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Abstract

Normative modelling is becoming more popular in neuroimaging due to its ability to make 

predictions of deviation from a normal trajectory at the level of individual participants. It allows 

the user to model the distribution of several neuroimaging modalities, giving an estimation for the 

mean and centiles of variation. With the increase in the availability of big data in neuroimaging, 

there is a need to scale normative modelling to big data sets. However, the scaling of normative 

models has come with several challenges.

So far, most normative modelling approaches used Gaussian process regression, and although 

suitable for smaller datasets (up to a few thousand participants) it does not scale well to the 

large cohorts currently available and being acquired. Furthermore, most neuroimaging modelling 

methods that are available assume the predictive distribution to be Gaussian in shape. However, 

deviations from Gaussianity can be frequently found, which may lead to incorrect inferences, 

particularly in the outer centiles of the distribution. In normative modelling, we use the centiles to 

give an estimation of the deviation of a particular participant from the ‘normal’ trend. Therefore, 

especially in normative modelling, the correct estimation of the outer centiles is of utmost 

importance, which is also where data are sparsest.

Here, we present a novel framework based on Bayesian Linear Regression with likelihood warping 

that allows us to address these problems, that is, to scale normative modelling elegantly to big 

data cohorts and to correctly model non-Gaussian predictive distributions. In addition, this method 

provides also likelihood-based statistics, which are useful for model selection.

To evaluate this framework, we use a range of neuroimaging-derived measures from the UK 

Biobank study, including image-derived phenotypes (IDPs) and whole-brain voxel-wise measures 

derived from diffusion tensor imaging. We show good computational scaling and improved 

accuracy of the warped BLR for certain IDPs and voxels if there was a deviation from normality of 

these parameters in their residuals.
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The present results indicate the advantage of a warped BLR in terms of; computational scalability 

and the flexibility to incorporate non-linearity and non-Gaussianity of the data, giving a wider 

range of neuroimaging datasets that can be correctly modelled.
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1 Introduction

Big data has become more widely available in neuroimaging (UK Biobank, ENIGMA, 

ABCD study, PNC, among others) [1], [2], [3], [4]. This has ignited a renewed interest 

in modelling normal brain development, to estimate quantitive brain-behaviour mappings 

and capture deviations from such models to derive neurobiological markers of different 

psychiatric disorders. These neurobiological markers could move us closer towards 

individualized and precision medicine [5]. Until now, the neurobiological markers for 

psychiatric disorders have been mostly developed with studies that used classifiers trained 

in a case-control setting. Counter-intuitively, an increase in sample size has shown to 

reduce the accuracy of classifying cases from controls for psychiatric disorders [6]. One 

of the main reasons for this decrease in accuracy has been posed to be the heterogeneity 

in the participants both biologically and behaviorally, which can only fully be captured 

by a large data set [6]. Normative modelling is an emerging method used to understand 

this heterogeneity in the population. Similar to growth charts in pediatric medicine, which 

describe the distribution of height or weight of children according to their age and sex, 

normative models can be used to model the distribution of neuroimaging derived phenotypes 

in a population, including the mean and centiles of variation [7], according to age, gender, 

or other demographic or clinical variables [8]. The deviations from this normative range 

can be quantified statistically, for example as Z-scores, which have been linked to several 

psychiatric disorders [7], [9], [10], [11], [12], [13].

Although promising, there are still certain challenges in performing normative modelling 

on big neuroimaging data. First of all, Normative models have been mainly developed 

using Gaussian process regression. [14]. Gaussian process regression is flexible and 

accurate, but a drawback is its computational complexity, which is governed by the 

need to compute the exact inverse of the covariance matrix. This inversion scales poorly 

with an increase in data points [15]. Therefore, using these models on large datasets 

requires extensive computational power and is often not feasible (typically beyond a few 

thousand subjects). Furthermore, most normative models assume the modelled distribution is 

Gaussian. However, distributions diverging from Gaussianity are frequently found in specific 

neuroimaging modalities. These non-Gaussian signals cannot be accounted for using a 

standard normative model based on Gaussian process regression. We argue that modelling 

non-Gaussianity is important in general and is frequently overlooked by the neuroimaging 

community in that most regression methods used in practice –often implicitly– assume 

Gaussian residuals. Thus, there is a need to develop methods that can flexibly handle the 

computational demand and non-Gaussianity of big data sets.
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In this paper, we propose a next-generation framework based on Bayesian linear regression 

(BLR) to address these challenges. We introduce an extension of the BLR method for 

accurately modelling non-Gaussian distributions using a likelihood warping technique, 

giving a warped BLR model. The new framework has several benefits over previously 

used methods: (i) A BLR model can use a linear combination of non-linear basis functions 

(such as B-splines) which can be considered to provide a low-rank approximation of the 

Gaussian process regression models [16]. However, the BLR model has considerably better 

computational scaling, since the complexity of the model is fixed according to a set of 

basis-functions. Therefore, the model can be scaled much more easily to large datasets. 

