hz, 3H), 7.42 (p, J =
7.1 Hz, 2H), 7.15 (t, J = 7.7 Hz, 2H), 6.94 (t, J = 7.4 Hz, 1H), 6.84
(d, J = 7.8 Hz, 2H). 13C NMR (101 MHz, DMSO-d6) δ 189.29,
150.10, 146.00, 141.18, 134.59, 132.40, 131.90, 130.09, 129.39,
129.37, 126.29, 125.68, 125.02, 124.71, 121.33, 119.70, 116.59,
98.47. HRMS-ESI (m/z): calcd for C22H14BrClN2O2 [M + H]+:
437.0051; found, 437.0059.

3.1.2.8 (E)-2-(1-bromo-1H-indol-3-yl)-1-(2-bromophenyl)-2-
(phenylimino)ethan-1-one (3 h)

Yellow oil. Yield 91 mg (63%) at 0.3 mmol scale. 1H NMR
(400 MHz, DMSO-d6) δ 8.47 (d, J = 7.9 Hz, 1H), 7.86 (d, J = 7.7
Hz, 2H), 7.75 (d, J = 2.0 Hz, 1H), 7.68 (t, J = 7.5 Hz, 1H), 7.59
(d, J = 7.5 Hz, 1H), 7.47 (dq, J = 15.0, 7.4 Hz, 4H), 7.19 (t, J = 7.7
Hz, 2H), 6.97 (t, J = 7.5 Hz, 1H), 6.90 (d, J = 7.6 Hz, 2H). 13C
NMR (101 MHz, DMSO-d6) δ 190.37, 150.45, 146.11, 136.22,
134.57, 133.66, 130.08, 129.93, 129.38, 129.32, 126.29, 125.61,
124.93, 124.67, 121.37, 119.74, 116.54, 98.39. HRMS-ESI (m/
z): calcd for C22H14Br2N2O [M + H]+: 480.9546; found,
480.9568.

3.1.2.9 (E)-2-(1-bromo-1H-indol-3-yl)-1-(3-bromophenyl)-
2-(phenylimino)ethan-1-one (3i)

Yellow oil. Yield 94 mg (65%) at 0.3 mmol scale. 1H NMR
(400 MHz, DMSO-d6) δ 7.69 (d, J = 8.0 Hz, 1H), 7.16 (s, 1H), 7.09
– 7.00 (m, 3H), 6.79 (d, J = 7.5 Hz, 1H), 6.66 (q, J = 7.8 Hz, 3H),
6.42 (t, J = 7.7 Hz, 2H), 6.20 (t, J = 7.5 Hz, 1H), 6.09 (d, J = 7.4 Hz,
3H). 13C NMR (101 MHz, DMSO-d6) δ 189.27, 149.77, 145.99,
138.67, 135.48, 134.65, 132.08, 131.80, 129.64, 129.43, 126.30,
125.89, 125.11, 124.75, 122.97, 121.34, 119.70, 116.69, 98.45.
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HRMS-ESI (m/z): calcd for C22H14Br2N2O [M + H]+: 480.9546;
found, 480.9549.

3.1.2.10 (E)-2-(1-bromo-1H-indol-3-yl)-1-(4-bromophenyl)-
2-(phenylimino)ethan-1-one (3j)

Yellow oil. Yield 78 mg (65%) at 0.3 mmol scale. 1H NMR
(400 MHz, DMSO-d6) δ 8.44 (d, J = 8.0 Hz, 1H), 7.79 – 7.70 (m,
3H), 7.67 (d, J = 8.5 Hz, 2H), 7.55 (d, J = 7.3 Hz, 1H), 7.43 (p, J =
7.1 Hz, 2H), 7.16 (t, J = 7.7 Hz, 2H), 6.95 (t, J = 7.4 Hz, 1H), 6.84
(d, J = 7.9 Hz, 2H). 13C NMR (101 MHz, DMSO-d6) δ 189.54,
150.08, 145.99, 134.58, 133.05, 132.70, 131.88, 130.69, 129.38,
126.30, 125.70, 125.03, 124.72, 121.33, 119.71, 116.59, 98.47.
HRMS-ESI (m/z): calcd for C22H14Br2N2O [M + H]+:
480.9546; found, 480.9565.

