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ABSTRACT: Ammonian illite (NH4-illite)-rich late Permian
coals of high rank were discovered in southwestern China. This
research reports new mineralogical and geochemical data of 11
bench samples from the adjacent Xingying mine, northeastern
Chongqing Coalfield, southwestern China, with an emphasis on
the modes of occurrence and origin of NH4-illite. The Xingying
coals, with low ash yields and medium sulfur, have a high rank
(semianthrite, Ro,ran = 3.67%), owing to the plutonic meta-
morphism. Minerals in the coal consist of NH4-illite and pyrite
and, to a lesser extent, jarosite, albite, and anatase, with traces of
chamosite, quartz, bassanite, apatite, fluorapatite, florencite, and
rhabdophane. Compared with world hard coals, vanadium is significantly enriched with a concentration coefficient (CC) higher than
10; Mo and Pb are enriched (5 < CC < 10); F, Co, Ni, Cu, Ge, Se, Y, Zr, Nb, Ag, Cd, In, Sn, Cs, Sm, Eu, Tb, Dy, Er, Yb, Hf, Bi, and
U are slightly enriched (2 < CC < 5) in the Xingying coals. Fluorine in host rocks, including roof, floor, and parting, is significantly
enriched. Fluorine concentration in the coal may be increased greatly if the coal is mixed with host rocks during mining activity.
Hence, the Xingying coals should be subjected to beneficiation before utilization for the environment and human health. The Al2O3/
TiO2 and Eu anomalies demonstrated that the terrigenous materials come from the mafic basalts of the Kangdian Upland. NH4-illite
is formed by interaction of pre-existing kaolinite or K-illite with NH4

+ released from organic matter under high temperatures during
the process of hydrothermal alteration. The authigenic chamosite, albite, quartz, anatase, apatite, fluorapatite, and rhabdophane are
also deposited from the hydrothermal solutions. In addition, the Xingying coals are subjected to marine influences. Based on the
preliminary evaluation, the Xingying coals cannot be a potential source for critical elements such as rare earth elements and yttrium.
This indicates that not all the late Permian coals in southwestern China have economic significance for critical elements.

1. INTRODUCTION

In addition to organic matter, mineral matter is the other
component of coal. Mineral matter encompasses crystalline
minerals, noncrystalline minerals, and nonmineral elements.1−4

Coal or coal-bearing strata are enriched significantly in critical
elements such as rare earth elements and yttrium (REY), Li,
Nb, Ta, Zr, Hf, Ga, Ge, etc. and have the potential to recover
these critical elements.5−11 Although organic matter is a main
carrier for some critical elements (e.g., Ge) in the coal,12,13

critical elements mainly occur in minerals.2,4,14 Meanwhile,
minerals are also main carriers for some environmentally
sensitive elements, e.g., F, As, and Hg.15−17 Moreover, modes
of occurrence of minerals could provide useful information on
the coal-forming process and even the regional geological
background or evolution.15,18

Ammonian illite (NH4-illite), with a similar structure with
tobelite, is uncommon in coal.1 However, it has been identified
in some high-rank coals, varying from low volatile bituminous
coal to semianthracite.19−23 NH4-illite is considered as an

interaction product of pre-existing kaolinite or K-illite with
NH4

+ originated from organic matter decomposition during
hydrothermal solution influx.1 Thus, the presence of NH4-illite
indicates a hydrothermal alteration origin.
The late Permian coals in southwestern China (including

Yunnan, Guizhou, Sichuan Provinces, and Chongqing
Municipality) have intrigued scientists for more than three
decades, due to their geochemical and mineralogical anomalies.
The Kangdian Upland, mainly composed of mafic basalts,
provided the dominant terrigenous materials for the late
Permian coals in southwestern China.24 Moreover, other
geological factors, e.g., hydrothermal fluid injection, volcanic
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ash input, and marine influences, made significant contribu-
tions to the enrichment of trace elements.15 Anomalous critical
elements, especially REY, Li, Nb, Ta, Zr, Hf, and Ga, were
discovered in a few late Permian coal deposits, including
Moxinpo,23,25,26 Zhongliangshan,27 and Songzao28 in Chongq-
ing, southwestern China.
The Xingying Mine, located in northeastern Chongqing,

which is adjacent to the Moxinpo, Zhongliangshan, and
Songzao Mines, is an important coal base for power generation
(Figure 1). However, whether the late Permian coals in the
Xingying Mine contain such critical elements is unclear. In
addition, there is lack of mineralogical and geochemical data to
discriminate the origin of terreginous materials. The purpose of
this paper is to study the geochemical and mineralogical
compositions, especially significantly enriched NH4-illite, of
the Xingying coals and to understand the geological factors of
their formation. It also makes an preliminary evaluation of
critical elements of the Xingying coals.

2. GEOLOGICAL SETTING
The coal-accumulating basin in southwestern China is located
in the western Yangtze Plate (Figure 1). From west to east, the
late Permian coal-bearing sequences in southwestern China
vary from terristrial to transitional to marine environments.24

During the middle Permian period, the Dongwu Movement
leads to the Yangtze Plate uplift and differential erosion of the
Maokou Formation. Hence, the formation of residual plains
provides favorable terrian conditions for depositon of coal-
bearing sequences. The Maokou Formaiton disconformably
underlies with the coal-bearing sequences, which is an
important sedimentary interface. Subsequently, Emeishan

basalts erupt on the eroded surface of the Maokou Formation.
The continuous eruption of basalts accumulates and produces
the wellknown Kangdian Upland (Figure 1).
The coal-bearing stratum in the present study is the late

Permian Wujiaping Formation (P3w) with a thickness from
60.9 to 143 m (Figure 2A). The Wujiaping Formation consists
of mudstone, carbonaceous mudstone, tuff layer, marl,
limestone, cherty limestone, and coal seam, which is numbered
as K2. The K2 is the exclusive minable coal seam in the
Xingying Mine and has a thickness varying from 0.52 to 2.52
m, with an average of 1.57 m.
The Changxing Formation (P3c) conformably overlies the

Wujiaping Formation and is made up of limestone, cherty
limestone, silty limestone, and limstone with banded chert. It
has a thickness from 60.9 to 143 m.
The middle Permian Maokou Formation (P2m) underlies

the Wujiaping Formation inconformably. It is composed of
thick-layered bioclastic limestone, cherty limestone, and
limestone, with a thickness from 95.1 to 161 m.