Furthermore, a set of model coefficients can be estimated that can easily be shared without 

the need to share the data (e.g. to compute a cross-covariance matrix for new data points), 

thus making it easier to make predictions on new datasets. (ii) The non-Gaussianity of 

the residuals can be modelled by the flexible warping of the Gaussian function, which 

gives more options to model different types of neuroimaging data that cannot be accurately 

modelled using a standard BLR. (iii) Efficient model selection criteria are naturally defined 

for the warped BLR through the marginal likelihood and can be calculated in closed form. 

The marginal likelihood gives a balance between model complexity and model fit. This can 

aid in choosing the optimal model for a specified imaging modality.

We will demonstrate this model by testing it on different types of neuroimaging data derived 

from the UK Biobank dataset. The UK Biobank dataset has several magnetic resonance 

imaging (MRI) imaging modalities, including structural and functional brain data. With over 

40,000 participants’ MRI data from 40 to 80 years old, this provides a rich set of different 

neuroimaging data and defines a benchmark for future population-based studies. In this 

work, we will present the warping function and recommend how to use it for several data 

modalities. First, we give an illustrative example using image-derived phenotypes (IDPs), 

which are convenient and widely used summary measures of brain function and structure 

[17]. Specifically, we will show a detailed example of estimating a normative model for 

white matter hyperintensities (WMHs). WMHs have been shown before to demonstrate 

quite non-Gaussian behaviour [18], and are therefore a good example where the warped 

BLR could be preferred over the B-spline BLR. Second, we show the scalability of this 

method by performing a whole-brain analysis for certain diffusion tensor imaging (DTI) 

measures. We use DTI measurements, as there are large associations with age and we expect 

certain non-linear and non-Gaussian trends in the data [19].

Finally, we want to evaluate the link between brain imaging abnormality scores and 

behaviour. Therefore, deviations from normal brain functioning are associated with cognitive 

functioning. The deviations are captured by Z-scores, which are shown to correlate with 

measures of intelligence in the UK Biobank dataset, such as; numerical memory, reaction 

time and visual memory.

In summary, the main contributions of the paper are to give: (i) a new comprehensive 

framework for big data normative modelling; (ii) the introduction of the novel 

methodological approach for modelling non-Gaussian response variables; (iii) an extensive 

and didactic evaluation of this framework on the UK Biobank cohort and (iv) a 

demonstration of the ‘Predictive Clinical Neuroscience software toolkit’ (PCNtoolkit) for 
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big data normative modelling. Ultimately, we hope this paper will give deeper insight into 

the application of normative models on different types of neuroimaging modalities.

2 Materials and methods

2.1 Sample

All the data used came from the UK Biobank imaging dataset [1]. Full details on the 

design of the study and the preprocessing steps can be found in subsequent papers [17], 

[20]. Briefly, the data used contains around 10,000 participants of the 2017 release and 

additional longitudinal data of around 5,000 subjects of the 2020 release. The participants 

were between 40 and 80 years of age, with around 47 % males.

In this study, two types of analyses were performed using different datasets. For the first 

analysis, a dataset containing IDPs was used. For consistency with existing work, the IDPs 

were processed using FUNPACK [21], which is an automatic normalisation, parsing and 

cleaning kit, developed at the Wellcome Centre for Integrative Neuroimaging. The IDPs 

include three main imaging modalities: structural, functional and diffusion brain imaging. 

Among these IDPs, there are very gross measures, such as the total amount of brain volume, 

to more detailed measurements, such as the connectivity between two brain regions. In 

total 819 neuroimaging IDPs were used for subsequent analysis, see B.1 for the list of 

IDPs used. Furthermore, we also tested our model on another set of IDPs; 150 FreeSurfer 

measures, which were preprocessed with FreeSurfer v6.1.0, using a T2-weighted image 

where available, see B.1 for the list of the FreeSurfer measures used.

For the second analysis, a whole-brain model was built, using voxel-wise fractional 

anisotropy (FA) and mean diffusivity (MD) measures. The data were processed using the 

UKB pipelines; including the DTI fitting tool DTI-FIT and a tract-based spatial statistics 

(TBSS) style analysis, which gave us the skeletonised DTI files. In total, around 10,000 

participants with dMRI-scans passed the quality control applied by the UK Biobank [17]. 