3.1.2.11 (E)-2-(1-bromo-1H-indol-3-yl)-1-(4-iodophenyl)-2-
(phenylimino)ethan-1-one (3k)

Yellow solid. Yield 98mg (73%) at 0.3 mmol scale. 1H NMR
(400MHz, DMSO-d6) δ 8.44 (d, J = 7.8 Hz, 1H), 7.87 (d, J = 7.7 Hz,
2H), 7.74 (s, 1H), 7.57 (d, J = 7.7 Hz, 3H), 7.44 (p, J = 7.0 Hz, 2H),
7.18 (t, J = 7.3 Hz, 2H), 6.97 (t, J = 7.2 Hz, 1H), 6.86 (d, J = 7.6 Hz,
2H). 13C NMR (101MHz, DMSO-d6) δ 189.93, 150.11, 145.99,
138.92, 134.56, 132.92, 131.37, 129.38, 126.30, 125.65, 125.02,
124.72, 121.34, 119.72, 116.57, 106.15, 98.47. HRMS-ESI (m/z):
calcd for C22H14BrIN2O [M + H]+: 528.9407; found, 528.9415.

3.1.2.12 (E)-2-(1-bromo-1H-indol-3-yl)-2-(phenylimino)
-1-(4-(trifluoromethyl)phenyl)ethan-1-one (3l)

Yellow solid. Yield 82 mg (58%) at 0.3 mmol scale. 1H NMR
(400 MHz, DMSO-d6) δ 8.52 (d, J = 7.9 Hz, 1H), 8.06 (d, J = 8.1
Hz, 2H), 7.87 (d, J = 7.1 Hz, 3H), 7.61 (d, J = 7.4 Hz, 1H), 7.50 (p,
J = 7.2 Hz, 2H), 7.20 (t, J = 7.8 Hz, 2H), 6.99 (t, J = 7.5 Hz, 1H),
6.89 (d, J = 7.6 Hz, 2H). 13C NMR (101 MHz, DMSO-d6) δ
189.84, 149.91, 145.85, 136.68, 130.93, 129.41, 126.86, 126.73,
126.37, 125.85, 125.14 (d, J = 4.1 Hz), 124.83, 121.37, 119.73,
116.68, 98.57. HRMS-ESI (m/z): calcd for C23H14BrF3N2O [M +
H]+: 471.0314; found, 471.0322.

3.1.2.13 (E)-2-(1-bromo-1H-indol-3-yl)-1-(naphthalen-2-yl)-
2-(phenylimino)ethan-1-one (3m)

Yellow oil. Yield 52 mg (47%) at 0.3 mmol scale. 1H NMR
(400 MHz, DMSO-d6) δ 8.56 (s, 1H), 8.46 (d, J = 7.6 Hz, 1H), 8.14
(d, J = 8.1 Hz, 1H), 7.94 (t, J = 8.0 Hz, 2H), 7.83 (d, J = 8.6 Hz, 1H),
7.78 (s, 1H), 7.67 (t, J = 7.2 Hz, 1H), 7.57 (t, J = 7.8 Hz, 2H), 7.44
(q, J = 7.8, 7.4 Hz, 2H), 7.09 (t, J = 7.3 Hz, 2H), 6.91 (d, J = 7.5 Hz,
2H), 6.86 (t, J = 7.1 Hz, 1H). 13C NMR (101 MHz, DMSO-d6) δ
190.38, 150.51, 146.35, 136.45, 134.71, 134.16, 132.42, 131.11,
130.65, 130.61, 129.71, 129.38, 129.29, 128.26, 127.89, 126.23,
125.79, 124.82, 124.62, 123.54, 121.27, 119.71, 116.59, 98.29.
HRMS-ESI (m/z): calcd for C26H17BrN2O [M + H]+: 453.0597;
found, 453.0604.