3. SAMPLES AND ANALYTICAL PROCEDURES
The studied samples, including one roof, one parting, one roof,
and eight coal samples, were collected at the Xingying
underground Mine in the northeastern Chongqing Coalfield,
southwestern China (Figure 2B). In order to discriminate the
noncoal samples, suffixes of r, p, and f were added in the
sample number to represent roof, parting, and floor samples,
respectively. All the samples were preserved in plastic bags in
case of pollution and oxidation.
The blocked samples were prepared to make the polished

sections for vitrinite reflectance and scanning electron

Figure 1. Location of the Xingying Mine.
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microscope analysis. Then, the individual samples were
crushed and ground to <1 mm. Parts of <1 mm samples
were further gound to <0.076 mm (200 mesh) for proximate,
ultimate, mineralogical, and geochemical analyses.
The moisture, ash yield, and volatile matter were tested

based on the ASTM standards D3173-11, D3174-11, and
D3175-11, respectively.29−31 The total sulfur and forms of
sulfur were analyzed according to ASTM standards D3177-02
and D2492-02, respectively.32,33 The ultimate analyses
including carbon, hydrogen, and nitrogen were conducted
using an element analyzer. The vitrinite random reflectances of
coal polished samples were measured using a spectropho-
tometer equipped on an optical microscope at a magnification

of 500× in which the test standard is gadolinium gallium
garnet with reflectance 1.72% made in China.
Prior to X-ray diffraction (XRD), coal samples were ashed at

a temperature lower than 120 °C. Then, the coal low-
temperature ashes (LTAs) and roof, parting, and floor samples
were subjected to mineral composition analysis. The analysis
condition of XRD was reported in detail in previous
studies.23,34 Based on the XRD diffractograms, the minerals
were quantitatively determined using the Siroquant technique.
Five representative samples were analyzed for modes of
occurrence of minerals using scanning electron microscopy in
conjunction with energy-dispersive spectrometry (SEM-EDS).
The SEM-EDS analysis procedure and conditions were also
reported by Zou et al.34

The major element oxides including SiO2, TiO2, Al2O3,
Fe2O3, MnO, MgO, CaO, Na2O, K2O, and P2O5 were
determined by X-ray fluorescence (XRF) spectrometry. Prior
to XRF analysis, all the coal and host rock samples were ashed
at 815 °C and the resultant ashes were made into tableting
samples with lithium borate.
Except for F and Hg, the trace elements were analyzed using

inductively coupled plasma mass spectrometry (ICP-MS). Dai
et al. described the ICP-MS analysis procedures in detail.23 In
order to avoid the interference of polyatomic ions, the
collision/reaction cell technology was employed to test the
concentrations of As and Se.35

Fluorine in the samples was tested using the pyrohydrolysis
ion-selective electrode method in accordance with the ASTM
D5987-96.36 Mercury was determined using a Milestone
DMA-80 analyzer with a detection limit of 0.005 ng.

4. RESULTS
4.1. Coal Characteristics. The coal quality data, including

proximate and ultimate analyses, total sulfur, forms of sulfur,
and vitrinite random reflectance, are listed in Table 1. The
average values of volatile matter and vitrinite random
reflectance are 9.15 and 3.67%, respectively, indicating a
semianthracite based on the ASTM D388-12,37 due to the
plutonic metamorphism.38 The Xingying coals have low ash
yields (16.86%) and medium sulfur contents (1.66%)
according to classifications of the Chinese standards GB/T
15224.1-2010 (coals with ash yields varying from 10 to 20%
are low ash coals)39 and GB/T 15224.2-2010 (coals with sulfur
contents varying from 1.01 to 2% are medium sulfur coals).40

Organic sulfur is the dominant form of total sulfur, followed by

Figure 2. (A) Sedimentary sequences and the (B) collected samples
of the Xingying Mine.

Table 1. Proximate and Ultimate Analyses, Forms of Sulfur, and Random Vitrinite Reflectance for Coals from the Xingying
Mine (%)a

samples

proximate analyses ultimate analyses forms of sulfur

Ro,ranMad Ad Vdaf Cdaf Hdaf Ndaf St,d Sp,d Ss,d So,d

WSXY-2 3.68 37.75 11.23 88.44 2.79 1.41 1.61 0.50 0.48 0.63 3.86
WSXY-4 3.48 11.61 10.46 87.95 2.62 1.50 1.55 0.28 0.69 0.58 3.73
WSXY-5 4.17 16.29 9.21 90.01 2.58 1.62 1.95 0.58 0.62 0.75 3.64
WSXY-6 5.01 15.17 6.56 91.55 2.42 1.65 1.33 0.44 0.15 0.74 3.68
WSXY-7 3.85 12.52 7.13 91.73 2.44 1.54 1.32 0.35 0.29 0.68 3.70
WSXY-8 4.71 11.65 11.71 87.42 2.52 1.40 2.98 0.51 1.31 1.16 3.47
WSXY-9 3.84 16.92 8.78 90.91 2.55 1.57 1.37 0.52 0.47 0.38 3.59
WSXY-10 3.04 12.98 8.10 90.87 2.54 1.49 1.16 0.41 0.38 0.38 3.70
average 3.97 16.86 9.15 89.86 2.56 1.52 1.66 0.45 0.55 0.66 3.67

aM, moisture; A, ash yield; V, volatile matter; C, carbon; H, hydrogen; N, nitrogen; St, total sulfur; Sp, pyritic sulfur; Ss, sulfate sulfur; So, organic
sulfur; ad, air-dried basis; d, dry basis; daf, dry and ash-free basis; Ro,ran, vitrinite random reflectance.
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sulfate and pyritic sulfur. However, the discrepancies among
organic, sulfate, and pyritic sulfur are insignificant. The average
contents of carbon, hydrogen, and nitrogen are 89.86, 2.56,
and 1.52%, respectively.
4.2. Minerals. 4.2.1. Mineral Compositions in Coal LTAs,

Roof, Floor, and Parting Samples. Figure 3 shows that the

LTAs have significant positive correlations with the high-
temperature ash (HTA) yields in the Xingying coals (R2 =
0.99). However, the LTAs are sligtly higher than the HTAs,
which is not an uncommon phenomenon, confirmed by
previous studies,34,41,42 owing to the complete decomposition
of minerals under high temperature conditions and the
formation of new minerals under low temperature conditions.
The mineralogical compositions of the Xingying coal LTAs
and host rock samples are listed in Table 2. Minerals of the
Xingying coal LTAs are dominated by NH4-illite (55−74.6%)
and pyrite (5.9−15.5%), followed by jarosite (1.8−23.8%),
albite (1.9−32.44%), and anatase (bdl-10%) with traces of
chamosite. Quartz is only present in sample WSXY-2.
Bassanite is detected in samples WSXY-4 and WSXY-5.
Florencite only occurs in sample WSXY-10. Minerals of the
roof mainly comprise NH4-illite, quartz, pyrite, and albite and,
to a lesser extent, anatse, chamosite, and jarosite, which is

similar to those of coal LTAs. However, the content of quartz
in roof (13%) is much higher than that in coal LTAs. The floor
and parting have similar mineral assemblages, whereas NH4-
illite is abnormally enriched (higher than 90%) with traces of
anatase, chamosite, pyrite, and jarosite. In addtion, trace
minerals below the XRD detection limit, such as apatite,
fluorapatite, and rhabdophane, are comfirmed using SEM−
EDX.

