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Abstract. The recycling itinerary of plasma mem- 
brane transfen'in receptors (TFR) was charted in IgG- 
secreting mouse myeloma cells (RPC 5.4) by tagging 
surface receptors with either bound anti-transferrin 
receptor antibodies (anti-TFR) or Fab fragments 
thereof and determining the intracellular destinations 
of the tagged receptors by immunocytochemistry. By 
immunofluorescence, TFR tagged with either probe 
were seen to be rapidly internalized and translocated 
from the cell surface to the juxtanuclear (Golgi) re- 
gion. When localized by immunoperoxidase proce- 
dures at the electron microscopic level, the anti-TFR- 
labeled receptors were detected in all cisternae (cis, 
middle, and trans) of the Golgi stacks as well as in 

endosomes and trans Golgi reticular elements. There 
was no difference in the routing of TFR tagged with 
monovalent Fab and those tagged with divalent IgG. 
Tagged receptors were detected in Golgi stacks of 
~50% of the cells analyzed. The position of the la- 
beled cisternae within a given stack was found to be 
quite variable with cis and middle cisternae more often 
labeled at 5 min and trans cisternae at 30 rain of anti- 
body uptake. The finding that recycling plasmalemmal 
TFR can visit all or most Golgi subcompartments 
raises the likely possibility that any Golgi-associated 
posttranslational modification can occur during recy- 
cling as well as during the initial biosynthesis of plas- 
malemma receptors and other membrane proteins. 

Present there is a good deal of interest in charting the 
pathways of recycling membrane traffic between 
various intracellular and extracellular (cell surface) 

destinations. Previous work using electron-dense tracers 
such as cationized ferritin and dextran indicates that there is 
considerable membrane traffic from the cell surface to the 
stacked Golgi cisternae and secretory granules or vacuoles 
in regulated secretory cells, such as parotid (14), lacrimal 
(14), anterior pituitary (7), thyroid (15), and exocrine pan- 
creatic epithelia (16), as well as in nonregulated (constitu- 
tive) secretory cells (plasma cells and myeloma cells [29, 
40]). The most plausibleexplanation for this plasmalemma 
to Golgi traffic is that much of it is connected with the recy- 
cling of membrane utilized as containers in the packaging of 
secretory products (see references 8 and 9). However, the 
studies mentioned were subject to the criticism that, since 
the tracers utilized bind nonspecifically (e.g., by ionic inter- 
action) to the plasmalemma, they may not be reliable mem- 
brane markers because they can dissociate and relocate dur- 
ing transit through intracellular compartments. 

To circumvent this objection we have studied the fate of a 
specific plasmalemmal membrane protein-the transferrin 
receptor (TFR) I -  in mouse myeloma cells after tagging the 
receptor with anti-transferrin receptor (anti-TFR) antibod- 
ies. We report here our findings indicating that plasmalem- 

1. Abbreviations used in this paper: DME, Dulbecco's modified Eagle's 
medium; HRP, horseradish peroxidase; PBS/OVA, PBS containing 0.1% 
ovaibumin; TFR, transferrin receptor(s). 

mal TFR tracked by bound antibody reach all the stacked 
Golgi cisternae. 

Materials  and  Me thods  

Materials 

Mouse myeloma RPC 5.4 cells were obtained from the American Type Cul- 
ture Collection, Rockville, MD. Cell culture media and supplies were from 
Gibco (Grand Island, NY). LR White resin and Epox 812 were obtained 
from Ernest E Fullam, Inc. (Schenectady, NY). 

Antibodies 

A rat anti-TFR monoclonal antibody (clone R17-217, subclass IgG2~) and 
Fab fragments prepared therefrom were kindly provided by Drs. Ian Trow- 
bridge and Jane Lesley, The Salk Institute, San Diego, CA. This antibody 
has been previously shown to specifically immunoprecipitate the mouse 
TFR (23, 24). It does not inhibit transferrin binding to the receptor and can 
be used to immunoprecipitate both occupied and unoccupied receptors. 

Rabbit anti-rat IgG was from Accurate Chemical & Scientific Corp. 
(Westhury, NY). Fhiorescein isothioeyanate-conjugated rabbit anti-rat IgG 
was purchased from Cappel Laboratories (Cochranville, PA) and was 
depleted of anti-mouse IgG cross-reactivity by passage over a mouse 
IgG-agarose affinity column before use. Horseradish peroxidase (HRP) 
conjugated sheep anti-rabbit Fab was obtained from Biosys (Compiegne, 
France), and goat anti-rabbit IgG conjugated to 10-nm colloidal gold was 
from Janssen Life Sciences Products (Piscataway, NJ). 

