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Abstract: Minor metal-free sodium iron dioxide, NaFeO2, is a promising cathode material in
sodium-ion batteries. Computational simulations based on the classical potentials were used to
study the defects, sodium diffusion paths and cation doping behaviour in the α- and β-NaFeO2

polymorphs. The present simulations show good reproduction of both α- and β-NaFeO2. The most
thermodynamically favourable defect is Na Frenkel, whereas the second most favourable defect is
the cation antisite, in which Na and Fe exchange their positions. The migration energies suggest
that there is a very small difference in intrinsic Na mobility between the two polymorphs but their
migration paths are completely different. A variety of aliovalent and isovalent dopants were examined.
Subvalent doping by Co and Zn on the Fe site is calculated to be energetically favourable in α- and
β-NaFeO2, respectively, suggesting the interstitial Na concentration can be increased by using this
defect engineering strategy. Conversely, doping by Ge on Fe in α-NaFeO2 and Si (or Ge) on Fe in
β-NaFeO2 is energetically favourable to introduce a high concentration of Na vacancies that act as
vehicles for the vacancy-assisted Na diffusion in NaFeO2. Electronic structure calculations by using
density functional theory (DFT) reveal that favourable dopants lead to a reduction in the band gap.

Keywords: NaFeO2; defects; Na-ion diffusion; dopants; atomistic simulation

1. Introduction

There is a demand for high-capacity rechargeable batteries to be used in large scale energy storage
devices such as electric vehicles and grid-scale energy storage systems. Lithium ion batteries were of
intense interest to achieve this and significant effort has been devoted to explore novel materials to
produce high capacity Li-ion batteries [1–5]. However, there is a significant challenge to manufacture
Li-ion batteries at large scale because of the low abundance and inhomogeneous distribution of lithium
in the world. Furthermore, many lithium rich ores are found in remote areas leaving extraction and
transportation difficult. After the commercial success of Li-ion batteries in portable applications, a
considerable effort is currently devoted to Li-based supercapacitors, as they exhibit higher energy and
power density compared to that of Li-ion batteries and can be used in large scale applications [6–10].
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Sodium-ion batteries (NIBs) have recently attracted considerable interest because of the high
elemental abundance with broader global distribution and the low cost of sodium [11–13]. A variety of
sodium-based cathode materials, including NaFePO4 [14–16], Na2FePO4F [17,18], Na3V2(PO4)3 [19,20],
Na3V(PO4)2 [21,22], Na4Co3(PO4)2P2O7 [23] and Na2CoSiO4 [24], have been synthesized and their
electrochemical properties studied. There is a continuous active research on synthesizing novel cathode
materials for NIBs to improve their capacity and its applicability in electrical vehicles.

Layered sodium transition metal dioxides—NaMO2 (M = Ti, V, Cr, Mn, Fe, Co and
Ni) [25–32]—have been proposed as promising electrode materials for rechargeable NIBs due to
their high volumetric and gravimetric densities. In addition, NaMO2 materials exhibit more transition
metal redox compared to their Li analogue, owing to the larger radius of Na ions and multiple staking
sequences [33].

NaFeO2 is an important cathode material for large-scale NIBs, owing to its low cost and
environmentally benign nature [34,35]. There are two main polymorphs available for NaFeO2:
α-NaFeO2 (hexagonal) [36] is a layered structure containing sheets of edge sharing FeO6 and NaO6

octahedrons. Electrode performance of α-NaFeO2 was first reported experimentally by Zhao et al. [37].
The electrochemical study by Yabuuchi et al. [38] showed that a reversible capacity of 80–100 mg−1

where the flat voltage of 3.3 V vs. Na metal can be delivered. Furthermore, its cycling performance
was shown to be a reversible retention of 75% after 30 cycles [38]. Topotactic reaction studies (Fe3+/Fe4+

redox without the destruction of crystal) reveal that theoretical capacity of 241.8mAhg−1 can be achieved
in α-NaFeO2 [39]. Another experimental study by Okada et al. [40] shows that operating voltage of
more than 3.4 V versus Na metal is possible with the Fe3+/Fe4+ redox. β-NaFeO2 (orthorhombic) [41]
has not been reported yet as an electrochemically active material for NIBs though there are other
studies [42–44] on this material.