4.2.2. Ammonian Illite and Chamosite. Owing to the XRD
characteristics with a d(001) crystal spacing of around 10.35 Å
(Figure 4),19,43 the illite in the Xingying coals is confirmed as
ammonian illite (NH4-illite or tobelite) rather than K-illite.
NH4-illite is considered as an interaction product between
kaolinite or K-illite already present in the coal and NH4

+

derived from decompostion of the organic matter during
hydrothermal alteration at a relatively high temperature.1,20,23

NH4-illite is usually present in the high-rank coal seams, such
as the low volatile bituminous coal of the South Walker Creek
area, Australia,20 low volatile bituminous coal of the Adaohai
Mine,19 anthracite of the Wangtaipu Mine,21 and semi-
anthracite of the Tianjia Mine,22 China. NH4-illite occurs as
a bedding plane (Figure 5A−C) or cell-filling (Figure 5D−F).
A total of 48 spots of NH4-illite have been determined under
SEM−EDX (Table 3). The content of potassium varying from
the below detection limit to 3.96%, with an average of 2.54%, is
lower than that of K-illite (7.5%, K1.5Al4(Si6.5Al1.5)O20(OH)4).

1

Thus, the SEM-EDS data further confirmed the existence of
ammonian illite. Chamosite is generally rare in coal.44,45

However, it is not uncommon in the late Permian coals in
southwestern China.22,44,46−48 In the present study, chamosite
fills in the cell cavity (Figure 6A−C), coexisting with albite or
quartz. Chamosite also occurs as a colloidal form in the matrix
of NH4-illite (Figure 6D).

4.2.3. Albite and Pyrite. The Na-bearing mineral in the
semianthracite of Tianjia Mine, adjacent to the Xingying Mine,
is paragonite.22 However, the Na-bearing mineral in the
present study is albite. This can be confirmed not only by the
XRD + Siroquant data (Table 2) but also by the SEM−EDX
data (Table 3). Table 2 shows that albite is present in most
coal samples, especially sample WSXY-2 with a proportion of
32.4%. The chemical compostions of albite are relatively pure
and are composed of O, Al, Si, Na, and in some cases traces of
Fe, with Na varying from 4.85 to 8.96% and averaging 7.38%
(Table 3). In addition, the intensity of Al is approximately half
that of Si in albite under EDX spectra, which is different from
the paragonite EDX spectral characteristics with almost equal

Figure 3. Comparison between high-temperature ash (HTA) and
low-temperature ash (LTA).

Table 2. Mineralogical Compositions of Coal LTAs and Noncoal Samples by XRD and Siroquant Analysis (wt %)a

samples LTA/HTAb Qz Chm NH4-illite Py Ant Ab Jrs bassanite florencite

WSXY-1-r 88.37b 13.0 1.7 66.3 10.1 2.7 5.7 0.6
WSXY-2 40.1 1.1 2.2 55.0 5.9 1.6 32.4 1.8
WSXY-3-p 84.23b 1.3 94.3 0.3 3.7 0.4
WSXY-4 14.36 1.6 71.4 10.2 1.8 2.9 10.8 1.4
WSXY-5 18.65 0.1 73.9 11.8 4.4 3.6 6.0 0.3
WSXY-6 17.17 2.4 74.6 10.8 5.4 2.8 4.0
WSXY-7 13.68 0.4 70.3 11.4 5.6 2.9 9.3
WSXY-8 15 55.9 15.5 4.8 23.8
WSXY-9 19.62 0.3 67.4 11.3 10.0 1.9 9.1
WSXY-10 15.27 0.1 71.8 12.9 4.7 2.9 7.3 0.2
WSXY-11-f 90.43b 2.6 91.7 1.5 4.0 0.1

aQz, quartz; Chm, chamosite; Py, pyrite; Ant, anatase; Ab, albite; Jrs, jarosite. Blank represents below detection limits. bHTA.
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intensities of Al and Si. Albite is uncommon in the coal4 and
has been observed in the Songzao coals and Donglin coals in
Chongqing.49,50 Albite is presented in the matrix of mixed
layers of illite/smectite,49 but it occurs as cell- or fractrue-
fillings (Figure 7A−D) in the present study. Pyrite is a
common mineral in coals, especially in coals formed in marine
environments.51 Pyrite is relatively abundant in the Xingying
coals vayring from 5.9% to 15.5% (Table 2) and occurs as a
framboid and pyritohedron (Figure 8A−D).
4.2.4. Anatase and Quartz. Anatase distributes in the

matrix of NH4-illite and occurs as subhedral (Figure 9A) or
colloidal form (Figure 9B). Compared to the other late
Permian coals in southwestern China,52 quartz is not enriched
in the Xingying coals. Quartz fills in the cell cavity (Figure 6C)
or occurs as disseminations (Figure 8A).
4.2.5. Apatite, Fluorapatite, and Rhabdophane. Apatite is

observed in the roof sample and occurs as fracture-filling
(Figure 7C), coexisting with albite. Fluroapatite is common in
the host rocks and present as a matrix or subhedral texture
(Figure 10A,B), which is the cause of the fluorine enrichement.
The content of fluorine in the fluroapatite varies from 5.41 to
14.16%, with an average of 8.98% (Table 3). Rhabdophane is
detected in the roof, coal, and floor samples, occurring in the
granular form in the matrix of NH4-illite (Figure 11A−F).
4.3. Geochemistry. 4.3.1. Major Elements. The major

elements in the Xingying coals are mainly composed of SiO2,
Al2O3, and Fe2O3 (Table 4). However, the contents of SiO2,
Al2O3, and Fe2O3 (7.29, 3.94, and 2.64%, respectively) in the
present study are all lower than those in the Chinese coals.15

The ratio of SiO2/Al2O3 (1.78) is slightly higher than that in

the Chinese coals (1.44)15 and NH4-illite (1.18), indicating
quartz present, which is mentioned above.

4.3.2. Trace Elements. The trace element concentrations in
the Xingying coals are also listed in Table 4. In order to
evaluate the enrichement degree of trace elements in coal, the
concentration coefficient (CC, ratio of trace element
concentration in studying coals vs that in world hard coals)
was proposed.53 CC > 100, 10 < CC < 100, 10 < CC < 100, 5
< CC < 10, 2 < CC < 5, 0.5 < CC < 2, and CC < 0.5 represent
unusually enriched, significantly enriched, enriched, slightly
enriched, normal, and depleted, respectively.53 Based on the
classifications, vanadium is significantly enriched; Mo and Pb
are enriched; F, Co, Ni, Cu, Ge, Se, Y, Zr, Nb, Ag, Cd, In, Sn,
Cs, Sm, Eu, Tb, Dy, Er, Yb, Hf, Bi, and U are slightly enriched;
Li, Rb, Sb, Ba, Hg, and Tl are depleted; while the remaining
elements are close to the average values for world hard coals
(Figure 12).