Cell Culture 

Mouse myeloma cells (RPC 5.4) were cultured at 37°C in an atmosphere 
of 95 % air and 5 % CO2 in 75-cm 2 flasks in Dulbeeco's modified Eagle's 
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medium (DME) containing 4,500 mg/1 glucose, nonessential amino acids, 
penicillin 0,000 U/100 ml), streptomycin (10 rag/100 rrd), and 10% heat- 
inactivated fetal bovine serum. Under these conditions, the cells typically 
had a doubling time of 20 h and achieved a maximum density of 2-3 × los 
cells/ml. Ceils were harves~l at a density of 4-8 × 10S/ml to ensure that 
they were in the exponential growth phase, and either fixed immediately (to 
determine the distribution of TFR at steady state), or used for anti-TFR 
binding studies. 

Binding and Uptake of Anti-TFR 
In some experiments anti-TFR IgG (10 I~g/ml) or Fab fragments thereof 
(20 txg/ml) were added directly to the culture media (DME containing fetal 
bovine serum), and the ceils were incubated for 5-30 rain at 4 ° or 37°C, 
after which they were fixed and processed for immunocytocbemistry. In 
other experiments cells were depleted of endngenous (bovine) transferrin by 
washing them (three times) with serum-free DME at 37°C followed by cul- 
ture in serum-free DME at 37°C for 60 rain and further washing (three 
times) with serum-free DME at 37°C and then incubated at 37°C for 5-30 
min with anti-TFR (10 ~tg/ml). 

Preparation of Cells for Immunocytochemistry 
Cells were fixed for 4-6 h at 250C by adding an equal volume of periodate- 
lysine-paraformaldehyde fixative (27) (2% formaldehyde, 0.075 M lysine, 
0.01 M NalO4, 0.0375 M NaPO4 [pH 6.2]) to the incubation media. After 
fixation, they were then washed three times (by centrifugation and resuspen- 
sion) in protein-free phosphate-buffered saline (PBS), the final pellet was 
resuspended in a minimal volume of PBS, and a 30-1xl aliquot containing 
los-los cells was placed on a polylysine-coated glass microscope slide 
(25). The cells were allowed to adhere for 30 rain after which the slides were 
extensively washed with PBS containing 0.1% ovalbumin (PBS/OVA) to re- 
move unbound ceils leaving an attached, tightly spaced monolayer. 

Immunofluorescence 
Antibody incubations were carried out at room temperature on glass slides 
as follows: 40 Id of antibody diluted in PBS/OVA containing 0.05% saponin 
(to permeabilize the cells) was added to the attached cells, and the slides 
were placed in a humid chamber. For visualization of TFR, cells were first 
incubated with rat monoclonal anti-TFR (10 I~g/ml) followed by incubation 
in fluorescein-isothiocyanate-conjugated rabbit anti-rat IgG (diluted 1:50). 
For visualization of prebound anti-TFR, the cells were incubated only with 
the latter reagent. Generally the cells were incubated in each antibody for 
1-2 h, rinsed (five times) with PBS/OVA containing 0.05% saponin after 
each incubation, mounted in phenylenediamine/glyceml (30), and exam- 
ined in a Zeiss photomicroscope flI equipped with epifluorescence illumina- 
tion. Photomicrographs were taken with the largest diameter of the ceils in 
the plane of focus to distinguish intracellular from surface label. 

Immunoperoxidase 
Incubations were carried out on cells fixed with periodate-lysine-paraform- 
aldehyde. These cells were attached to glass slides essentially as described 
previously for cells attached to culture dishes (3). For visualization of TFR 
at steady state, fixed cells were incubated overnight in rat monoclonal anti- 
TFR (10 txg/ml), followed by rabbit anti-rat IgG (1:50) and HRP-conjugated 
sheep anti-rabbit Fab (1:100) for 1-2 h each. For visualization of prebound 
anti-TFR, only the last two steps were necessary. The ceils were then fixed 
for 30 rain in 1.5% glutaraldehyde in 100 mM Na-caeodylate (pH 7.4) con- 
taining 5% sucrose, followed by extensive washing with 50 mM Tris con- 
taining 7.5% sucrose. The peroxidase reaction was initiated by covering the 
cells with 50 Ixl of diaminobenzidine medium prepared by mixing 1 ml of 
0.2% diaminobenzidine, 50 mM Tris HC1 (pH 7.4), containing 7.5% su- 
crose and 15 Ixl of 0.3% H202 (final concentration, 0.005%). The reaction 

Figure 1. Indirect inununofluorescence localization of TFR in cul- 
tured RPC 5.4 myeloma cells fixed at 37°C (steady state). TFR are 
seen at the cell periphery and the juxtanuclear (Golgi) region (ar- 
rows). Fixed cells were permeabilized and incubated sequentially 
with rat anti-TFR and fluorescein isothiocyanate-conjugated rabbit 
anti-rat  IgG. Bar, 20 I~m. 