Atomistic scale simulation simulations based on the classical interatomic potentials can give
useful information to the experimentalist on defect chemistry and the Na-ion transport mechanism,
together with the activation energies and favourable cation doping of both polymorphs of NaFeO2.
In previous work [45–62], we applied this methodology to promising cathode materials for lithium and
sodium-ion batteries. Here, we examine both hexagonal and orthorhombic polymorphs of NaFeO2

and calculate the intrinsic defect formation energies, solution energies for a variety of dopants and
possible diffusion pathways for sodium-ion conduction. Further, DFT calculations were performed to
examine the electronic properties of doped and undoped α-NaFeO2.

2. Computational Methods

Classical pair potential calculations based on the Born model for ionic crystals were performed
using the generalized utility lattice program (GULP) code [63]. The interionic interactions consist
of long-range attraction (Coulombic) and short-range electron–electron repulsion. We used
the well-established Buckingham potentials (refer to supplementary information) to model
short-range interactions. The atomic positions and the simulation boxes were optimised using
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [64]. Lattice relaxation around point defects
and migrating ions were modelled using the Mott–Littleton method [65]. Vacancy-assisted Na ion
diffusion was calculated considering seven interstitial Na ions between local Na hops. Activation
energy reported in this study is the local maximum energy along the diffusion path. The present
calculation is based on the full ionic charge model within the dilute limit. Therefore, the defect energies
will be overestimated, however, the relative energies, and the trends will be consistent [66–68].

DFT calculations were applied for the electronic properties of NaFeO2 by means of the CASTEP
plane wave code [69,70]. The generalized gradient approximation (GGA) was applied with the
gradient correction added by Perdew, Burke and Ernzerhof (PBE) to the exchange–correlation energy
functional [71]. The kinetic energy cut-off of the plane wave basis functions was set at 500 eV and the
k-point grid at 3 × 3 × 3 for the geometry optimization calculations. After energy relaxation of the
cell, the lattice constants obtained for α-NaFeO2 (a = b = 2.96 Å, c = 15.82 Å) are in good agreement
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with experiment (refer to Table 1). For the calculations of the density of states (DOS), a denser grid
(5 × 5 × 5) was applied with a Gaussian smearing of 0.1 eV, taking into account spin polarization.
The addition of the Hubbard model is necessary to derive a band gap closer to the experimental one,
as the GGA method is expected to underestimate the band gap of insulators [72,73]. The Hubbard+U
model was included to account for the Coulombic (repulsive) interaction of the on-site d electrons.
It is well known that the GGA description cannot accurately predict the band gap due to electron
delocalization overestimation. Therefore, the Hubbard correction term (+U) used for the 3d electrons of
Fe and Co in this study is an established empirical method, to account for the strong on-site Coulomb
interactions for the calculation of electronic properties. The U parameter was set at 4 eV for the Fe
3d states and at 3.4 eV for the 3d states of the dopant Co, according to literature [72]. This correction
brings the energy band gap value closer to the experimental one.

Table 1. Experimental and calculated structural parameters for hexagonal (α) and orthorhombic (β)
NaFeO2.

Hexagonal (R3m)32

Parameter Calc Expt |∆|(%)

a = b (Å) 3.0687 3.0221 1.54

c (Å) 16.0917 16.0817 0.06

α = β (◦) 90.00 90.00 0.00

γ (◦) 120.00 120.00 0.00

Orthorhombic (Pn21a)41

a (Å) 5.7911 5.6823 1.92

b (Å) 5.3862 5.4258 0.73

c (Å) 7.1186 7.2351 1.61

α = β = γ(◦) 90.00 90.00 0.00

3. Results and Discussion

3.1. NaFeO2 Crystal Structures

NaFeO2 has two different crystallographic structures: α (hexagonal, space group R3m) [32] and β
(orthorhombic, space group Pn21a). Hexagonal phase consists of alternate layers of edge-sharing NaO6