4.3.2.1. Fluorine. The concentration of fluorine in the
Xingying coals varies from 228 to 589 μg/g, with an average of
378 μg/g, which is higher than the average values for Chinese
coals (130 μg/g)53 and world hard coals (82 μg/g).54 Note
that fluorine concentrations of roof, floor, and parting in the
Xingying Mine are enriched significantly, where fluorine of
roof, floor, and paring is up to 1889, 3385, and 2382 μg/g,
respectively (Figure 13), much higher than the average values
for the upper continental crust (UCC, 611 μg/g)55 and world
clay (610 μg/g).56

Fluorine is an environmentally sensitive element, and
endemic fluorosis happened severely in western Guizhou
province, where approximately 10 million people suffered from

Figure 4. X-ray diffractogram of sample WSXY-7, showing ammonian illite and other phases present.
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dental fluorosis and 1 million people suffered from skeletal
fluorosis.57 Previous studies indicated that coal-fired fluorosis
in western Guizhou province is caused by combustion of the
high-F coal.58,59 However, more and more pieces of evidence
indicate that F content is within the usual range of Chinese and
world coals.57,60 Thus, it is generally considered that the
endemic fluorosis is due to the combustion of high-F clay used
as a briquette binder for fine coal.15,60 The F content in the
host rocks (including roof, floor, and parting) is also unusally
enriched, so if the Xingying coals are mixed with these rocks
when mining, the mixed coals may enrich F significantly. The
local residents may suffer from endemic fluorosis if the mixed
coal is burned directly without beneficiation.61

The correlation coefficient between F and ash yield in the
Xingying coals is 0.94, indicating that F mainly occurs as
mineral matter. The correlation coefficients of rF‑SiO2 and
rF‑Al2O3 are 0.94 and 0.97, implying that F may associated with
clay minerals. Fluorine also correlated significantly with CaO
(rF‑CaO, 0.67), and the Ca-bearing minerals (e.g., fluroapatite)
may be carriers of fluorine, especially in the noncoal samples
(Figure 10). Fluorine is also detected in pyrite under SEM−
EDX (Table 3).
4.3.2.2. Vanadium, Cr, Co, and Ni. Vanadium is enriched

significantly in the Xingying coals with CC being 10.5. Cobalt
(CC, 2.53) and Ni (CC, 2.97) are enriched sligtly. The
content of Cr is close to the world hard coals, and the CC is

1.99. Along the coal profile, the concentration of V, Cr, Co,
and Ni gradually decreases from top to botom (Figure 13).
The correlation coefficients between ash yield and V, Cr, Co,

and Ni are 0.54, 0.85, 0.34, and 0.42, respectively, indicating
that V and Cr have significant positive correlations with ash
yield. Thus, it is inferred that V and Cr mainly occurred in the
mineral matter. The correlation coefficients of V and Cr with
SiO2 (rV‑SiO2, 0.53, rV‑SiO2, 0.85) and Al2O3 (rCr‑SiO2, 0.64,
rV‑SiO2: 0.82) further indicate that V and Cr are associated with
clay minerals. However, cobalt and Ni have both inorganic and
organic affinities.

4.3.2.3. Rare Earth Elements and Yttrium (REY). The
content of REY in the Xingying coals is from 82.9 to 289 μg/g
and averages 131 μg/g, higher than those of the world hard
coals (68 μg/g)54 but close to those of the Chinese coals (136
μg/g).15 Along the K2 coal profile, concentration variations of
REY are insignificant except for sample WSXY-2 (Figure 13).
On the basis of coal ash, only two samples (WSXY-9 and
WSXY-10) have higher REY than the cutoff grade of coal ash
proposed by Seredin and Dai (REO, 1000 μg/g).11

Based on the threefold geochemical classifications, ie.,
LREY, MREY, and HREY, and three enrichement types (L-
type, M-type, and H-type) proposed by Seredin and Dai11 and
the upper continental crust normalization,55 the Xingying coals
are all M-REY enrichment types except for sample WSXY-7
(H-type) (Figure 14). The Xingying coals and parting all

Figure 5. Modes of occurrence of NH4-illite and other mineral phases. (A) NH4-illite occurred as bed planes in sample WSXY-7; (B) NH4-illite
occurred as bed planes in sample WSXY-2; (C) NH4-illite in collodetrinite in sample WSXY-7; (D) cell-filling NH4-illite in sample WSXY-7; (E)
cell-filling NH4-illite in sample WSXY-2. (F) Fracture-filling NH4-illite and chamosite in sample WSXY-7. Images A−F: SEM and back-scattered
electron images.
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exhibit slightly CeN/CeN* negative anomalies; however, the
roof and floor show a slightly CeN/CeN* positive anomalies.
EuN/EuN* positive anomalies occur in all the coal and host
rock (including roof, floor, and parting) samples. Some studies
considered that Eu may be interfered by Ba in ICP-MS when
Ba/Eu is higher than 1000.62,63 The Ba/Eu ratio of the
Xingying coal and host rock samples varies from 20.2 to 130,
much lower than 1000, indicating that Eu is free of Ba
interference. REY in the Xingying coals correlated significantly

with ash yield, with a correlation coefficient of 0.99, indicating
that REY mainly occur in the inorganic matter.

5. DISCUSSION
5.1. Source of Terrigenous Materials. Kangdian Upland,

derived from the Emeishan mantle plume,50,64−66 is mainly
composed of flood basalts and considered as the dominant
source region providing terrigenous materials for late Permian
coals in southwestern China.42,67−69 For most late Permian
coals in southwestern China, the clastic materials are the

Table 3. SEM−EDX Semiquantitative Analysis of Some Minerals in the Coal and Rock Samples (%; on Carbon-Free Basis)a

O F Na Mg Al Si P S K Ca Ti V Fe Cu Mn

NH4-illite (n =
48)

min 53.05 bdl bdl bdl 5.36 9.84 bdl bdl bdl bdl bdl bdl bdl bdl bdl

max 80.40 bdl bdl 4.01 16.50 25.72 bdl 0.77 3.96 0.98 6.31 0.46 5.97 bdl bdl

ave 59.88 bdl bdl 1.80 12.62 20.81 bdl 0.06 2.54 0.03 0.65 0.01 1.63 bdl bdl

chamosite (n =
27)

min 49.82 bdl bdl 4.31 5.07 8.24 bdl bdl bdl bdl bdl bdl 7.91 bdl bdl

max 73.43 bdl bdl 11.23 12.89 18.62 bdl 0.60 1.78 0.50 1.61 bdl 18.27 bdl bdl

ave 56.54 bdl bdl 7.25 9.41 12.81 bdl 0.05 0.25 0.03 0.15 bdl 13.51 bdl bdl

albite (n = 13) min 46.27 bdl 4.85 bdl 7.39 22.56 bdl bdl bdl bdl bdl bdl bdl bdl bdl

max 62.24 bdl 8.96 bdl 13.43 33.72 bdl bdl bdl bdl bdl bdl 1.59 bdl bdl

ave 55.12 bdl 7.38 bdl 9.08 28.21 bdl bdl bdl bdl bdl bdl 0.21 bdl bdl

pyrite (n = 20) min bdl bdl bdl bdl bdl bdl bdl 5.19 bdl bdl bdl bdl 8.51 bdl bdl