Afterwards, we added two extra exclusion criteria. First, participants were removed if their 

Z-score of the discrepancy between the dMRI image and the structural T1 image was higher 

than three, based on data-field 25731 in the UK Biobank. Second, participants were removed 

if their Z-score of the number of outlier slices was higher than three, which is a reflection 

of the movement of the participant during the scan, based on data-filed 25746-2.0 in the UK 

Biobank. For the covariates we used age, gender and dummy coded site variables.

2.2 Cognitive data

We used the cognitive phenotypes that were extracted from the UK biobank using 

FUNPACK [21] to evaluate the cognitive associations with the deviations from the 

normative model. These measures are derived from the 13 cognitive tests present in the 

UK Biobank, see the UKB showcase. The tests were administered using a touchscreen 

questionnaire and included numerical memory, reaction time, fluid intelligence, visual 

memory and prospective memory. Later other tests that measured executive function, 

declarative memory and non-verbal reasoning were added [22]. For full details on the 
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different cognitive tests applied in UK Biobank see [23]. An overview of all the measures 

used in this study is presented in the supplementary E.6.

2.3 Normative model formulation

We use a flexible normative modelling framework to model different types of neuroimaging 

data. We have N subjects with brain data yn n = 1
N , each of dimension D (e.g. the number 

of voxels or IDPs) and acquired from one of S different scanning sites. We use Y to denote 

an N × D matrix containing these variables, where ynd denotes the n-th subject and d-th 

neuroimaging variable. Since the neuroimaging variables are estimated separately here, we 

simplify the notation by using y to denote the vector of observations from a single variable 

and yn for a single observation. In general, we want to predict the distribution of the value 

for each voxel or brain region, the dependent variable (y), from a set of covariates xn n = 1
N

(e.g. age, gender or site), the independent variables. In this paper, we adopt a straightforward 

approach to model nonlinear relationships, by applying a basis expansion to the independent 

variables. A common approach is to use polynomials, but these can be a poor choice, as 

they can induce global curvature [24]. Here we apply a common B-spline basis expansion 

(specifically, cubic splines with 5 evenly spaced knot points), although other approaches are 

also possible. We denote this expansion by φ(x), with Φ an N × K matrix containing the 

basis expansion for all subjects. In the applied model, y is assumed to be the result of a 

linear combination of the B-spline basis function transformation plus a noise term:

y = wTϕ(x) + ϵs (1)

With w the estimated vector of weights and ϵs = N 0, βs
−1  a Gaussian noise distribution for 

site s, with mean zero and a noise precision term βs (i.e. the inverse variance). All the noise 

precision terms from the different sites will be combined in a vector β and the site precision 

matrix Λβ, which has β along the leading diagonal and is the inverse of the site covariance 

matrix Λβ = Σβ–1. Note that we allow the noise precision to vary across sites in order to 

accommodate inter-site variation along with site-specific intercepts (i.e. dummy coded site 

regressors in the design matrix). We have shown previously that this approach provides an 

efficient way to accommodate site effects in normative modelling [25].

Following similar derivations as given by Huertas et al. [16], we consider a BLR model, 

placing a Gaussian prior over our model parameters p(w|α) = N(w|0, Λα–1), with α the 

hyper-parameters that the weights depend on. The Gaussian prior is assumed to have a mean 

zero and a precision matrix Λα, with the precision matrix the inverse of the covariance 

matrix Σα = Λα–1. As shown in Huertas et al. [16], Λα can be quite general, but here we 

use a simple isotropic precision matrix Λα = αI. The Gaussian prior choice allows us to 

compute the posterior distribution of w in a closed form:

p(w ∣ y, Φ, α, β) =  likelihood × prior 
 marginal likelihood  =

∏n p yn ∣ Φ, β, w p(w ∣ α)
p(y ∣ Φ, α, β) (2)
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The posterior for each subject can then be found using the standard derivations of the 

posterior [26]:

p(w ∣ y, Φ, α, β) = N w ∣ w, A−1

A = ΦTΛβΦ + Λα

w = A−1ΦTΛβy

(3)

We use a Type II maximum likelihood approach (i.e. empirical Bayes), optimizing the 

denominator of the posterior to find the optimal hyper-parameters α and β. This gives an 

automatic trade-off between model fit and model complexity. The marginal likelihood is 

maximized by minimizing the negative log likelihood (NLL):

NLL = − log(p(y ∣ α, β))

= − log ∫ p(y ∣ w, β)p(w ∣ α)dw

= − N
2 log Λβ − ND

2 log2π − N
2 log Λα − N

2 log A

− 1
2 ∑

n = 1

N
(y − Φw)TΛβ(y − Φw) − wTΛαw

(4)