was allowed to proceed for 5-15 rain (until the cells appeared brown under 
a dissecting microscope). The cells were then washed extensively with 
50 mM Tris (pH 7.4) containing 7.5% sucrose, postfixed in a 50-1xl drop 
of ferrocyanide-reduced OsO4 for 20 rain at 4"C, and dehydrated and em- 
bedded in Epox 812 on the slide. APter the final change of Epox, the slide 
was placed cell-side-down on a silicon robber embedding mold and poly- 
merized overnight at 60"C. The embedded ceils were separated from the 
glass with a razor blade. Selected areas (,~l-mm square) were mounted on 
a support block of Epox and sectioned en face. Thin sections were stained 
with lead citrate and examined in a Philips 301 or 410 electron microscope 
operated at 60 kV. 

Immunogold Localization of TFR on 
Ultrathin Cryosections 
The basic procedures used were those of Keller et al. (20) with minor 
modifications. Periodate-lysine-paraformaldehyde-fixed cells were embed- 
ded in polyacrylamide (17) before freezing as follows: 3-5 × los cells 
were resuspended in 6.5 ml PBS/OVA to which 1 ml of acrylamide/bis- 
acrylamide (30:0.8%) in H20 and 75 ~tl of 10% ammonium peroxide in 
1-120 were added and mixed. The cells were then pelleted, resuspended in 
200 Ixl of the supernatant, and 2 ~tl of 10% N,N,N',N' tetramethylenedia- 
mine in H~O was added. 250-~tl aliquots were quickly transferred to 400- 
Ixl polyethylene tubes and centrifuged for 2 min in a Beckman 152 microfuge 
(Beckman Instruments, Inc., Palo Alto, CA). After polymerization, the em- 
bedded cell pellets were infiltrated with 2.3 M sucrose, frozen in liquid 
nitrogen, and silver sections were cut on a Reichert Ultracut microtome 
(Reichert Scientific Instruments, Div. Warner-Lambert Technologies, Inc., 
Buffalo, NY) equipped with the FC-4 cryocut attachment. Sections were in- 
cubated sequentially at room temperature with (a) anti-TFR (diluted 1:500 
in 1% OVA/PBS for 60 rain), (b) rabbit anti-rat IgG (1:50) for 60 min fol- 
lowed by (c) goat anti-rabbit IgG-gold conjugate (diluted 1:20 in 50% goat 
serum in PBS) for 2 h. The sections were then fixed for 5 rain in 2% 
glutaraldehyde in PBS, postfixed in 1% OsO4 in 100 mM Na-cacodylate 
(pH 7.4), and embedded in LR White resin (20). After polymerization over- 
night at 60°C, they were examined in a Philips 301 or 410 dectron micro- 
scope operated at 80 or 100 kV without additional staining. 

Evaluation of Effect of pH on Anti-TFR Binding 
Washed cells (1 × l0 s) were suspended in 5 ml of PBS/OVA (pH 7.4) and 
incubated with anti-TFR (1:1,000) at 4°C for 30 rain followed by washing 

Figure 2. Distribution of TFR in RPC myeloma cells as seen by indirect immunoperoxidase in cells fixed at steady state. (A) Large field 
showing TFR clustered in a coated pit (cp) along the plasma membrane (pm), in reticular dements  (re) found on the trans side (trans) 
of the Golgi stacks as well as in multiple locations in the stacked Golgi cisternae (arrows). Virus particles (vp) can be recognized within 
several cisternae of the rough endoplasmic reticulum. The topography of the Golgi stacks is clear because the cis side (cis) is marked 
by the presence of multiple transitional elements ( t e ) - p a r t  rough and part s m o o t h - o f  the rough endoplasmic reticulum. (B) Portion of 
the plasma membrane showing TFR concentrated in a coated pit (cp). (C) TFR are present in an endosome-like structure which has two 
tubular extensions, one of which contains detectable TFR. (D-F) Enlargements of Golgi areas from ceils fixed at steady state, demonstrating 
that TFR can be found in cisternae in various positions within the stack. (D) Golgi stack in which all of the cisternae (1-5) are labeled. 
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Cisternae 1, 3, and 5 (representing the cis-most, middle, and trans-most) are heavily labeled, whereas the intervening cistemae (2 and 
4) have only traces of reaction product. (E) Golgi stack with five cisternae in which two of the five (arrows) are clearly labeled. (F) Another 
stack of five cistemae in which only two to three of the cis-most cisternae (arrows) are labeled. The polarity of this stack is particularly 
clear because it faces transitional elements (te) of the endoplasmic reticulum and clusters of Golgi vesicles (Gv) on the cis side (cis). Cells 
were fixed and incubated sequentially with rat anti-TFR, rabbit anti-rat IgG, and HRP-conjugated sheep anti-rabbit Fab. nu, nucleus. Bars, 
200 nm. 
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(three times) at 4°C with PBS/OVA (pH 7.4). Cells (2 x 106) were then 
resuspended in 2 ml of 0.01 M POdcitrate buffer containing 0.1% OVA plus 
0.9% NaC1 which had been adjusted to a specific pH (between 6.5 and 2.0). 
They were incubated for 30 min at 4"C and washed (three times) with the 
same buffer at 4°C, washed again (two times) with PBS/OVA (pH 7.4) at 
4°C, and fixed with 2% formaldehyde in PBS (pH 7.4) at 4°C for 30 min. 
After washing, cells were incubated sequentially with rabbit anti-rat IgG 
(1:50) and ~SI-protein A (30,000 cprn) each for 45 rain. Bound and free 
t25I-protein A were separated by sedimenting the cells through a phthalate- 
oil mixture (35). Nonspecific binding of rabbit anti-rat IgG to RPC cells 
was quantitated at each pH (separate samples) and subtracted from the total. 
Each data point is the mean of triplicate determinations. 