and FeO6 octahedral units along the ab plane, as reported by Takeda et al. [32] (see Figure 1a). The crystal
structure of orthorhombic NaFeO2 [41] forms corner-sharing tetrahedral units (both NaO4 and FeO4) in
the ac plane as shown in Figure 1b. Using classical pair potentials selected from previous work (refer to
Table S1), we first reproduced the experimental structures of both polymorphs. The experimental and
calculated structural parameters are listed in Table 1. There is a good agreement between experimental
and calculated lattice constants for both structures. Overestimation or underestimation of lattice
constants is only within the error margin of ~2% suggesting that defect, diffusion and dopant calculation
results would be enough accurate to compare with available experimental data. Furthermore, our
calculation suggests that hexagonal phase is 0.31 eV lower in energy than orthorhombic phase.
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3.2. Intrinsic Defect Processes

Possible defect processes in bothα- andβ-NaFeO2 were calculated. Point defect energies including
vacancy and interstitial formation energies were first calculated and then they were combined to
calculate the Frenkel- and Schottky-type defect formation energies. These intrinsic defect energies
are useful in predicting the electrochemical behaviour of NaFeO2. Here we use the Kröger–Vink
notation [74] to write equations for the Frenkel, Schottky and antisite defect formation:

Na Frenkel : NaX
Na → V′Na + Na•i (1)

Fe Frenkel : FeX
Fe → V′′′Fe + Fe•••i (2)

O Frenkel : OX
O → V••O + O′′i (3)

Schottky : NaX
Na + FeX

Fe + 2 OX
O → V′Na + V′′′Fe + 2V••O + NaFeO2 (4)

Na2O Schottky : 2 NaX
Na + OX

O → 2 V′Na + V••O + Na2O (5)

Fe2O3 Schottky : 2 FeX
Fe + 3 OX

O → 2 V′′′Fe + 3 V••O + Fe2O3 (6)

Na/Fe antisite (isolated) : NaX
Na + FeX

Fe → Na′′Fe + Fe••Na (7)

Na/Fe antisite (clustered) : NaX
Na + FeX

Fe →
{
Na′′Fe : Fe••Na}X (8)

Reaction energies for these intrinsic defect processes (refer to Table S2) are reported in Figure 2.
The Na Frenkel is calculated to be the most energetically favourable intrinsic defect in both forms
of NaFeO2. The second lowest defect energy process is found to be the Na–Fe anti-site, suggesting
that a small percentage of Na on Fe sites (Na′′Fe) and Fe on Na sites (Fe••Na) will be observed at high
temperatures. A small distortion is observed in the cation-oxygen bond distances and bond angles in
the relaxed structure, but the lattice structure was not altered significantly. There are experimental
and theoretical studies showing the presence of anti-site defects in many Li-ion cathode battery
materials and in some as-prepared Na ion cathode materials [45,46,48–52,75–79]. There is, however,
no experimental report on cation mixing of NaFeO2 yet. Nevertheless, in the future experimental
preparations of as-prepared structure using different synthetic conditions or during cycling of this
material, this defect may be observed. The Frenkel and Schottky defect energies were found to be
highly endoergic suggesting that they are unlikely to form at low temperatures. The enthalpy to form
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Na2O Schottky (relation 5) is calculated as 2.76 eV/defect and 2.14 eV/defect for α- and β-NaFeO2,
respectively. This process can introduce further V′Na and V••O in the lattice at elevated temperatures.
Conversely, lower defect energetics are observed for β-NaFeO2, but the overall trend is retained in
both polymorphs. The difference in energetics is mainly due to the different crystal structures and
difference in the coordination number of Na and Fe.Materials 2019, 12, x FOR PEER REVIEW 5 of 14 
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3.3. Sodium-Ion Diffusion

In this section intrinsic sodium-ion diffusion of NaFeO2 is discussed. Sodium-ion migration
with low activation energy is one of the key requirements for a promising high-rate cathode material.
The present computational technique allows us to calculate the Na vacancy migration paths together
with activation energies, which are difficult to examine by experimental work alone.