max 66.04 7.05 bdl 4.75 10.25 15.47 2.48 57.91 2.11 5.98 1.25 bdl 45.59 3.16 0.62

ave 26.58 0.35 bdl 0.50 2.62 3.88 0.12 34.64 0.39 0.30 0.06 bdl 30.23 0.30 0.03

anatase (n = 9) min 50.18 bdl bdl bdl 0.57 1.02 bdl bdl bdl bdl 12.23 bdl bdl bdl bdl

max 60.26 bdl bdl 3.20 9.57 14.45 bdl bdl 2.08 bdl 46.57 bdl 4.58 bdl bdl

ave 54.57 bdl bdl 1.02 4.28 7.07 bdl bdl 0.79 bdl 30.75 bdl 1.53 bdl bdl

quartz (n = 10) min 48.88 bdl bdl bdl bdl 34.41 bdl bdl bdl bdl bdl bdl bdl bdl bdl

max 62.85 bdl bdl 2.07 4.05 43.04 bdl 0.62 0.85 2.74 bdl bdl 3.29 bdl bdl

ave 58.15 bdl bdl 0.37 1.27 39.38 bdl 0.06 0.16 0.27 bdl bdl 0.33 bdl bdl

apatite (n = 3) min 47.03 bdl bdl 1.36 1.34 1.94 5.32 bdl bdl 11.92 bdl bdl 2.89 bdl bdl

max 53.67 bdl bdl 5.28 5.51 8.70 13.19 bdl bdl 27.83 bdl bdl 9.60 bdl bdl

ave 50.72 bdl bdl 3.54 3.56 5.67 9.72 bdl bdl 20.37 bdl bdl 6.43 bdl bdl

fluroapatite (n =
3)

min 43.72 5.41 bdl bdl bdl bdl 13.66 bdl bdl 28.29 bdl bdl bdl bdl bdl

max 46.95 14.16 bdl bdl 1.67 3.04 15.26 bdl 0.47 31.83 bdl bdl bdl bdl bdl

ave 45.40 8.98 bdl bdl 0.56 1.01 14.25 bdl 0.16 29.64 bdl bdl bdl bdl bdl
abdl, below detection limit.

Figure 6. Modes of occurrence of chamosite and other mineral phases. (A) Cell-filling chamosite and albite in sample WSXY-2; (B) cell-filling
chamosite and albite in sample WSXY-2; (C) cell-filling chamosite and quartz in sample WSXY-2. (D) Colloidal chamosite in sample WSXY-3-p.
Images A−D: SEM and back-scattered electron images.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c02062
ACS Omega 2022, 7, 18969−18984

18975

https://pubs.acs.org/doi/10.1021/acsomega.2c02062?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02062?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02062?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02062?fig=fig6&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c02062?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 7. Modes of occurrence of albite and other mineral phases. (A) Cell-filling albite and euhedral pyrite in sample WSXY-2; (B) cell-filling
albite in sample WSXY-2; (C) fracture-filling albite and apatite in sample WSXY-1-r; (D) fracture-filling albite in sample WSXY-2. Images A−D:
SEM and back-scattered electron images.

Figure 8. SEM backscattered images of pyrite and other mineral phases. (A) Framboidal pyrite and disseminated quartz in sample WSXY-1-r; (B)
framboidal pyrite in sample WSXY-2; (C) cell-filling pyrite in sample WSXY-3-p; (D) pyritohedron pyrite in sample WSXY-7.

Figure 9. SEM backscattered images of anatase and other mineral phases. (A) Subhedral anatase in sample WSXY-3-p; (B) colloidal anatase in
sample WSXY-11-f.
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tholeiitic basalt of the Kangdian Upland.24 However, some
studies have shown that the clastic materials of late Permian
coals in southwestern China are the felsic-intermediate rocks at
the top of the Kangdian Upland70 or mafic tuff23 or other
provenances.41,50,71 The Al2O3/TiO2 ratio is a reliable
geochemical index for sediment source discrimination of
sedimentary rocks including coal deposits,9,72,73 which has
been extensively used. The Al2O3/TiO2 ratio of 3−8, 8−21,
21−70 indicates that the parent rock composition is mafic,
intermediate, and felsic igneous rocks, respectively.
All the Xingying coal and host rock samples fall into the

category of mafic rocks except sample WSXY-8 (Figure 15),
implying that the terrigenous materials come from the mafic
basalts of the Kangdian Upland. Moreover, the Eu anomaly is

another parameter for indicative of the sediment source region
of coal deposits.62 If the UCC-normalized Eu anomaly occurs
positive or negative in coals, it is suggested that the inorganic
materials derived from mafic or felsic compositions,
respectively.62 The Eu anomaly has been used in the
Huayingshan,71 Nantong,50 and southeastern Chongqing
Coalfields34 for indicative of the sediment source region
being not the mafic basalts of the Kangdian Upland. The REY
distribution patterns indicate that the inorganic material of the
Xingying coals is from the mafic basalts of the Kangdian
Upland, owing to the significant positive Eu anomalies, which
further confirmed the results mentioned above.

5.2. Injection of Hydrothermal Fluids. Injection of
hydrothermal fluids plays an important role in the enrichment

Figure 10. SEM backscattered images of fluorapatite and other mineral phases. (A) Fluorapatite and quartz in sample WSXY-1-r; (B) fluorapatite
in sample WSXY-11-f.

Figure 11. SEM back-scattered images and EDX spectra of rhabdophane and other mineral phases. (A) Rhabdophane occurred in the matrix of
NH4-illite in sample WSXY-3-p; (B) EDX spectrum of spot 1; (C) rhabdophane occurred in the matrix of NH4-illite in sample WSXY-7; (D) EDX
spectrum of spot 2; (E) rhabdophane occurred in the matrix of NH4-illite in sample WSXY-11-f; (F) EDX spectrum of spot 3.
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Table 4. Loss on Ignition (LOI, %), Percentages of Major Element Oxides (%), and Concentrations of Trace Elements (μg/g)
for Coal and Host Rock Samples in the Xingying Mine (on Coal or Rock Basis)a

WSXY-

element 1-r 2 3-p 4 5 6 7 8 9 10 11-f avg world coal57 CC

LOI 11.63 63.64 15.77 88.80 84.39 85.59 87.96 88.90 83.73 87.41 9.57 83.8 nd
SiO2 48.36 18.68 44.59 4.66 6.68 6.34 5.38 4.16 6.73 5.71 48.42 7.29 8.47b