3.1.2.14 (E)-2-(1-bromo-1H-indol-3-yl)-1-phenyl-2-
(m-tolylimino)ethan-1-one (3n)

Yellow oil. Yield 90 mg (72%) at 0.3 mmol scale. 1H NMR
(400 MHz, DMSO-d6) δ 8.48 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 7.7
Hz, 2H), 7.75 (s, 1H), 7.69 (t, J = 7.5 Hz, 1H), 7.59 (d, J = 7.4 Hz,
1H), 7.48 (dt, J = 27.2, 7.5 Hz, 4H), 7.06 (t, J = 7.8 Hz, 1H), 6.79 (d,
J = 7.6 Hz, 1H), 6.74 (s, 1H), 6.68 (d, J = 7.7 Hz, 1H), 2.16 (s, 3H).
13C NMR (101 MHz, DMSO-d6) δ 190.41, 150.27, 146.03, 138.64,
136.18, 134.56, 133.74, 130.05, 129.91, 129.35, 129.13, 126.26,
125.64, 125.59, 124.64, 122.09, 119.72, 118.35, 116.52, 98.29,
21.28. HRMS-ESI (m/z): calcd for C23H17BrN2O [M + H]+:
417.0597; found, 417.0588.

3.1.2.15 (E)-2-(1-bromo-1H-indol-3-yl)-1-phenyl-2-
(p-tolylimino)ethan-1-one (3o)

Yellow oil. Yield 92 mg (74%) at 0.3 mmol scale. 1H NMR
(400 MHz, DMSO-d6) δ 8.47 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 7.3
Hz, 2H), 7.73 (s, 1H), 7.69 (t, J = 7.5 Hz, 1H), 7.59 (d, J = 7.3 Hz,
1H), 7.51 (t, J = 7.3 Hz, 2H), 7.46 (t, J = 8.3 Hz, 2H), 7.00 (d, J = 7.5
Hz, 2H), 6.82 (d, J = 7.7 Hz, 2H), 2.16 (s, 3H). 13C NMR
(101 MHz, DMSO-d6) δ 190.68, 150.23, 143.50, 136.24, 134.54,
134.02, 133.60, 130.06, 129.98, 129.84, 129.33, 126.24, 125.54,
124.59, 121.32, 119.71, 116.49, 98.22, 79.66, 20.80. HRMS-ESI
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(m/z): calcd for C23H17BrN2O [M + H]+: 417.0597; found,
417.0588.

3.1.2.16 (E)-2-(1-bromo-1H-indol-3-yl)-2-((4-chlorophenyl)
imino)-1-phenylethan-1-one (3p)

Yellow oil. Yield 77 mg (59%) at 0.3 mmol scale. 1H NMR
(400 MHz, DMSO-d6) δ 8.48 (d, J = 8.2 Hz, 1H), 7.87 (d, J = 7.7
Hz, 2H), 7.72 (d, J = 7.6 Hz, 2H), 7.54 (t, J = 7.6 Hz, 2H), 7.43 –
7.32 (m, 3H), 7.26 (d, J = 8.9 Hz, 2H), 6.92 (d, J = 8.0 Hz, 2H), 6.81
(d, J = 3.4 Hz, 1H). 13C NMR (101 MHz, DMSO-d6) δ 190.50,
151.77, 145.51, 136.37, 135.07, 133.67, 130.85, 130.12, 129.96,
129.25, 128.81, 126.64, 125.00, 124.07, 123.27, 121.76, 116.48,
109.32. HRMS-ESI (m/z): calcd for C22H14BrClN2O [M + H]+:
437.0051; found, 437.0040.

