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We develop an early warning system and subsequent optimal
intervention policy to avoid the formation of disproportional
dominance (“winner takes all,” WTA) in growing complex net-
works. This is modeled as a system of interacting agents, whereby
the rate at which an agent establishes connections to others is
proportional to its already existing number of connections and
its intrinsic fitness. We derive an exact four-dimensional phase
diagram that separates the growing system into two regimes:
one where the “fit get richer” and one where, eventually, the
WTA. By calibrating the system’s parameters with maximum like-
lihood, its distance from the unfavorable WTA regime can be
monitored in real time. This is demonstrated by applying the the-
ory to the eToro social trading platform where users mimic each
other’s trades. If the system state is within or close to the WTA
regime, we show how to efficiently control the system back into
a more stable state along a geodesic path in the space of fitness
distributions. It turns out that the common measure of penalizing
the most dominant agents does not solve sustainably the prob-
lem of drastic inequity. Instead, interventions that first create a
critical mass of high-fitness individuals followed by pushing the
relatively low-fitness individuals upward is the best way to avoid
swelling inequity and escalating fragility.
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In just about a decade, a handful of companies have contributed
to an alarmingly centralized World Wide Web. This hardly

resembles the Internet’s founding credo of net neutrality. Dom-
inance on the Internet is not self-contained but transcends the
economy as a whole, such as digital advertising and e-commerce.
Beyond economic concerns, such unprecedented digital monop-
olies have important implications for politics and society (1).
However, how can one tell that a company is too large? At
what point should regulators interfere, and how? We present a
framework to answer these and similar questions. At its heart
is the law of preferential attachment, stating that the growth
rate is proportional to size. We consider a system of interact-
ing agents, whereby the rate at which any given agent establishes
connections to others is proportional to its already existing num-
ber of connections and the agent’s intrinsic fitness in attracting
connections. This representation is known to carry a risk of cen-
tralization (2), in the sense that removal of a few dominating
agents would collapse the entire system. We derive a system-
atic classification of the system’s phase space and show under
what circumstances such unfavorable centralization occurs. This
allows us to anticipate the emergence of overly dominant agents
ex ante and construct methods for early intervention. In socioe-
conomic systems, typical countermeasures against centralization
are progressive taxes, antitrust laws, and similar legislation. How-
ever, our analysis reveals that such an approach may be ineffec-
tive because it addresses only the symptoms—disproportionally
dominant agents—rather than the underlying cause: fundamen-
tally imbalanced system that catalyzes such dominance. Instead
of punishing the most competitive agents, one should foster

more balanced growth and competition by improving the relative
fitness of underrepresented agents.

The applications of our framework are manifold, since fitness-
adjusted preferential attachment has been shown to approximate
the growth dynamics of many systems at a phenomenologi-
cal level. Examples include the evolution of the World Wide
Web (3), citation networks (4), trust relationships (5), social
media (6), streaming services (7), photon emission rate (8), sup-
ply chains (9), Escherichia coli metabolic networks (5), market
investments (10), and transactions on the bitcoin blockchain
(11). A theoretical justification for fitness-based behavioral pref-
erential attachment has recently been provided as the result of
strategic minimization of maximum exposure to least fit nodes
(12). In this article, we apply the method on the eToro trad-
ing platform, where participants observe others’ trades and can
chose to either engage in their own strategies or copy others. We
find that the platform does not give rise to “winners that take it
all,” which we attribute to the inherent component of luck that
underlies trading performance. We also discuss the implications
of theses insights for a universal base-income, progressive tax,
antitrust laws, and social networks.

Model Definition and Regime Characterization
In this section, we propose an exact criterion specifying the con-
ditions for which the dominance of an agent (firm, city, website,
individual, etc.) becomes overwhelming.
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Fitness-Based Preferential Attachment and Deletion. Aiming at a
generic description, preferential attachment is a natural first
building block (13–15). Assuming some heterogeneity among
agents, it is appropriate to add to it a fitness-based proportional
attachment (16), which has been shown (12) to be particularly
suitable to describe growth dynamics in complex networks. In
practice, the appropriateness of this form may be tested by means
of specific Bayesian statistical methods (6).