The optimal hyper-parameters α and β are often estimated using a conjugate gradient 

optimisation of the NLL, where the derivatives can be computed directly. However, here 

we used Powell’s method to fit the hyper-parameters. Powell’s method is a derivative-free 

method, which in this case is faster, because computing the derivatives of the marginal 

likelihood with respect to the hyper-parameters is computationally very expensive. Finally, 

the predictive distribution is given by:

y = N wTϕ(x), ϕ(x)TA−1ϕ(x) + βs
−1

(5)

2.3.1 Likelihood warping—In order to model non-Gaussian error distributions, we 

employed a ‘warped’ likelihood [27]. This involves applying a non-linear monotonic 

warping function φi to the input data during the model fit, with the index i indicating a 

different warping function (e.g. SinArcsinh, Box-Cox etc.). This is similar to the classical 

statistical technique of variable transformation, but has the advantage that the parameters of 

the transformation are optimised during model fitting, to provide the optimal mapping that 

ensures that model residuals have a Gaussian form. The warped functions are chosen such 

that they have a closed form inverse and are differentiable, which has several benefits: first, 

non-Gaussian data can be mapped (i.e. warped) exactly to better match Gaussian modelling 

assumptions or the predictions can be warped back to the original non-Gaussian space; 

second, it allows inference, prediction and computation of error measures all in closed 

form; finally, we can construct compositions of functions from the invertible monotonic 

warping functions that can greatly improve the expressivity of the model in transforming 
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non-Gaussian distributed data y to a Gaussian form, z, where inference is straightforward 

[28]. This is done by applying a compositional warping function φ to the observations y:

φ( . ) = φi φi − 1 … φ2 φ1( . ) …
z = φ(y; γ)

(6)

With γ denoting the hyper-parameter(s) of different warping functions. The warping 

transformation allows us to compute error measures in the warped space and to describe the 

deviations of subjects under a Gaussian error distribution in the form of pseudo Z statistics, 

even if the original data distribution is non-Gaussian.

The optimal hyper-parameters (α, β and γ) are calculated by minimizing the warped NLL. 

The warped NLL can be found by accounting for the change of variables in the probability 

density function [28]:

py(y) = pz(φ(y)) ∇φ(y)

With ∇φ(·) the Jacobian of the transformation, which is diagonal and therefore we can 

simplify as a product of the individual terms:

py(y) = pz(φ(y)) ∏
i = 1

n dφ yn
dy

If we take the negative log of this equation the warped NLL will remain the same as 

equation 4, except for replacing the y by the transformed φ(y) and the inclusion of the 

Jacobian term that takes the change of volume induced by the warping into account, thereby 

ensuring a valid probability measure, for details see [28]:

 Warped NLL = − log(p(y ∣ α, β, γ))

= NLL − ∑
n = 1

N
logdφ yn

dy
(7)

2.3.2 Computational complexity—The optimization of the hyper-parameters is 

controlled by the minimization of the warped NLL. The warped NLL consists of the 

basic BLR NLL term and the log-derivatives of the warping φi functions, which are 

known in closed-form by construction. The complexity of the warped BLR model is then 

roughly the same as the classic BLR. However, the warped NLL is optimized for an extra 

hyper-parameter γ, which could lead to the presence of more local minima, making the 

optimization process slightly slower [28].

2.3.3 Warped composition function—Different elementary functions can be used to 

create the warped composition function φ. For this paper, we test affine, Box-Cox and 

SinhArcsinh transformations and compositions of these transformations:
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φAffine (y; γ) = a + by

φBox − Cox(y; γ) = sgn(y) y λ − 1
λ

φSinℎArcsinℎ(y; γ) = sinℎ(b ∗ arcsinℎ(y) − a)

(8)

With γ the respective parameters of the different warping functions. For the SinArcsinh 

warping we also applied a reparametrization [29], as this empirically gave more stable 

results:

φSinℎArcsinℎ(y; γ) = sinℎ(b ∗ arcsinℎ(y) + ϵ ∗ b)
a = − ϵ ∗ b

2.4 Model selection

We evaluate the models using different model selection criteria. First, we calculate the 

explained variance (EV) of the model. It is expected that the gain in fit for the warped 

BLR will be highly dependent on the flexibility of the model. Therefore, the Bayesian 

Information Criterion (BIC) is also considered:

BIC = k ∗ log(N) + 2 ∗ NLL

Which penalises for model complexity. Here N denotes the number of participants in the 

training set, NLL the negative log-likelihood. k is the number of free parameters. Note that 

we use the marginalized from of the NLL, which already takes into account the number 

of estimated coefficients. Therefore, the BIC only needs to be corrected for the added 

complexity of the degrees of freedom of the model (i.e. the parameters that are not integrated 

out). For the standard BLR this is two, one for the precision over the weights and one for 

the precision over the noise (α and β respectively). For the warped SinArcsinh BLR two 

extra degrees of freedom are added for the shape parameters (a and b). The BIC gives a 

good trade-off between the extra flexibility found in the warped BLR model and the better 

fit of the model. Finally, the mean standardized log-likelihood (MSLL) is used as a third 

model criterion. The MSLL takes into account the mean error and the estimated prediction 

variance.