Results 

The mouse myeloma cell line (RPC 4.5) used in this study 
was chosen because it has been shown to constitutively se- 
crete substantial amounts of IgG (5-7 % of its newly synthe- 
sized protein/h) into the culture medium and to manifest ex- 
tensive plasmalemma to Golgi vesicular membrane traffic 
(29). The TFR was chosen for study because it is a well char- 
acterized, integral transmembrane glycoprotein, and cells in 
culture and other rapidly proliferating cells are known to ex- 
press many TFR (37). This is because iron is required for 
cell growth, and TFR serve to transport iron (bound to trans- 
ferrin) into the cell (6, 28, 37). TFR traffic had not been in- 
vestigated previously in these cells. 

Distribution o f  TFR at Steady State 

To determine the overall distribution of TFR in mouse RPC 
5.4 myeloma cells, fixative was added directly to the culture 
medium, and the receptors were localized at the light and 
electron microscopic levels by indirect immunolocalization 

procedures using a monoclonal antibody that specifically 
recognizes the mouse TFR. Using immunofluorescence, we 
found the receptors at the cell periphery and in the juxta- 
nuclear (Golgi) region (Fig. 1) in RPC 5.4 myeloma cells as 
in many other cell types. When the distribution of TFR was 
determined at the electron microscopic level by indirect im- 
munoperoxidase and immunogold procedures, it was clear 
that the surface staining seen by immunofluorescence was the 
result of the concentration of TFR in coated pits along the 
plasma membrane (Fig. 2, A and B), and that the jux- 
tanuclear staining was the result of its localization in a variety 
of elements found in the Golgi region. Among the structures 
labeled were a number of elements-multivesicular bodies, 
vacuoles with tubular tails (Fig. 2 C), and cup-shaped 
bodies-assumed from their morphology to correspond to 
endosomes. In addition, TFR were also regularly detected in 
the Golgi complex where they were found in reticular cister- 
nae associated with the trans side of the Golgi complex (Fig. 
2 A), and also within the stacked Golgi cisternae themselves. 
The position of the labeled cisternae within the Golgi stack 
was quite variable: examples could be found where TFR 
were present in the cis-most (Fig. 2, D and F), the trans- 
most (Fig. 2 D), or the middle (Fig. 2, A and E) cisternae. 
Other organelles (e.g., rough endoplasmic reticulum and 
lysosomes) were rarely, if ever, labeled. In control experi- 
ments in which the anti-TFR antibody was omitted, no signal 
was observed with either the immunofluorescence or im- 
munoperoxidase techniques. 

The distribution of TFR in RPC 5.4 myeloma cells is simi- 
lar to that reported for several other cell types (18, 19, 39) 
in that they were found in coated pits at the cell surface and 

Figure 3. Ultrathin frozen section demonstrating localization of TFR by an indirect immunogold procedure in a cell fixed at 37°C (steady 
state). Colloidal gold particles are observed over the stacked Golgi cisternae (arrows) and vesicles (re) associated with the trans side (trans) 
of the stacks. Sections were incubated sequentially with rat anti-TFR, rabbit anti-rat IgG, and goat anti-rabbit IgG conjugated to colloidal 
gold. en, endosome; ce, centriole; m, mitochondria. Bar, 200 run. 
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in endosomes and trans Golgi reticular elements; however, 
the findings differ in that in myeloma cell TFR were regu- 
larly detected in the stacked Golgi cisternae as well. 