TiO2 2.3 1.3 4.23 0.43 1.15 1.2 0.77 0.11 1.9 0.75 4.54 0.95 0.33b

Al2O3 17.82 8.43 22.18 2.73 3.86 3.74 3.12 2.33 3.98 3.35 23.66 3.94 5.98b

Fe2O3 9.72 4.29 5.17 2.48 2.72 1.99 1.72 3.72 2.45 1.73 4.02 2.64 4.85b

MnO 0.051 0.006 0.022 0.003 0.002 0.002 0.003 0.002 0.003 0.002 0.008 0 0.02b

MgO 4.29 1.44 2.99 0.25 0.34 0.32 0.29 0.25 0.34 0.29 4.18 0.44 0.22b

CaO 0.79 0.14 0.31 0.14 0.15 0.17 0.17 0.08 0.16 0.17 0.4 0.15 1.23b

Na2O 0.384 0.527 0 0.011 0.03 0.021 0.022 0.015 0.014 0.021 0 0.08 0.16b

K2O 3.44 1.03 3.82 0.29 0.41 0.37 0.31 0.29 0.41 0.33 4.49 0.43 0.19b

P2O5 0.344 0.029 0.048 0.009 0.014 0.015 0.011 0.008 0.018 0.012 0.039 0.01 0.09b

Al2O3/SiO2 2.71 2.22 2.01 1.71 1.73 1.7 1.72 1.79 1.69 1.7 2.05 1.78 1.42b

Li 27.4 9.45 16.9 2.08 2.99 1.56 2.14 1.95 2.04 1.52 16.6 2.97 12 0.25
Be 5.83 1.78 5.64 1.78 2.29 2.36 2.48 1.2 2.37 2.32 2.5 2.07 1.6 1.30
B 193 88.2 309 51.2 66.6 68.1 55.8 37.8 65.4 57 350 61.2 52 1.18
F 1889 551 2382 265 393 390 589 228 327 278 3385 378 88 4.29
Sc 12.5 11.8 26.5 3.15 6.44 5.97 4.69 2.44 6.89 4.76 19.8 5.77 3.9 1.48
V 156 412 482 310 364 316 155 107 243 186 641 262 25 10.46
Cr 153 36.2 191 22.9 42.8 38.1 26.9 19.7 40.8 27.1 73.2 31.8 16 1.99
Co 26.4 13.5 21.1 9.88 15.1 14.7 14.7 6.9 13.7 14.6 4.66 12.9 5.1 2.53
Ni 71.3 30.6 53.1 43.7 55.2 49.3 36.8 16.1 39.9 37 34.4 38.6 13 2.97
Cu 142 96.2 211 44.1 93.9 77.2 48.4 27.9 123 63.8 130 71.7 16 4.48
Zn 183 35.1 117 23.6 40.2 27.5 26.8 25.4 27.6 22 37.4 28.5 23 1.24
Ga 27.6 12 40.6 8.48 10.9 11.5 10.1 6.99 9.99 9.2 38.1 9.88 5.8 1.70
Ge 2.24 1.64 5.43 4.63 5.7 5.77 5.84 3.26 4.3 4.23 4.11 4.42 2.2 2.01
As 4.64 2.45 3.79 6.07 6.68 4.39 4.3 8.27 6.39 4.52 1.1 5.38 8.3 0.65
Se 3.01 5.08 9.03 4.82 4.83 3.93 4.14 4.64 5.97 4.78 1.31 4.77 1.3 3.67
Rb 50.8 14.5 70.7 4.76 6.63 5.73 4.52 5.27 6.73 4.75 93.3 6.61 14 0.47
Sr 426 161 435 132 146 157 161 101 154 152 424 145 110 1.32
Y 41.8 39 52.3 22.5 26.3 27.9 24.9 25.7 31.1 28.9 22 28.3 8.4 3.37
Zr 580 379 627 56.2 121 111 76.3 42.3 122 82.5 618 124 36 3.44
Nb 70.1 10.3 108 3.53 9.63 8.12 7.36 3.38 19.2 10.1 87.3 8.96 3.7 2.42
Mo 1.51 2.74 5.3 14.3 22.9 22.5 20.2 11 15.9 15.6 11.1 15.64 2.2 7.11
Ag 2.17 1.23 2.36 0.19 0.53 0.38 0.26 0.16 0.44 0.28 2.23 0.44 0.095 4.58
Cd 1.85 0.79 2.19 0.38 0.50 0.44 0.39 0.46 0.42 0.37 0.83 0.47 0.22 2.13
In 0.2 0.12 0.2 0.05 0.11 0.1 0.07 0.04 0.13 0.08 0.27 0.09 0.031 2.83
Sn 5.47 2.73 4.93 1.59 3.34 3.44 3.14 1.44 3.06 2.45 5.51 2.65 1.1 2.41
Sb 0.12 0.08 0.53 0.09 0.42 0.37 0.33 0.23 0.31 0.32 0.11 0.27 0.92 0.29
Cs 15.2 2.14 15.3 bdl bdl bdl bdl bdl bdl bdl 13.1 2.14 1 2.14
Ba 115 47.9 197 29.9 45.5 46.5 33.9 18.9 49.2 34.9 207 38.3 150 0.26
La 58.5 50.1 75.1 9.41 17.2 14.9 10.1 8.83 19.8 12.2 18.9 17.8 11 1.62
Ce 133 93.8 149 19.1 32 29.8 20.8 18.6 42.5 26.4 40.1 35.4 23 1.54
Pr 14.8 12.6 16.9 2.75 4.32 4.1 2.97 2.8 5.96 3.81 4.26 4.91 3.5 1.40
Nd 59.8 51.3 66.1 12.4 18.3 17.6 13.3 13 25.8 17 17.2 21.1 12 1.76
Sm 12.1 9.68 12.8 3 4.08 3.9 3.21 3.28 5.56 3.9 5.14 4.58 2 2.29
Eu 2.77 2.38 3.17 0.77 1.08 1.05 0.87 0.85 1.41 1.03 1.6 1.18 0.47 2.51
Gd 12.8 9.38 13.5 3.57 4.65 4.67 3.96 3.98 6.18 4.63 6.19 5.13 2.7 1.90
Tb 1.86 1.27 1.95 0.56 0.72 0.73 0.64 0.63 0.88 0.71 0.99 0.77 0.32 2.40
Dy 10.7 7.48 11.3 3.66 4.61 4.81 4.23 4.13 5.32 4.67 5.83 4.86 2.1 2.32
Ho 1.99 1.48 2.06 0.72 0.92 0.96 0.88 0.79 1.03 0.92 0.98 0.97 0.54 1.79
Er 5.73 4.64 5.51 2.15 2.76 2.88 2.68 2.25 2.99 2.83 2.66 2.9 0.93 3.12
Tm 0.75 0.67 0.7 0.28 0.36 0.39 0.36 0.29 0.38 0.35 0.34 0.38 0.31 1.24
Yb 5.02 4.87 4.41 1.84 2.47 2.47 2.43 1.84 2.41 2.26 2.33 2.57 1 2.57
Lu 0.7 0.71 0.59 0.25 0.34 0.35 0.35 0.26 0.33 0.32 0.31 0.36 0.2 1.81
Hf 14.5 7.45 17.3 1.56 3.11 2.9 2.05 1.22 3.11 2.24 15.2 2.96 1.2 2.46
Ta 3.15 0.49 8.16 bdl 0.34 0.23 0.23 0.06 1.24 0.47 6.25 0.44 0.28 1.56
W 1.97 0.26 3.66 0.44 0.52 0.53 0.53 0.29 1.95 0.65 3.47 0.65 1.1 0.59
Bi 0.5 0.4 0.31 0.12 0.31 0.32 0.24 0.23 0.39 0.28 0.63 0.29 0.1 2.86
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of trace elements especially the critical elements in the coal
seams.2,18,22,74 Previous studies have proved that geochemical
and mineralogical anomalies of coals in southwestern China
are attributed to the hydrothermal solutions.23,75−77 Zhou et al.
demonstrated that the Tianjia coals, adjacent to the present
study area, were significantly affected by the hydrothermal