2.5 Deviance scores and correlation to cognitive phenotypes

We want to find a statistical estimate of how much each participant deviates from the normal 

range. This is done by computing a Z-score for each subject n, also denoting explicitly the 

dependence on each voxel or IDP d:

znd = ynd − ynd
σd

2 + σ∗2 d
(9)
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With, ynd the predicted mean and ynd the true response. Normalized by σd
2 = βs

−1
d the 

estimated noise variance (i.e. reflecting variation in the data) and σ∗2 d = ϕ(x)TAd
−1ϕ(x) the 

variance attributable to modelling uncertainty for the d-th voxel. For the warped statistic, we 

compute the Z-scores in the warped (i.e. Gaussian) space. The true response variables are 

warped to the Gaussian space to ensure the underlying assumption of normality is satisfied 

by the construction of the warping functions.

Afterwards, to ensure our model can also be applied for behavioural and clinical estimations, 

we look at the correlations between the Z-scores from the IDPs and the whole brain 

analysis, and the cognitive scores of the UK Biobank. For the IDPs, we directly correlate the 

Z-scores and the cognitive phenotypes through a Spearman correlation. For the whole-brain 

analysis, we first make a summary statistic of the Z-scores by calculating the extreme value 

distribution. We model the extreme value distribution by looking at the mean of the top 1% 

of the deviations across the whole brain [10]. The extreme value statistics give the largest 

deviations per subject from the normal pattern, which have shown to be strongly correlated 

to behaviour [10], [30]. Afterwards, we apply a principal component analysis (PCA) on the 

cognitive phenotypes to give a one-factor solution. This first component has been shown to 

be correlated to the ‘general’ factor of cognitive ability or the ‘g-factor’ [31]. Lastly, we 

compute the Spearman coefficient between the first principal component and the summary 

deviation score.

3 Results

3.1 Performance of the warped Bayesian linear regression model for IDPs

All the statistical analyses were performed in Python version 3.8, using the PCNtoolkit. 

The BLR algorithm from the PCNtoolkit was chosen for all experiments. We considered 

age, binary gender and binary site ID within the covariance matrix. We used a standard 

BLR or we transformed the age covariate with a B-spline of order three with three knots. 

The Powell method was selected for the optimizer. We randomly split the dataset into 50% 

training and 50% test and reported all the error metrics on the test set. In the PCNtoolbox, 

several warpings can be chosen depending on the imaging modality one wants to model. 

We tested several warping functions (affine, Box-Cox and SinhArcsinh) and compositions of 

these warping functions. Preliminary testing showed that the SinhArcsinh warping gave the 

best fit compared to the alternatives evaluated. Therefore, in this paper, only the results of 

the SinhArcsinh warping are presented.

In figure 1, Bland-Altman plots are shown comparing the standard BLR and the B-spline 

BLR. The figure presents different model selection criteria: MSLL and BIC (EV can be seen 

in supplement figure A.8). The plots demonstrate that for most IDPs a non-linear B-spline 

BLR model performs better than a standard BLR. Indicating that non-linearity is a key 

component that should be accounted for in modelling neuroimaging data.

In figure 2, Bland-Altman plots are shown that compare the B-spline BLR and the warped 

BLR models for all IDPs, using the MSLL and BIC (EV can be seen in supplement 

figure A.8). We also plotted the difference in absolute values of the skewness and kurtosis. 
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In figure 3, the same plots are shown for the FreeSurfer measures. We included them 

separately, as they were preprocessed separately (i.e. we did not use the IDPs provided 

by UK Biobank and instead ran the Freesurfer reconstructions manually). The plots show 

that for specific IDPs the warped BLR performs better than the B-spline BLR. When 

we examined these IDPs more closely, it was noted that they demonstrated distinct non-

Gaussian behaviour. An example of such behaviour is given down below with the WMHs 

(white matter hyper-intensities). In the supplementary table C.3, we provide a summary of 

some of the results for different IDPs that can help inform which neuroimaging modalities 

are best modelled with the warped BLR. For an indication of the effect sizes of the model 

selection criteria for the different model settings, see supplementary tables D.4 and D.5. 

Note also that the MSLL and EV do not clearly reflect differences in the shape of the 

predictive distribution. For example, for the IDPs, there is no average difference between the 

warped and non-warped model (Fig. 2 panel A and supp. fig. A.8 panel B), yet the warped 

model consistently yields a predictive distribution –and resultant Z-score distribution– that is 

less (or equivalently) skewed and kurtotic (Fig. 2 panels C and D).