We thus consider an undirected network that is growing by
attaching one agent and m edges per unit time. Edges may also
be established between already existing nodes. Each agent ai has
an intrinsic “attractiveness” or, from hereon, “fitness” ηi ∈ (0, 1)
sampled from some fitnesses distribution ρ. Agent ai ’s number
of connections, that is, its degree, is denoted by ki . At each
time step, agent ai establishes a new connection with proba-
bility pi proportional to the product of its fitness and degree,
pi = ηi ki/

∑
j (ηjpj ). The fitter and the more connected the

agent, the more attractive it is. To add one more realistic, yet
generic, assumption (17), we allow agents to be removed from
the system (failure, death, etc.) with probability proportional to
cηωi . Here, c> 0 is the base rate of removal and ηωi accounts for
the dependence of the probability of failure on the fitness of the
agent. For ω> 0, the fit agents are more likely to fail, for instance
due to targeted attacks. For ω< 0, weak agents are more likely
to fail, that is, η itself is a measure of robustness with respect to
failure.

Assuming that the i-th agent is still alive at time t , the mean
field rate at which its degree ki changes reads

∂ki
∂t

=m
ηiki
S(t)

− c

1− c

〈η〉ω

〈ηω〉
ki
t
, [1]

where S is a normalization factor and expectation values 〈·〉 are
taken over the fitness distribution ρ. The first term in the right-
hand side of Eq. 1 is a direct consequence of the attachment rule
described above. The second factor is a product of two inde-
pendent probabilities: the probability ∼ c 〈η〉ω that an agent is
deleted and the probability ∼ ki/t that agent ai is connected
to that failed agent. A detailed derivation of this equation and
subsequent results is found in SI Appendix.

While Eq. 1 captures the growth dynamics of a large class of
systems at least to first order, it may also be extended to take into
consideration, for instance, preferential deletion (17), sublinear
or superlinear preferential attachment (18), assortative mixing
(19), multidimensional fitness (20), or different boundary condi-
tions such as minimal lower bounds or inflow of new agents at
different rates (14).

The Fit-Get-Richer and the Winner-Takes-All Regimes. As shown in
SI Appendix, Eq. 1 gives rise to two distinct asymptotic regimes:
the fit get richer (FGR) and the winner takes all (WTA). In the
latter, the system is largely dependent and controlled by just a
few agents. This regime is analogous to a Bose–Einstein conden-
sate in statistical quantum mechanics (2, 21) and the dominant
agents are known as “dragon-kings” in socioeconomic (22) and
complex systems (23). The notion of disproportional dominance
manifests itself in the number of connections of those agents
(representing their influence/importance/wealth/. . .). This is
made rigorous as follows: There exists at least one agent aDK

whose ratio of its degree kDK to the total number of connec-
tions does not decay to zero in the limit of infinite system size. In
other words, even as the system grows to infinity, a nonzero frac-
tion of connections is controlled by aDK . The influence of such
an agent is felt in the entire system no matter what the total size
of the network (Fig. 1A). From a stability point of view, the sys-
tem is then strongly reliant on a few agents and might collapse if
those fail. From an economic point of view, any action of such an

agent affects the entire economy, reminiscent of the companies
mentioned in the introduction.

The WTA regime occurs if and only if

I ∗≡
1∫

0

dη
ρ(η)

ξ

ξω+〈η〉ω+ 1−c
c
〈ηω〉

(
〈η〉η+ 1−c

c
〈ηω〉

η
+ 1

η1−ω

)
− 1

< 1,

[2]

where ξ is a constant that depends on ρ, c and ω, but is typically
close to 1. Expectations 〈·〉 are calculated with respect to the dis-
tribution ρ from which η is sampled. Importantly, Eq. 2 depends
on the fitness landscape ρ as a whole, and not just on the fitness
of a few agents. This suggests that acting on the dominant agents
by removing many of their connections or targeting their growth
specifically will not be effective: This may transiently decrease
their influence but is short-lived as the growth dynamics leads
to the resurgence of new agents that dominate. The problem is
systemic: As we shall see, in order to prevent the occurrence of
unwanted WTA agents, one should act on the fitness landscape
ρ as a whole.

Finally, it is important to note that the FGR regime is not to
be mistaken for a state of “equality.” The asymptotic size distri-
bution is still heavy-tailed with a power law exponent controlled
by the shape of ρ (16). However, the important difference is that
the influence of any given agent is more localized and negligi-
ble within a large enough system, in contrast to the WTA regime
where some agents dominate system-wide.