To give us some idea of the relative distribution of recep- 
tors within the stacked Golgi cisternae as compared to other 
Golgi-associated structures, we determined the distribution 
of gold particles from micrographs (e.g., Fig. 3) taken from 
ultrathin cryosections of five different Golgi areas. Of 261 
gold particles counted, ~30% (73) were associated with the 
stacked cisternae and the remaining 70% (188) were as- 
sociated with other structures in the Golgi region. 

Thus, we obtained both qualitative and quantitative data in 
myeloma cells for the presence of TFR in the Golgi stacks 
which has not been reported previously in other cell types. 
However, with the approach used (cells fixed at steady state), 
we could not distinguish between TFR in transit through the 
Golgi during recycling and those in transit during biosyn- 
thesis. 

A n t i - T F R  IgG Bound  to Plasmalemmal TFR 
Reaches the Golgi Stacks 

To trace directly the recycling pathway taken by TFR after 
endocytosis, receptors were labeled at the cell surface with 
anti-receptor antibodies by incubating cells with anti-TFR at 
4 ° or 37°C for various times before fixation. The distribution 
of anti-TFR was then determined by immunofluorescence 
and immunoperoxidase procedures. If cells were incubated 
with anti-TFR for 30 min at 4°C and fixed at 4°C, only sur- 
face staining was seen by immunofluorescence (Fig. 4 A). If, 
however, they were incubated with anti-TFR for 5, 15, or 30 
min at 37°C, the antibody, assumed to be bound to the TFR 
(see below), was found not only at the cell surface, but also 
was found inside the cell. After 5 rain anti-TFR was detected 
in 60% of the cells in a juxtanuclear spot corresponding to 
the Golgi region (Fig. 4 B), and after 15 min at 37°C, its dis- 
tribution was unchanged except that a higher proportion of 
the cells were labeled and the juxtanuclear staining appeared 
to be brighter. After 30 rain at 37°C, 95% of the cells dis- 
played anti-TFR concentrated in the Golgi region (Fig. 4 C), 
indicating that most cells had internalized antibody-tagged 
surface receptors. Identical observations were obtained 
when cells were incubated at 4°C with anti-TFR, extensively 
washed, and wanned to 37°C for 5 or 30 min before fixation 
(data not shown). These patterns of TFR distribution were 
essentially the same as when TFR were localized by indirect 
immunofluorscence at steady state. 

Immunoperoxidase localizations carried out at the elec- 
tron microscopic level revealed that after a 5-min incubation 
with anti-TFR at 37°C, the distribution of antibody-labeled 
receptors was essentially the same as the distribution of TFR 
at steady-state: they were detected in coated pits along the 
plasma membrane (Fig. 5 A), in Golgi stacks (Fig. 5, B-E) ,  
in endosomes (Fig. 5 B), in vesicles, and in trans Golgi retic- 
ular elements (Fig. 5 B). After 30 min of anti-TFR incuba- 
tion, the same structures were labeled as at 5 min, but the 
relative frequency with which particular Golgi-associated 
structures were labeled had changed: reaction product was 
observed less frequently in the stacked Golgi cisternae and 
more often in the other compartments associated with the 
Golgi complex (Fig. 6, A-D).  Similar results were obtained 
in cells depleted of endogenous transferrin before incubation 
with anti-TFR. Similar results were also obtained in experi- 

Figure 4. Immunofluorescence localization of either intact 
anti-TFR IgG or Fab fragments after binding to plasmalemmal 
TFR. When cells were incubated for 30 min at 4°C with anti-TFR 
IgG and then fixed at 4°C, permeabilized, and incubated with 
fluorescein isothiocyanate rabbit anti-rat IgG to detect bound anti- 
body, only surface staining was seen (A). When cells were in- 
cubated for 5 min at 3"/°C in the presence of anti-TFR IgG before 
fixation and permeabilization (B), ",,60% of the cells had internal- 
ized the anti-TFR and displayed intracellular (juxtanuclear) staining 
as well as staining at the cell surface. Of those remaining, 30% 
showed staining at the cell periphery only, and '~10% were un- 
stained. After incubation for 30 min at 37°C with anti-TFR IgG (C) 
or Fab (D) before fixation (C) 95% of the cells had taken up the 
bound antibody which was concentrated intracellularly in the jux- 
tanuclear region. Bar, 20 ~trn. 