In figure 4 and 5, we show the results of an illustrative analysis predicting WMH load 

across ageing to demonstrate how the performance of the warped BLR model compares to 

a B-spline BLR. The figures show the B-spline BLR and warped BLR results for WMHs 

at one-time point and the longitudinal data of two-time points. The results demonstrate that 

(i) the non-linearity of the data is sufficiently captured with a B-spline transformed BLR 

(ii) the WMHs show a distinctly non-Gaussian variance pattern, which is better predicted 

by the warped BLR. Thus, indicating that if the data has a non-Gaussian distribution for the 

residuals a warped BLR is preferred over a B-spline BLR.

3.1.1 Correlation deviance scores WMHs and cognitive phenotypes—We also 

wanted to correlate the warped BLR model output of the WMHs to behavioural variables 

to ensure that the model can be used for behavioural predictions. We loaded all cognitive 

phenotypes available in UK Biobank according to the FUNPACK categorization, including: 

reaction time, numeric memory, prospective memory etc. (for a full list of the cognitive 

phenotypes used, see the supplementary table E.6). We calculated the deviance Z-scores 

according to formula 9. Afterwards, we calculated the Spearman correlation between 

the cognitive phenotypes and the Z-scores. Numeric memory (ID: 4259, ‘Digits entered 

correctly’) was modestly but significantly correlated with the warped Z-scores: ρ = –0.0331, 

p = 0.0262. In other words, if a participant’s WMH deviation from normal development 

increases the number of correctly remembered digits drops.

Lastly, to illustrate the value of normative models in a longitudinal context, we tested 

for an association between change in WMHs and change in cognitive phenotypes of the 

longitudinal data to see if WMH load is correlated to cognitive decline. We performed 

a statistical Wilcoxon rank-sum test on the participants’ cognitive phenotypes contrasting 

subjects that have a difference in the Z-scores > 0.5, which corresponds to a difference 

in half a standard deviation, versus the participants that do not. Intuitively, this contrasts 

individuals who are following an expected trajectory of ageing with those who deviate from 

such a trajectory. Highly significant associations were found with the reaction time (ID: 404, 

‘Duration to first press of snap-button in each round’) W = 5.5641, p < 0.001 and with 
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the Trail Making Test (ID: 6771, ‘Errors before selecting correct item in alphanumeric path 

(trail #2)’) W = 8.3105, p < 0.001. The results show an association between the change in 

cognition and the change in WMH deviance scores.

3.2 Scalability to a whole brain voxelwise based analysis

For the follow-up analysis, we evaluated the warped BLR approach on a whole-brain level 

for two DTI imaging modalities (FA and MD). The results of these two modalities were very 

similar and therefore we will only present the results for FA here. We separated the entire 

dataset into 80% training data and 20% testing data. First, we computed the time complexity 

per model fit (e.g. for one voxel) with varying number of subjects using the B-spline BLR 

model setting and compared it to the Gaussian process regression setting (Figure 6). This 

demonstrates the clear computational advantage of the BLR setting for the whole brain 

analysis.

Afterwards, we tested different model settings for the imaging modalities including a 

standard BLR, B-spline BLR and a SinhArcsinh warped BLR. Figure 7 shows the 

comparative results in a Bland-Altman plot for the FA dataset (which were similar for 

the MD dataset). The figure presents the EV, MSLL and the BIC for the B-spline BLR and 

the warped BLR. These results are consistent with the IDPs in that according to the EV 

and MSLL, the models perform quite similarly for most voxels. Although, we would argue 

that these measures are not necessarily sensitive for the added benefit of the warping of the 

likelihood, which will mostly affect the predictions in the outer centiles. For the BIC the 

results demonstrate that the warped BLR is preferred for certain voxels. The voxels where a 

warped model is favoured generally showed more non-Gaussian behaviour.

Finally, We used a paired-sample t-test, pairing the whole brain results (EV, MSLL and 

BIC) of the different models to estimate the difference between performance measures of the 

warped and non-warped BLR. For MD the following effect sizes were found: EV : d = 0.33, 

MSLL : d = 0.003 and BIC : d = –0.79. For FA the following effect sizes were found: EV : 

d = 0.028, MSLL : d = 0.017 and BIC : d = 0.55. We can see that the difference between 

the methods is small. Indicating that the B-spline BLR and the warped BLR model are quite 

similar in their model fit for MD and FA.