solutions on the basis of Sr. isotope signature and mineral

assemblages.22 Similarly, the Xingying coals are also affected by

the hydrothermal fluids, leading to the mineralogical and

geochemical anomalies. There are some mineralogical and

geochemical evidence.

Table 4. continued

WSXY-

element 1-r 2 3-p 4 5 6 7 8 9 10 11-f avg world coal57 CC

Hg 0.09 0.15 0.11 0.13 0.12 0.1 0.09 0.16 0.13 0.11 0.05 0.12 0.63 0.19
Tl 0.32 0.03 0.28 0.05 0.08 0.03 0.01 0.1 0.04 0.02 0.14 0.04 7.8 0.01
Pb 17.8 5 10.4 7.64 9.43 6.74 5.69 11.8 7.93 5.77 5.15 7.5 0.97 7.73
Th 9.59 4.9 15.9 1.68 3.1 2.78 2.08 1.51 2.99 1.99 14.7 2.63 3.3 0.80
U 3.7 11.1 18.5 7.54 7.81 5.22 4.32 8.62 8.14 4.05 13.8 7.1 2.4 2.96

aCC, concentration coefficient, ratio between the average value of individual elements in studied coals and the mean value in world hard coals; bdl,
below detection limit; nd, no data. bThe data are cited from Dai et al.15

Figure 12. Concentration coefficients of trace elements in the Xingying coals.

Figure 13. Variations of F, V, Cr, Co, Ni, and REY along the coal seam profile.

Figure 14. UCC-normalized REY distribution patterns of coal and host rock samples in the Xingying Mine. REY data of upper continental crust
(UCC) are from Taylor and Mclennan.55

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c02062
ACS Omega 2022, 7, 18969−18984

18979

https://pubs.acs.org/doi/10.1021/acsomega.2c02062?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02062?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02062?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02062?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02062?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02062?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02062?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02062?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02062?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02062?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02062?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02062?fig=fig14&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c02062?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


NH4-illite is considered an interaction product between pre-
existing kaolinite or K-illite and NH4

+ decomposed from
organic matter at a relatively high temperature during
hydrothermal alteration.20,21,23,78 Due to the high formation
temperature (>250 °C),43 NH4-illite is usually present in the
high rank coals and associated rocks.1,19,20,78−81 Based on the
nitrogen isotope discrepancy between inorganic and organic
matter, Xie et al. confirmed the hydrothermal origin of NH4-
illite.82 Thus, the presence of NH4-illite is indicative of
precipitates derived from hydrothermal fluids that passed
through the coal or subjected to increased geothermal
gradients.1,22 NH4-illite is enriched and distributed in the cell
cavities or fractures (Table 3; Figure 5D−F) in the Xingying
coals, providing evidence for the hydrothermal origin. During
the hydrothermal alteration process, NH4-illite is formed by
interaction of pre-existing kaolinite or K-illite with NH4

+

released from organic matter under high temperatures.
Owing to the kaolinite or K-illite absence under SEM, the
pre-existent kaolinite or K-illite may be completely altered by
the hydrothermal solutions.
Chamosite is also a typical mineral in relation to the

hydrothermal origin. It is formed by interaction of pre-existing
kaolinite and Fe−Mg-rich fluids20,44,48 or directly deposited
from the siliceous solutions containing Fe−Mg.46 In the
present study, chamosite, independent of kaolinite, occurs in
the cell-fillings (Figure 6A−C), indicating its hydrothermal

origin. Albite of detrital origin was found in the roof sample
from borehole 11,424 of Bowen Basin, Australia.20 However,
the occurrence of albite with cell- or fracture-filling (Figure
7A−D) in the present study indicates its authigenic origin.
Another Na-bearing mineral, paragonite, is considered to be
the result of hydrothermal alteration,20,22 and this may also be
the mechanism of albite in the present study. The cell-filling
quartz was also identified (Figure 6C), indicating an authigenic
origin. Additionally, chamosite, albite, and quartz occur in the
same cell or fracture (Figure 6A−C), suggesting that the
Xingying coals were subjected at least three injections of
hydrothermal fluids.1,22 In the hydrothermal fluid injections,
the compositions of each fluid changed, leading to the
formation of different minerals.83 Based on the occurrence of
these three minerals, chamosite formed earlier than quartz but
later than albite.
The subhedral and colloidal anatase and fracture-filling

apatite also suggest a hydrothermal origin. Rhabdophane, a
secondary mineral containing REY, is rare in coal but is not
uncommon in late Permian coals from southwestern China
and considered as a product in relation to the hydrothermal
origin.23,34 Rhabdophane was confirmed in the roof, coal, and
floor samples and occured in the granular form in the matrix of
NH4-illite (Figure 11A−F), indicating a hydrothermal origin.
Gadolinium generally shows very weak negative anomalies in

Chinese and US coals.62 However, the coals influenced by
hydrothermal solutions or other waters exhibit positive or
weakly positive anomalies.62,84 The Xingying coals occur
weakly Gd positive anomalies varying from 0.96 to 1.19 and
averaging 1.08 (Table 5) and are characterized by M-type REY
patterns (Figure 14), which are typical of acid waters, including
high pCO2-waters in coal basins.84 Another evidence for the
hydrothermal fluid injection in the present study is the
redistribution of elements such as Nb/Ta, Zr/Hf, and U/Th in
the coal, parting, roof, and floor samples. It is generally
acknowledged that ratios of Nb/Ta, Zr/Hf, and U/Th in the
coal altered by hydrothermal fluids are higher than those in the
parting, roof, and floor samples.71,77 Ratios of Nb/Ta, Zr/Hf,
and U/Th in sample WSXY-2 are higher than those in the
underlying parting (WSXY-3-p) (Figure 16). These element
pairs in sample WSXY-10 are also higher than those in the
underlying floor except for Zr/Hf (Figure 16). The geo-

Figure 15. Relationships between Al2O3 and TiO2 for coal and host
rock samples in the Xingying Mine.