Woods et al. Transferrin Receptor Traffic in Myeloma Cells 281 



Figure 5. Immunoperoxidase localization of anti-TFR in cells fixed after 5 min incubation at 37°C in the presence of the antibody. The 
antibody, assumed to be bound to TFR, is present in coated pits (cp) along the plasma membrane (A), and is detected within the cell in 
vesicles (ve) located on both the cis and trans side of the Golgi complex, in a cup-shaped structure (cs) (probably an endosome) found 
near the Golgi stacks, and within several of the stacked cistemae themselves (arrows) (B). B-E, variations in the position of the labeled 
cisternae in the stacks. Label can be detected in cis, middle, or trans cisternae. C and E, Golgi stacks of which at least four out of six 
cisternae are labeled. D, a stack in which a single (cis) cisterna is labeled. Fixed ceils were incubated sequentially with rabbit anti-rat 
IgG and HRP-conjugated sheep anti-rabbit Fab. Bars, 200 nm. 

ments in which cells were incubated with anti-TFR at 4°C, 
washed extensively at 4°C, and warmed to 37°C for 5 or 
30 rain before fixation and immunoperoxidase localization 
of the bound anti-TFR. Thus the distribution of internalized 
anti-TFR was the same under conditions in which nonspe- 
cific pinocytotic uptake of unbound antibody was ruled out. 

To obtain data on the frequency of uptake of anti-TFR into 
various Golgi elements, the distribution of anti-TFR among 
different Golgi subcompartments was determined. The re- 
sults (Table I) indicate that after a 5-min incubation with anti- 
TFR at 37°C, HRP reaction product could be detected in the 
stacked cisternae of ,050% of the cells analyzed. Surpris- 
ingly, cis and middle cisternae were more often labeled than 
trans cisternae. After 30 min at 37°C, the proportion of 

Golgi complexes in which the stacked cisternae contained 
detectable anti-TFR had decreased to 35% and reaction 
product was more often found in trans cisternae, but it could 
still be found in any Golgi subcompartment (cis, middle, or 
trans) within the stack. 

It can be concluded that (a) uptake of antibody-tagged 
receptors into Golgi cisternae is a frequent rather than a rare 
event; (b) the antibody-tagged receptors reach all Golgi 
cisternae; and (c) cis cisternae are most commonly labeled 
at 5 rain and trans cisternae at 30 min. 

Fab Fragments o f  Ant i -TFR Bound to 
Plasmalemmal TFR Reach the Goigi Stacks 

When cells were incubated with Fab fragments of anti-TFR 
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Figure 6. Immunoperoxidase preparation similar to that in Fig. 5 except that the cells were incubated with anti-TFR for 30 min. HRP 
reaction product is seen in the same structures as after 5 min, i.e., in coaled pits (cp) along the plasma membrane (A), in vesicles (ve) 
of various sizes and reticular elements (re) located on the trans side of the Golgi stacks (B), and occasionally in the stacked cisternae 
(arrows) (C and D). The only difference between the findings obtained at 30 min and those at 5 min is that labeling is less frequently 
encountered in Golgi stacks and is more commonly found in trans Golgi reticular elements at the later time point. Usually only a single 
cisterna within a given stack is labeled (C and D). The trans side of the stack is clearly marked in B by the presence of centrioles (ce). 
Bars, 200 nm. 

instead of whole IgG, the results were very similar to those 
obtained using the intact antibody: after 5 min at 37°C, sur- 
face staining was visible by immunofluorescence, but was 
difficult to photograph, and after 30 min, anti-TFR Fab were 
regularly seen at the cell surface as well as concentrated in 
the juxtanuclear region (compare Fig. 4, C and D).  By im- 
munoperoxidase labeling, it was apparent that the Fab had 
been internalized into endosomes as well as into the stacked 
Golgi cisternae where it appeared within cisternae in all po- 
sitions (cis, middle, and trans) in the stack (Fig. 7, A-C). 
Thus, there was no apparent difference in the routing of plas- 
malemmal TFR tagged with monovalent Fab or divalent IgG. 

Effect of  p H  on Binding of  Anti-TFR 
to Plasraalemmal Receptors 

To assure that the antibody would remain bound to the recep- 

tor at the pHs encountered in intracellular compartments (pH 
4,0-7.4) the effect of pH of surface-bound t25I-labeled anti- 
TFR was examined. The data obtained (Table I/) demon- 
strate that the amount of anti-TFR remaining bound to the 
cells after incubation at pH 4-7.4 is the same. Only when the 
pH was lowered to <4.0 did anti-TFR dissociate from the 
cells: at pH 3, <5% of the IgG remained bound, and at pH 
2, no bound antibody was detected. These results demon- 
strate that the antibody remains firmly bound to the receptor 
at pH 4.0-7.4. 