Parametric Regime Classification. Eq. 2 shows that the appearance
of WTA agents depends on the deletion parameters c and ω,
as well as the entire distribution of fitnesses ρ. In order to clas-
sify the possible different regimes, we propose to explore the
space of fitness distributions parameterized by the beta distribu-
tion whose density is given by fα,β(η)∝ ηα−1 (1− η)β−1 where
varying α,β > 0 samples all shapes of practical interest (Fig. 1B).

The WTA condition (Eq. 2) can now be expressed as
a function of four parameters, {α,β,ω, c}, via the function
I ∗(α,β,ω, c) and the two corresponding regimes are FGR (I ∗>
1) and WTA (I ∗< 1). In general, the integration in Eq. 2 with
ρ has to be solved numerically. Fig. 1C shows the domain of
existence for the WTA and FGR regimes, for different preferen-
tial deletion parameters c and ω in the space of the parameters
(α,β). Comparing with Fig. 1B, we see that the WTA regime
corresponds to fitness landscapes in which the bulk of the agents
have relatively low fitness. Smaller values of ω favor the failure
of relatively low fitness agents, and hence increase the area of the
WTA regime. In contrast, for large ω, the FGR regime increases
in importance, as more fit agents tend to be removed by targeted
attacks. The larger c is, the stronger is this effect.

Empirical Calibration on the eToro Social Trading Platform
We apply the above theory to the social trading dynamics on the
multiasset brokerage platform eToro. On eToro, traders have
access to different assets, in particular foreign exchange mar-
kets, and can leverage their position up to 400 times for both
long and short positions. The feature that most distinguishes
eToro from other trading platforms is its “OpenBook” social
investment function. Instead of making their own trading deci-
sions, users can chose to “mimic” one or several other traders
and automatically execute the same trades as they do. Since
more popular traders are more prominently displayed on the
platform, they are more likely to be noticed and hence fol-
lowed. This suggests that a preferential attachment model is
suitable to model the imitation tendency. The decision to follow
a specific trader also depends on idiosyncratic, heterogeneous
properties (e.g., recent performance or risk level), and thus
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Fig. 1. (A) Fraction of links connected to the most dominant agent nDK in the system, as a function of the total number of agents. The mean values
and ± one SD bands are obtained over a sample of 100 realizations. We have fixed c = 1% and ω= 0. Two different fitness distributions are used, one in
the WTA and one in the FGR regime (red and blue crosses in C). (B) Beta distribution density for different parameters α and β used to parametrize the class
of fitness distributions on [0, 1]. As α and β vary, all typically relevant shapes of the fitness distribution are sampled. The WTA regime is characterized by
the bulk of the probability mass being concentrated on agents of relatively low fitness, with only few fit agents that end up dominating the system (e.g.,
α= 2, β= 5). (C) Phase diagram showing the domains of existence for the FGR and the WTA regimes, for different preferential deletion parameters c and
ω in the space of the parameters (α, β) of the beta-fitness distribution. The WTA regime corresponds to values where I*< 1 (Eq. 2). This WTA regimes lies
above a line parameterized by (c,ω). (D) Geodesic with respect to Wasserstein-2 metric, that is, cost minimizing interpolation from a beta distribution in the
WTA regime to a beta distribution in the FGR regime. The (approximate) path in the space of beta distributions is shown in C. (E) Distributions along the
shortest path with respect to the Euclidean distance in the (α, β) plane (cf. dashed line in panel C). This intervention policy is more expensive than the one
along the Wasserstein geodesic.

adding a fitness component seems appropriate. To confirm the
applicability of fitness-adjusted preferential attachment, we have
applied a Bayesian statistical method for the joint estimation of
preferential attachment and node fitness without imposing
functional constraints (6). See SI Appendix for details.