3.2.1 Correlation deviance scores DTI and cognitive phenotypes—Finally, we 

correlated the Z-scores of the whole brain warped BLR model for the MD dataset to 

the cognitive phenotypes. First, we scaled the cognitive data and performed a principal 

component analysis. We selected the first component, which explained 29% of the variance 

in the data. Afterwards, we made a summary score of the Z-scores for each participant 

by looking at the largest deviations, which in the limit should follow an extreme value 

distribution [32]. We fitted a generalized extreme value distribution to the top 1% of the 

absolute Z-scores of each subject. Subsequently, we computed a Spearman correlation 

between the extreme values and the first principal component of the cognitive phenotypes, 

which gave ρ = 0.158, p < 0.001. The results demonstrate a clear correlation between the 

warped deviations from normal development and the cognitive phenotypes. This relationship 

will be explored further in future studies.
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4 Discussion

In this paper, we presented a next-generation framework to scale normative models for large 

population-sized datasets based on warped Bayesian linear regression (BLR). Normative 

models can capture the heterogeneity in the population and model individual deviations 

from normal brain development. We demonstrated that the shift in normative modelling to a 

B-spline BLR with a likelihood warping gives several benefits. In this study we showed that: 

(i) Compared to Gaussian process regression, it is computationally much less demanding 

and is therefore scalable to big datasets. (ii) The non-linearity of the model, incorporated 

by the B-spline, improves the fit and out of sample predictions for most variables. (iii) Non-

Gaussianity of the data can be naturally included due to the incorporation of the likelihood 

warping in the algorithm, which allows for a wider range of datasets to be accurately 

modelled. (iv) Model selection criteria based on the marginal likelihood, such as the BIC, 

can be calculated in closed form and therefore a trade-off between model fit and model 

complexity can be chosen optimally from the training data, without cross-validation. (v) The 

deviations scores from normal brain development can be meaningfully related to behaviour. 

Furthermore, we demonstrated the use of the normative model with the warped BLR 

on different datasets from the UK Biobank, including image-derived phenotypes (IDPs); 

focusing on white matter hyperintensities (WMHs) as an example of non-Gaussianity and a 

diffusion tensor imaging (DTI) modality for a whole-brain model.

Our proposed method makes it possible to apply normative modelling to considerably larger 

samples than was feasible before [7], [8]. The results from the computational experiments 

on the whole brain model showed that the BLR method is scalable to population-sized 

data sets and fine-grained voxel-level data. In comparison, most normative models used 

Gaussian process regression, which due to its high computational complexity could only be 

used in studies with a relatively low sample size. This improvement is mainly because the 

approximation of the covariance matrix by a set of basis functions allowed us to account for 

non-linearity in a computationally less demanding way than the Gaussian process regression 

method, therefore making the B-spline BLR scalable for big datasets. Computationally 

scalable modelling of nonlinear effects is important since our experiments showed that a 

cubic B-spline transformation of the age covariate improved model fit compared to linear 

models for most neuroimaging modalities.

Another major benefit of our method is the possibility of modelling non-Gaussian 

distribution by the use of the likelihood warping technique. This is important in general, 

as the aim of normative modelling is to accurately model the centiles of variation in addition 

to modelling the mean and is especially important for normative modelling of variables that 

are not approximately Gaussian distributed. For example, we showed that the WMHs show 

non-Gaussian behaviour that is well suited to uncover the benefits of the warped model 

over the standard model. We demonstrated the improved fit of the WMHs by including 

a B-spline transformation and a SinhArcsinh likelihood warping in the normative model, 

which was also exemplified for the longitudinal data. The same improvement in fit for other 

data modalities that showed more non-Gaussianity in their residuals was also demonstrated 

by comparing the warped BLR to the B-spline BLR for all the IDPs. Furthermore, it was 

Fraza et al. Page 12

Neuroimage. Author manuscript; available in PMC 2022 October 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



shown on a whole-brain model of a DTI modality that for several voxels the warped BLR 

gives a better model performance than a B-spline BLR.

We emphasize that the addition of non-linear effects and non-gaussianity makes the model 

more flexible which increase the need for model selection in order to avoid possible 

overfitting. We presented several model selection criteria that can be used to choose the 

optimal model settings for different neuroimaging modalities. It should be recognized that 

for some IDPs and voxels the B-spline BLR gives a better fit, showing that a more flexible 

model is not always needed. Therefore, we recommend carefully examining the type of 

data one wants to model and based on the data trends found for the residuals (Gaussian or 

non-Gaussian) to decide if a more flexible model is preferred. This can easily be checked by 

looking at the skewness and kurtosis of the distribution or making a QQ-plot. Additionally, 

different model selection criteria can sometimes contradict each other, as they are sensitive 

to different parts of the data. As we showed above, classical metrics such as EV and MSLL 

are not very sensitive to the shape of the predictive distribution. The consequence is that 

per task, we have to decide if we want a better EV, most sensitive to the mean fit and 

dependent on the flexibility of the model, or a better MSLL/BIC, which is more sensitive 

to the variance and penalizes the flexibility of the model. The variability in model selection 

criteria demonstrates that for different imaging modalities, different normative modelling 

settings are preferred and the added flexibility is confirmed to only give an advantage for 

response variables that show non-Gaussianity in their residuals.