For the Na vacancy migration in α-NaFeO2, we identified Na local hops (P) with the jump distance
of 3.07 Å, and the migration energy was calculated to be 0.64 eV (refer to Table 2). Long range diffusion
paths were then constructed. Sodium-ions migrate in the ab plane forming curved paths with overall
activation energy of 0.64 eV (refer to Figure 3a). We considered Na hops between the layers but Na–Na
migration distances were found to be >5 Å. Figure 3b reports the energy profile diagram for the Na
local hop with the activation energy.

Two different local hops, namely, A and B, were identified in β-NaFeO2 (refer to Figure 4).
The energy profile diagrams for these two hops are shown in Figure 5. The migration path for hop A is
in the bc plane with the jump distance of 3.51 Å and Na ion moves via a curved trajectory. The activation
energy for the hop A is 0.65 eV. In the hop B, Na ions migrate in the ac plane with a curved trajectory,
but with a jump distance of 3.26 Å and migration energy of 0.67 eV. Three two dimensional long range
paths [(A→A→A→A), (B→B→B→B) and (A→B→A→B)] joining local Na hops were identified (see
Figure 4). The lowest activation energy (0.65 eV) long range path (A→A→A→A) forms a zig-zag
pattern in the bc plane. The other two paths have an overall activation energy of 0.67 eV, owing to
the presence of local hop B which has an activation energy of 0.67 eV. Here, ions were treated as fully
charged. Point defects in a highly ionic material might be expected to be in their fully ionic charge
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states. The activation energy of migration is defined as the position of the highest potential energy
along the migration.

Table 2. Calculated Na–Na separation and activation energy for the sodium-ion migration between
two adjacent Na sites in α-NaFeO2 (refer to Figure 3a).

Migration Path Na–Na Separation (Å) Activation Energy (eV)

P 3.07 0.64
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3.4. Dopant Substitution

A variety of aliovalent and isovalent dopants were considered on the Fe site. Aliovalent dopant
substitutions were charge-compensated by introducing necessary vacancies and interstitials. In all
cases, appropriate lattice energies were calculated using the same Buckingham potentials used in this
study and used in the solution energy calculations (refer to Table S3).

First, divalent dopants (M = Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+ and Zn2+) were considered.
The following reaction equations were used to calculate solution energies by compensating Na
interstitials and O vacancies, respectively.

2 MO + 2 FeX
Fe + Na2O → 2M′Fe + 2 Na•i + Fe2O3 (9)

2 MO + 2 FeX
Fe + OX

O → 2M′Fe + V••O + Fe2O3 (10)

In the first charge compensation scheme, Na interstitials ions are introduced in the lattice. This can
be an efficient way to increase the probability of Na+ ion intercalation/de-intercalation processes
in the as-prepared NaFeO2. Figure 6a reports the solution energies of M2+ dopants on the Fe site.
Lower solution energies are observed for β-NaFeO2. This can be due to the different crystal structures
containing different coordination numbers of Fe. The most favourable dopant solution energy
(1.22 eV/dopant) is calculated for Co2+ in α-NaFeO2, suggesting that a possible synthesis–doping
strategy to introduce additional sodium into NaFeO2 can be achieved by doping Co on Fe sites
at elevated temperatures, although the exact amount of Na incorporation cannot be determined.
In the case of β-NaFeO2, Zn is the energetically favourable dopant with exothermic solution energy
(−0.09 eV/dopant). Other promising dopants are Co2+ (0.17 eV/dopant) and Ni2+ (0.19 eV/dopant).
The possible composition of Co-doped NaFeO2 would be Na1+xFe1−xCoxO2 (x = 0.0–1.0). The high
solution enthalpy for BaO suggests that Ba2+ is an unfavourable dopant to increase Na+ ions in both
NaFeO2 polymorphs.

In the second charge compensation scheme, the formation of oxygen vacancies is favoured by Zn
incorporation in both α- and β-NaFeO2 (see Figure 6b). Again, lower solution energies are observed
for β-NaFeO2 though the values are endoergic.
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Next, we considered trivalent dopants (M = Al3+, Co3+, Ga3+, Mn3+, Sc3+, In3+, Yb3+, Y3+ and
Gd3+). Equation 11 was used to calculate the solution enthalpy:

M2O3 + 2 FeX
Fe → 2 MX

Fe + Fe2O3 (11)

Favourable solution energies (0.00–0.20 eV) were noted for Ga, Co and Mn (see Figure 7) in
α-NaFeO2. Interestingly, exothermic solution energies are observed for all dopants except for Y and Gd
in β-NaFeO2. The most energetically favourable solution energy (-0.99 eV/dopant) is observed for Co.