Translating to our model, each trader is an agent, and the num-
ber of traders followings a given trader ai defines its number of
connections (degree) ki . The rate at which a trader attracts new
connections is a measure of the attachment probability pi . In this
way, by measuring agent ai ’s popularity ki as well as its current
rate of attraction pi , one can infer an effective fitness ηi ∝ pi/ki
without detailed knowledge of the underlying system dynamics.
The access to all of the active accounts and traders allows us a
faithful reconstruction of the underlying network. We measure
pi and ki over rolling windows at different times t from July
2012 to November 2013, such that the evolution of the fitness can
be tracked: t 7→ ηi(t). After having inferred the fitness of every
agent at time t , we construct an empirical fitness distribution
ρ̂(t) as a histogram over all fitnesses. The distribution of fitnesses
turns out to be fairly stationary and unimodal, with most traders
having a fitness around ηi ≈ 0.4 (Fig. 2A). The histogram ρ̂(t) is
fitted fitted by the beta distribution via maximum likelihood to
obtain the parameters α̂(t) and β̂(t). In accordance with the sta-
tionarity of ρ̂, the evolution of t 7→

(
α̂(t), β̂(t)

)
is confined to a

small radius around α̂≈ 1.25 and β̂≈ 1.25 (Fig. 2B). Similarly,
the deletion parameters ĉ(t) and ω̂(t) are inferred from direct
observation at different times t and are found to be stationary
and fluctuating within limiting bounds (Fig. 2C). See SI Appendix
for details on methods. Here, we have defined node removal
as the process whereby a trader is no more being mimicked by
anyone after having been mimicked previously. Interestingly, ω̂
is consistently positive, suggesting that particularly fit traders
are more likely to disappear. Our method is phenomenologi-
cal in that it captures idiosyncratic, system-specific details into

the fitness term. To interpret this result, one must thus apply
domain-specific knowledge. On eToro, a trader’s recent per-
formance is displayed to others by means of several metrics
(percentage gain, portfolio volatility, etc.) We can then expect
η to be a (generally complex) function of these variables. Perfor-
mance on financial markets is known to have a large contribution
of luck (24) and presumably even more so for the primarily retail
traders that are active on eToro. In SI Appendix, we show that the
most mimicked (i.e., high η) traders indeed correspond to the
ones who seem to outperform the market on short time scales,
but that this performance is not sustained over longer times.
Since, on short time-scales, luck is easily mistaken as skill (25),
the mimicking functionality of eToro gives rise to imitation of
noise traders. Implied overconfidence may then be the reason
that more risk is being taken, resulting in large losses and explain-
ing why particularly fit traders are more likely to vanish from the
platform.

These insights highlight a secondary benefit of our approach:
It complements and guides a more system specific understanding
of the problem at hand. As long as the system allows for a repre-
sentation of the form Eq. 1 (or a related variant thereof), one can
absorb the intrinsic system dynamics into η. The phenomenolog-
ical model then allows one to determine the state of the system.
System-specific knowledge is again required to understand how
the fitness distribution is to be modified in practice.

We now continue with the main purpose of the method: assess-
ing the state of disproportional dominance. Given the estimates
of α,β, c and ω, we can now calculate t 7→ I ∗

(
α̂, β̂, ω̂, ĉ

)
from

Eq. 2 and track its distance from the transition threshold I ∗=1.
For the case of eToro, we find that the system dynamics is con-
fined in the stable FGR regime I ∗> 1 (Fig. 2d), suggesting that
the competitive environment is enough to avoid the emergence
of disproportionally dominant traders. This is alternatively visu-
alized in the

(
α̂, β̂

)
plane (Fig. 2B), where we can see that the
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Fig. 2. Analysis of eToro trading network at different times t from July 2012 to November 2013. (A) Time-averaged distribution of trader fitnesses ρ̂ (dashed
black line) as well as 80% confidence interval as determined over all times t. (B) Evolution of the eToro network in the (α, β) plane obtained by the procedure
explained in the text. The straight lines separate the WTA regime from the FGR regime. The green, dashed line corresponds to the regime separation with
time-averaged ω̂≈ 0.3 and ĉ≈ 0.003 value. The purple, dotted line highlights the hypothetical effect of removing relatively low fitness traders at a high
rate (ω=−0.3, c = 0.5). (C) Time evolution of parameters c (multi colors on left axis) and ω (green and right axis). (D) Time evolution of the parameter I*
compared with the horizontal line at I* = 1 that separates the two regimes (FGR for I*> 1 and WTA for I*< 1).

dynamics is well below the separation line to the WTA regime.
If the dynamics was such that unfit traders are more likely to exit
(ω< 0) at higher rates (1> c� 0), the system would however lie
closer to the critical threshold at I ∗=1.