Table 5. REY Geochemical Parameters of Coal and Host Rock Samples in the Xingying Minea

sample no. REY (μg/g) LaN/LuN LaN/SmN GdN/LuN enrichment type CeN/CeN* EuN/EuN* YN/HoN GdN/GdN* LaN/LaN*

WSXY-1-r 363 0.83 0.73 1.44 M−H 1.04 1.03 0.76 1.13 1.19
WSXY-2 289 0.71 0.78 1.04 M−H 0.85 1.15 0.96 1.16 1.23
WSXY-3-p 415 1.28 0.88 1.81 L−M 0.95 1.11 0.92 1.14 1.21
WSXY-4 82.9 0.38 0.47 1.14 M−H 0.86 1.08 1.13 1.11 1.49
WSXY-5 120 0.51 0.63 1.08 M−H 0.85 1.14 1.04 1.11 1.37
WSXY-6 116 0.43 0.57 1.06 M−H 0.87 1.13 1.05 1.12 1.30
WSXY-7 91.6 0.29 0.47 0.90 H 0.86 1.12 1.02 1.10 1.42
WSXY-8 87.2 0.34 0.40 1.22 M−H 0.85 1.08 1.18 1.11 1.62
WSXY-9 152 0.60 0.53 1.47 M−H 0.89 1.10 1.09 1.17 1.24
WSXY-10 110 0.38 0.47 1.13 M−H 0.88 1.11 1.14 1.13 1.35
WSXY-11-f 129 0.62 0.55 1.60 M−H 1.02 1.30 0.82 1.10 1.32
Average 131 0.45 0.54 1.13 0.86 1.11 1.08 1.13 1.38

aLaN/LuN, ratio between LaN and LuN; LaN/SmN, ratio between LaN and SmN; GdN/LuN, ratio between GdN and LuN; YN/HoN, ratio between YN
and HoN; CeN/CeN* = CeN/(0.5LaN + 0.5PrN); EuN/EuN* = EuN/(0.5SmN + 0.5GdN); GdN/GdN* = GdN/[(SmN × 0.33) + (TbN × 0.67)]; LaN/
LaN* = LaN/(3PrN − 2NdN); N, upper continental crust normalized; L, light rare earth element enrichment; M, medium rare earth element
enrichment; H, heavy rare earth element enrichment.
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chemical evidence further confirmed that the Xingying coals
are influenced by the injection of hydrothermal fluids.
5.3. Marine Influence. Marine sediment environments

also make contribution to the trace element enrichment. Being
sensitive to the sedimentary environment, B/Ga and Sr/Ba
ratios are usually used as indices for sedimentary environment
indicatives.85 Boron and Ga are two different elements. Borate
has high solubility and could migrate over long distances. The
inactive gallium, however, is easy to be precipitated during
migration processes. The B/Ga ratios being <1.5, 1.5−3, and
>4−5 represent fresh, brackish, and saline water facies,
respectively.86 Strontium and Ba usually combine with SO4

2−

to form SrSO4 and BaSO4, respectively. Owing to the different
solubility, BaSO4 could be precipitated adjacent to provenance
area and SrSO4 could be transported over long distances and
precipitated in the ocean.85 Hence, Sr in marine sediments has
high Sr content and Sr/Ba ratios. The Sr/Ba ratios higher than
1 and lower than 1 indicate marine and continental
environments, respectively.85 The B/Ga and Sr/Ba ratios in
the Xingying coals are all higher than 4 and 1, respectively,
indicating that the Xingying coals are deposited in marine
environments. As mentioned above, the total sulfur in the
Xingying coals varies from 1.16 to 2.98% and averages 1.66%,
also indicating a seawater-influenced deposition environment.
Additionally, seawater is characterized by Y positive anomalies,
so coals subjected to the seawater influence would expect to
have positive Y anomalies.62,85 Yttrium in the Xingying coals
shows significant positive anomalies (Figure 14), further
demonstrating the marine influence.
5.4. Critical Elements. Due to their irreplaceable

applications in modern technologies, REY are considered as
critical elements.11,62,87 In order to meet the increasing growth
of REY demand, discovering new deposits is necessary.5,87

Fortunately, coal and coal byproducts have the potential to
provide REY in the foreseeable future.8,11,88−92 The late
Permian coals in southwestern China have been reported
repeatedly for enrichment of REY.9,23,27,42,68,93 Seredin and
Dai proposed the cut-off grade of oxides of REY in coal ash
(1000 μg/g) and an evaluation index, outlook coefficient
(Coutl).

11 REY with the Coutl > 2.4, 0.7 ≤ Coutl < 1.9, and Coutl <
0.7 represent highly promising, promising, and unpromising,
respectively.23 Based on the relationship between cut-off grade
and Coutl, most coal benches, the roof, parting, and the floor fall
within the unpromising area (Figure 17). Only two coal
benches (WSXY-9 and WSXY-10) are within the promising
area. However, the thickness of these two coal benches is thin
(20 cm). Therefore, unlike other late Permian coals, the
Xingying coals have no potential for extracting REY. The
location of the present study is far away from the sediment

source region, which may lead to a relatively lesser REY input.
In addition, the hydrothermal fluids may contain lesser REY
compositions, compared with other later Permian coals
enriched with REY.

6. CONCLUSIONS
The Xingying coals are classified as semianthracite owing to
the plutonic metamorphism, with low ash and medium sulfur.
The sulfur in coal is dominated by organic sulfur, followed by
sulfate and pyritic sulfur. NH4-illite, which accounts for more
than 50% in minerals, is significantly enriched in the Xingying
coals. The other minerals include pyrite and, to a lesser extent,
jarosite, albite and anatase, with traces of chamosite, quartz,
bassanite, apatite, fluorapatite, florencite, and rhabdophane.
NH4-illite is formed by the interaction of pre-existed kaolinite
or K-illite with NH4

+ decomposed from organic matter at high
temperatures during hydrothermal solution ingress. The
hydrothermal solution ingress also resulted in deposition of
chamosite, albite, quartz, anatase, apatite, fluorapatite, and
rhabdophane. The Xingying coals enrich V, Mo, Pb, F, Co, Ni,
Cu, Ge, Se, Y, Zr, Nb, Ag, Cd, In, Sn, Cs, Sm, Eu, Tb, Dy, Er,
Yb, Hf, Bi, and U, compared with world coals. The F content
in the host rocks (including roof, floor, and parting) is unusally
enriched, so if the Xingying coals are mixed with these rocks
when mining, the mixed coals may enrich F significantly. The
local residents may suffer from endemic fluorosis if the mixed
coal is burned directly without beneficiation, which requires
attention. The inorganic material of the Xingying coals comes
from the mafic basalts of the Kangdian upland. Additionally,
marine environments also make contribution to the inorganic

Figure 16. Variations of Nb/Ta, Zr/Hf, and U/Th along the coal seam profile.

Figure 17. Evaluation of REY in the coal ashes and host rocks in the
Xingying Mine.
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material formation in the Xingying coals. Unlike other late
Permian coals in southwestern China, the Xingying coals
cannot be considered as alternative sources for extraction of
REY.
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