Discus s ion  

In these experiments, we tagged the plasmalemmai TFR of 
RPC 5.4 mouse myeloma cells with a monoclonal anti-TFR 
IgG or Fab and used the bound antibody to trace by im- 
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Table L Distribution of Endocytosed Anti- TFR 
within Golgi Cisternae* 

No. of No. with 
Incubation cells labeled Golgi 
conditions analyzed cisternae 

Distribution of 
labeled cisternae 
within Goigi 
stack 

Anti-TFR IgG, 52 27 
5 min at 37°C 

Anti-TFR IgG, 53 17 
30 min at 37°C 

Cis-5 
Middle-16 
Trans-O 
Indeterminate-0 

Cis-6 
Middle-4 
Trans-4 
Indeterminate-3 

* Cells were incubated with anti-TFR for 5 or 30 min at 370C after which they 
were fixed and processed for immunoperoxidase localization of bound anti- 
TFR as described in the Materials and Methods. Micrographs were taken 
(15-20,000 ×) of all cells in a given field that contained labeled intracellular 
receptor and in which the Golgi stacks were clearly visible. 

munocytochemistry the intracellular compartments reached 
by internalized receptors. For the antibody to be a valid 
marker it was necessary to rule out that it could dissociate 
from the receptor at the low pHs encountered in endosomes 
(pH 5.0) (38) or in trans Golgi or "para Golgi" compartments 
(pH 6.5) (1, 41). This was done by demonstrating that ra- 
dioiodinated anti-TFR remained bound to surface receptors 
at the pHs (7.4 to 4.0) likely to be encountered in any intra- 
cellular compartment. Our primary finding was that inter- 
nalized receptors tagged with antibody reached bona fide 
Golgi cisternae where they could be detected in all locations 
within the stacks-i .e . ,  cis, middle, or trans cisternae-as 
well as in endocytic compartments. These results demon- 
strate that a specific integral membrane component can visit 
most if not all Golgi subcompartments during recycling. 
They also confirm and extend to a specific plasmalemmal 
membrane protein results obtained previously on myeloma 
ceils after iodinating plasmalemmal constituents (40) and on 
myeloma cells (29) and a number of other secretory cell 
types (7, 14, 16) after binding electron-dense tracers to the 
cell surface. 

The possibility that antibody binding might perturb recep- 

Table II. Effect of pH on Elution of Anti-TFR 
from RPC Cells* 

pH of elution t25I-Protein A bound 

cpm x 10 -3 

7.4 2.2 + 0.36 
6.5 1.8 + 0.56 
6.0 1.6 + 0.18 
5.5 2.1 + 0.38 
5.0 1.2 + 0.32 
4.0 1.6 + 0.32 
3.0 0.1 5:0.12 
2.0 0.0 -t- 0.14 

* Plasmaleramal TFR were labeled with anti-TFR by incubating cells in the 
presence of the antibody for 30 rain at 4"C in PBS/OVA (pH 7.4). The cells 
were then washed with POdcitrate buffers of different pHs, fixed in 2% for- 
maldehyde, incubated with anti-rat IgG followed by mI-protein A, and the 
amount of bound t~5I-prntein A determined. 

Figure 7. Golgi complexes from an immunoperoxidase preparation 
similar to Fig. 4 except that the cells were incubated with Fab frag- 
ments of anti-TFR IgG for 30 min at 37°C before fixation. Im- 
munoreactive Fab is detected in a variety of positions within the 
stacked Golgi cisternae (arrows). A, HRP reaction product in the 
two tram-most cisternae in one Golgi stack (to the right) and in two 
cisternae on opposite sides of the stack in another (to the left). B, 
reaction product in two of the cis-most cisternae in another Golgi 
stack; and C, reaction product in only a single cisterna on one side 
of a stack in which the sidedness (cis vs. tram) is not clear. Bars, 
200 nm. 

tor traffic and divert it to a nonphysiological pathway cannot 
be ruled out completely, but seems unlikely for the following 
reasons: (a) similar results have been obtained with alterna- 
tive labeling procedures; (b) TFR are found in exactly the 
same compartments in cells fixed at steady state where there 
has been no tagging of receptors before fixation; (C) TFR 
tagged with monovalent Fab fragments and those tagged with 
whole (divalent) IgG have the same fate. Moreover, there is 
no precedent for antibody binding diverting endocytic traffic 
to compartments other than lysosomes (26). In fact, the ad- 
vantage of the approach used here to study TFR traffic is that 
it made use of native, unmodified anti-TFR to trace receptor 
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movements, whereas, most previous studies of this type have 
been done with anti-TFR coupled to large electron-dense 
tracers such as colloidal gold (18, 19) which appear to 
divert at least some of the receptors to lysosomes (19). 
In experiments in which we tagged surface TFR with anti- 
TFR plus a second antibody coupled to colloidal gold 
before fixation, the internalized gold label was found only in 
endosomal and lysosomal compartments and was not de- 
tected in Golgi stacks (2), suggesting that the large, multiva- 
lent gold-labeled probe diverts at least some of the receptors 
to lysosomes. 