We considered M4+ dopants on the Fe site to increase the concentration of V′Na in NaFeO2. This
strategy can facilitate Na self-diffusion via vacancy mechanism. Here, we calculate the solution of
MO2 via the following equation,

2 MO2 + 2 FeX
Fe + 2 NaX

Na → 2 M•Fe + 2 V′Na + Fe2O3 + Na2O (12)



Materials 2019, 12, 3243 9 of 14

Figure 8 reports the solution energies of MO2. It is observed that Ge exhibits the lowest
solution energy (0.78 eV/dopant) in α-NaFeO2. Exothermic solution energies are calculated for SiO2

(−1.47 eV/dopant) and GeO2 (−0.87 eV/dopant) in β-NaFeO2 suggesting that these two dopants should
be considered for experimental investigation.Materials 2019, 12, x FOR PEER REVIEW 9 of 14 
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in NaFeO2.

As redox couples Fe2+/Fe3+ and Fe3+/Fe4+ are important for the Na+ de-intercalation process and
high operating voltage, respectively, a disproportionation reaction was considered according to the
following equation,

2 FeX
Fe → Fe•Fe + Fe′Fe (13)

Defect energy for this defect process is −3.47 eV/defect for α-phase and −4.19 eV/defect for β-phase
respectively indicating that this process is likely to take place.
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3.5. Density of States

The electronic structures of doped and undopedα-NaFeO2 were calculated by using first principles
calculations, as described in methodology section. A supercell of 2 × 2 × 1 cells was used and the
dopants of Co, Ge, Si and Zn were substitutional in the Fe position. This translates to a doping
concentration of 8.3%. The density of states (DOS) plots are shown in Figure 9 for α-NaFeO2. The
incorporation of defects in a substitutional Fe position leads to a band gap reduction and the appearance
of defect states near the valence band. The band gap of the perfect structure is calculated to be 1.53 eV.
Doping with Co decreases significantly the calculated band gap at 0.8 eV, due to a band tail that is
formed near the valence band with a peak at 0.35 eV. Doping with Ge or Si further decreases the band
gap at 0.7 eV and 0.6 eV, respectively, due to an appearance of states with peaks at 0.48 eV for Ge and
0.14 eV and 0.56 eV for Si. Doping with Zn also decreases in the same way as the band gap at 0.70 eV,
due to states that appear 0.34 eV and 0.60 eV higher that the valence band of the perfect structure.
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4. Conclusions

In conclusion, using atomistic simulation techniques, we carried out a systematic survey of both
α- and β-NaFeO2 to investigate intrinsic defects, sodium-ion diffusion paths and favourable aliovalent
and isovalent dopants on the Fe site. The present simulations reasonably reproduce the observed
polymorphs of NaFeO2. The most favourable intrinsic defect type is Na Frenkel. The second most
favourable energy defect process is Na–Fe antisite, suggesting that there will be a small population
of Na on Fe site and vice versa. The lowest migration energies for long-range Na ion migration in
hexagonal (α-) and orthorhombic (β-) NaFeO2 are 0.65 eV and 0.67 eV, respectively, suggesting that
both polymorphs exhibit favourable electrode kinetics. The present calculations further suggest that
favourable dopants for creating additional Na in the α- and β-NaFeO2 are Co2+ and Zn2+ on the Fe
site, respectively. A high concentration of Na vacancies can be introduced by doping Ge on Fe in
α-NaFeO2 and Si (and Ge) on Fe in β-NaFeO2 to facilitate the vacancy-assisted Na diffusion in NaFeO2.
Electronic structure calculations predict that in all cases substitutional doping leads to a reduction in
the band gap.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/19/3243/s1,
Table S1: Interatomic potential parameters used in the atomistic simulations of NaFeO2; Table S2: Energetics of
intrinsic defect process in NaFeO2; Table S3: Solution enthalpy for dopant substation at Fe site in NaFeO2.
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