We confirmed that the deviations from the normative modelling framework can be 

meaningfully related to behaviour. We established a significant correlation between the 

warped deviance scores from the IDPs and several dimensions of the intelligence phenotype. 

These tests give a first indication of the possible relationships between the deviations and 

behaviour. For the whole brain model, the relationship with behaviour was shown with a 

significant correlation between an approximation to the g-factor in the form of the first 

principal component of the cognitive phenotypes and the warped deviance scores. This study 

demonstrates that the model could be extended to make predictive scores not only in the 

brain domain, but also for the behavioural phenotype. In the future, the neurobiological 

markers of deviation from normal development can be extended to become markers of 

psychiatric disorders. This has already been done on a smaller scale, using normative 

modelling [9], [10], [13], [30], [33], [34], but we would like to extend these studies to bigger 

data models, which include a wide variety of neuroimaging data modalities.

In conclusion, the current study suggests that non-linearity and non-Gaussianity are two 

parameters of big neuroimaging datasets that need to be captured to make accurate 

predictions for normal brain development. In this paper, we have done that through a warped 

BLR normative model. We have shown using several neuroimaging modalities the benefit of 

this model over more conservative models. Caution is essential when applying non-Gaussian 

models, as they can overfit and should mainly be used in the presence of non-normally 

distributed residuals. We recommend carefully assessing the distribution of residuals and 

the model selection parameters using the different model selection criteria mentioned in this 

paper that give a balance between model complexity and model fit.
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Figure 1. Bland-Altman plots comparing the standard and B-spline Bayesian Linear Regression 
(BLR) models, using Image-Derived Phenotypes (IDPs).
Each dot indicates one IDP. The models are compared according to the following 

model selection criteria: the Mean Standardized Log Loss (MSLL) (A) and the Bayesian 

Information Criteria (BIC) (B). The green colour indicates a better fit for the non-linear 

B-spline model compared to the linear model. We also plotted a zoomed-in view of the 

model fit for one of the IDPs.
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Figure 2. Bland-Altman plots comparing the B-spline and warped Bayesian Linear Regression 
(BLR) models, using Image-Derived Phenotypes (IDPs).
The models are compared according to the following model selection criteria: the Mean 

Standardized Log Loss (MSLL) (A) and the Bayesian Information Criteria (BIC) (B). The 

green colour indicates a better fit for the warped model compared to the B-spline model. We 

also plotted a zoomed-in view of the model fit for two of the IDPs. On images C and D, 

we show the difference in absolute values of the skewness and kurtosis between the B-spline 

and warped model. A more positive value indicates that the B-spline model had a higher 

skewness or kurtosis than the warped model.
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Figure 3. Bland-Altman plots comparing the B-spline and warped Bayesian Linear Regression 
(BLR) models, using the FreeSurfer measurements.
The models are compared according to the following model selection criteria: the Mean 

Standardized Log Loss (MSLL) (A) and the Bayesian Information Criteria (BIC) (B). We 

also plotted a zoomed-in view of the model fit for one of the IDPs. On images C and 

D, we show the difference in absolute values of the skewness and kurtosis between the 

B-spline and warped model. A more positive number means a better fit for the warped model 

compared to the B-spline model.
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Figure 4. White matter hyperintensities (WMHs) modelled as a function of age using a Bayesian 
Linear Regression (BLR) model.
Images A and C demonstrate the model fit using a regular Gaussian B-spline BLR, for the 

female and male cohorts respectively, both visualizing the mean prediction and the centiles 

of variation for the WMHs. Images B and D show comparable fits for a SinArcsinh warped 

BLR, for the female and male cohorts respectively. In images E and F quantile-quantile 

(QQ) plots of the two models are shown, demonstrating a better fit for the data using a 

warped BLR model.
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Figure 5. Here the longitudinal follow-up data of the WMHs is plotted for females (A) and males 
(B), using a SinhArcsinh warped BLR model.
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Figure 6. Computational complexity comparison between the Bayesian linear regression (BLR) 
model setting and the Gaussian process regression (GPR) model setting, giving the mean and the 
standard error (SE) over ten runs.
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Figure 7. Bland-Altman plots comparing the warped Bayesian Linear Regression (BLR) model 
to the B-spline BLR model, using Fractional Anisotropy (FA) data.
The comparison is done according to the following model selection criteria: The 

Bayesian Information Criteria (BIC) (A), the Explained Variance (EV) (B), and the Mean 

Standardized Log Loss (MSLL) (C). The green colour indicates a better fit for the warped 

BLR.
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