Previous work established that TFR bind transferrin-Fe 3÷ 
at the cell surface and the TFR-transferdn complex is inter- 
nalized into a low pH compartment where the Fe ~÷ is 
released, thereby becoming available for cell metabolism. 
The resultant TFR-apotransferrin returns to the cell surface 
where the apotransferrin dissociates, freeing TFR to bind 
more transferrin (5, 21). TFR and endocytosed transferrin 
have been previously localized at the electron microscopic 
level in a number of cell types including reticulocytes (13), 
erythroleukemic cells (39), epidermoid carcinoma A431 
cells (18, 19), and Chinese hamster ovary cells (41). In all 
these cell types TFR and endocytosed transferrin have been 
found in peripheral or t rans  Golgi endosomal compartments, 
but they have not been detected in the stacked Golgi 
cisternae. 

How then do we explain our findings on the routing of 
antibody-tagged TFR through the Golgi stacks in myeloma 
ceils? We believe that the differences between our findings 
and those of others in regard to the localization of TFR in 
Golgi stacks can be explained by differences in the nature of 
the cell types studied as well as in the methods used to study 
them. Most previous work was done on cell types in which 
the main flow of endocytic traffic is to endosomes and lyso- 
somes, whereas we studied an IgG-secreting murine my- 
eloma cell line, RPC 5.4, in which it had been established 
(29) that a considerable amount of the endocytic traffic is to 
the stacked Golgi cisternae. These cells constitutively se- 
crete IgG and package it into small vesicles which are con- 
tinually released by exocytosis. This type of membrane 
traffic from the plasmalemma to the Golgi complex, which 
has been documented in these as well as in a number of other 
secretory cells, has been assumed to be connected primarily 
with the recovery and recycling of membranes used as con- 
tainers for secretory products. However, the present observa- 
tions indicate that since the destination of membrane proteins 
as exemplified by TFR is not limited to trans cisternae where 
packaging occurs, there must also be considerable recycling 
of plasmalemmal components between Golgi subcompart- 
ments. Thus, the simplest interpretation of our findings of ex- 
tensive plasmalemma to Golgi traffic of TFR in myeloma 
cells is that it is a reflection of the high level of membrane 
traffic to and through the Golgi complex that takes place in 
secretory cells (11) and that TFR serves as a marker for this 
type of traffic from the Golgi complex to the cell surface and 
back. It should be added, however, that we assume that simi- 
lar recycling plasmalemmal to Golgi traffic also exists in 
other cell types because all cells utilize exocytosis for deliv- 
ery of newly synthesized proteins (e.g., plasmalemmal pro- 
teins) to the cell surface, but it occurs at a much lower level 
than in secretory cells and is therefore more difficult to trace. 

On discovering plasmalemmal to Golgi traffic a few years 

ago, it was suggested (8-10) that biosynthetic repair (e.g., 
reglycosylation, resulfation) of plasmalemmal membrane 
proteins or bound ligands might occur in transit through 
the Golgi complex during recycling. Evidence has sub- 
sequenfly been obtained, indicating that resialylation of 
both transferrin (32, 33) and TFR (36) does occur, implying 
that both TFR and transferrin can visit the Golgi subcom- 
partments where the sialyltransferase resides. Sialyltransfer- 
ase has recently been localized by immunocytochemistry to 
1-2 trans cisternae and a trans Golgi-tubular network in rat 
hepatocytes (34) comparable to the t rans  Golgi elements in 
which TFR (39) or transferrin (41) have been localized. 
Thus, the present findings indicating that surface TFR reach 
the  trans Golgi reticular cisternae are compatible with both 
the immunocytochemical localization of sialyltransferase 
and the biochemical data on resialylation. The present 
findings in myeloma cells as well as the previous studies with 
electron-dense tracers indicate that recycling TFR can visit 
cis  and middle cisternae where the early glycoprotein pro- 
cessing enzymes (GIcNac transferases I and II, a-mannosi- 
dases I and II) (4, 11, 22) and the two enzymes that add the 
mannose-6-phosphate recognition marker to lysosomal en- 
zymes (12, 31) reside, and they raise the possibility that more 
extensive posttranslational modifications than resialylation 
can occur during recycling. In principle, any biosynthetic 
event that normally occurs in the Golgi complex-i.e., 
O-glycosylation, addition of glycosaminoglycans, sulfation, 
and proteolytic processing as well as earlier events in N- 
glycosylation (see references 11 and 22)-could occur in 
transit during recycling as well as during the initial biosyn- 
thetic passage of newly synthesized proteins through the 
Golgi complex. In practice it remains to be seen to what ex- 
tent this repair option is exercised by different cell types. 
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