3.1.2.17 (E)-2-(1-bromo-5-methyl-1H-indol-3-yl)-1-phenyl-2-
(phenylimino)ethan-1-one (3q)

Yellow solid. M.P. 158 – 159°C. Yield 97 mg (78%) at 0.3 mmol
scale. 1HNMR (400MHz, DMSO-d6) δ 8.33 (d, J = 8.6 Hz, 1H), 7.84
(d, J = 7.7 Hz, 2H), 7.68 (t, J = 6.0 Hz, 2H), 7.50 (t, J = 7.7 Hz, 2H),
7.37 (s, 1H), 7.29 (d, J = 8.5 Hz, 1H), 7.18 (t, J = 7.7 Hz, 2H), 6.96 (t,
J = 7.5 Hz, 1H), 6.88 (d, J = 7.7 Hz, 2H), 2.47 (s, 3H). 13C NMR
(101MHz, DMSO-d6) δ 190.43, 150.37, 146.19, 136.20, 134.08,
133.68, 132.83, 130.04, 129.94, 129.55, 129.31, 127.57, 125.55,
124.86, 121.40, 119.40, 116.26, 98.15, 21.41. HRMS-ESI (m/z):
calcd for C23H17BrN2O [M + H]+: 417.0597; found, 417.0593.

3.1.2.18 (E)-2-(1-bromo-6-chloro-1H-indol-3-yl)-1-phenyl-2-
(phenylimino)ethan-1-one (3r)

Yellow oil. Yield 86 mg (66%) at 0.3 mmol scale. 1H NMR
(400 MHz, DMSO-d6) δ 8.65 (t, J = 2.0 Hz, 1H), 7.88 (d, J = 6.8
Hz, 2H), 7.78 (d, J = 1.9 Hz, 1H), 7.70 (t, J = 7.5 Hz, 1H), 7.62 (dd,
J = 8.5, 1.9 Hz, 1H), 7.55 – 7.49 (m, 3H), 7.21 (t, J = 7.8 Hz, 2H),
7.00 (t, J = 7.5 Hz, 1H), 6.92 (d, J = 7.6 Hz, 2H). 13C NMR
(101 MHz, DMSO-d6) δ 189.91, 150.52, 145.86, 136.31, 134.75,
133.53, 130.86, 130.20, 129.92, 129.38, 128.29, 126.76, 125.14,

125.06, 121.34, 121.15, 116.61, 97.94. HRMS-ESI (m/z): calcd for
C22H14BrClN2O [M + H]+: 437.0051; found, 437.0036.

3.2.1 Synthesis of 2-Bromoacetophenones
The mixture of acetophenone (1.2 g, 10mmol), N-bromosuccinimide
(NBS) (1.958 g, 11mmol), and p-toluenesulfonic acid (TsOH) (0.172g,
1mmol) inMeCN (120ml) was heated at 60 °C for 24 h. The reaction
was monitored by TLC. After the reaction was completed, the solvent
was distilled off under reduced pressure, then 30ml of saturated
NaHCO3 aqueous solution was poured into the residue, and the
mixture was extracted with ethyl acetate (EA) (3 × 20ml). Next, the
organic phases were combined, and anhydrous Na2SO4 was added for
drying. Finally, a rotary evaporator was used to distill the organic
solvent under reduced pressure, leaving its residue without further
treatment and purification, and it was saved for the next step.Without
additional instructions, other substituted acetophenones are similar to
this synthesis method.

3.3.1 Synthesis of a-amino Aryl Ketones (1a-1 h)
Under nitrogen atmosphere, themixture of 2-bromoacetophenones
(199 mg, 10 mmol), aniline (84 mg, 10 mmol), NaHCO3 (93 mg,
1 mmol), and EtOH (40ml) was added into a dry round-bottom
flask and heated at 25°C for 12 h. The reaction was monitored by
TLC. After the reaction was completed, the reaction mixture was
filtered with suction, and the filtered solid was left in the upper layer,
which was washed with EtOH (3 × 5 ml). Finally, it was dissolved in
ethyl acetate (EA) and distilled under reduced pressure to obtain an
organic phase yellow solid.
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