We note that the strength of the above methodology is that
it can also be implemented to incomplete or noisy data, as the
regime classification depends only on the empirical distribution
of fitnesses ρ̂ as a whole. A current limitation is that the fit-
nesses are assumed stationary, or at least that they change over
timescales that are larger than for changes in the number of
established connections. SI Appendix confirms this is the case
for eToro. Relaxing this assumption is part of future research.
Realizing that a large part of the traders’ performance observed
on eToro is likely driven by luck, it seems particularly inter-
esting to take into consideration fitness values that decay with
time (26).

Optimal Control of Disproportional Dominance
The analysis of theToro social trading network in the previous
section showed an instance where the network was confined
in the FGR regime. In less-competitive, large-scale economic
systems, this may not always be the case. In such situations,
an external regulator (e.g., the state) may wish to intervene to
ensure greater opportunities for new entrants and less inequity.
Interventions only targeting the most dominant agents may
appear “unfair,” as it punishes arguably highly fit agents. Per-
haps more important, such intervention is inefficient in light of
Eq. 2, which shows that the emergence of the WTA regime
is a consequence of the distribution of fitnesses as a whole.
Rather than just acting on the right tail of the distribution in
form of punishments, more holistic, distribution-wide interven-
tions are called for. In particular, as inferred from Fig. 1 A and
B, it is the high population of weak agents that needs to be
addressed.

Relying again on our parameterization of the fitness space
in terms of the beta distribution, we formulate the regulator’s
intervention as an action that aims to modify the distribution of
fitnesses. Mathematically, this amounts to the problem of shift-
ing optimally the distribution from an initial shape characterized

by (α0,β0), for instance inside or uncomfortably close to the
WTA regime, to another shape represented by (α1,β1) inside
the FGR domain (Fig. 1C). Practically, this amounts to increas-
ing the concentration of high-fitness agents relative to relatively
low-fitness agents (e.g., in form of subsidies, start-up promotion,
professional education, and so forth). Technically, we formulate
the intervention technique as an optimal transport problem,
seeking the most cost-efficient way of transforming one distribu-
tion into another. We assume that increasing an agent’s fitness
from η1 to η2 is associated with a cost c(η1, η2). The problem
then amounts to finding a transport map τ : [0, 1]→ [0, 1] that
pushes fα0,β0(·) onto fα1,β1(·) while minimizing the total cost
1∫
0

dη c(η, τ(η)) fα0,β0(η). The solution of the problem depends

on the functional shape of c(·, ·). Here, we provide a specific
example by assuming a quadratic cost c(η1, η2)= |η1− η2|2. This
is a reasonable assumption for systems where fitness can be con-
trolled directly or indirectly via external manipulation. Whether
a quadratic cost is appropriate generally depends on the specific
system under scrutiny, but our method generalizes to other func-
tional shapes for c. In full generality, different cost functions will
yield different intervention protocols. However, as discussed in
SI Appendix, our conclusions remain similar when extended to
c(η1, η2)= |η1− η2|δ for any δ> 1. By varying δ, a large class of
cost functions may be approximated reasonably well.

Denote by Fα,β(·) the cumulative distribution function of the
beta distribution, and by Qα,β(·)≡F−1

α,β(·) its inverse (quantile)
function. It can be shown (27) that the cost-minimizing transport
map τ is of the form τ(η)=Qα1,β1(Fα0,β0(η)). The interpola-
tion from fα0,β0(·) to fα1,β1(·) is equivalent to a geodesic path
with respect to the Wasserstein-2 metric. It is parameterized by
ft(η)=

∂τt
∂η

fα1,β1(τt(η)) with τt = t η+(1− t) τ(η) and t is run-
ning from 0 to 1. Hence, ft(η) interpolates from f0(η)= fα0,β0(η)
to f1(η)= fα1,β1(η) through the space of fitness distributions
along a geodesic path with respect to the Wasserstein-2 metric
(Fig. 1D). We can again approximate any intermediate distri-
butions ft(η) as beta distribution with parameters (αt ,βt) (see
SI Appendix for mathematical details). This traces out a path
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t 7→ (αt ,βt) that can be interpreted as the most cost-efficient
intervention plan. In Fig. 1C, such a geodesic path is shown, start-
ing from the red cross deep in the WTA domain and ending on
the blue cross in the FGR domain. Fig. 1D presents a sequence
of snapshots for the distribution of fitnesses, as it changes along
the optimal path. This geodesic in the distribution space devi-
ates very strongly from the naive solution of taking a straight
path in the two-dimensional (α,β) plane (which would be the
geodesic with Euclidean distances). As already mentioned, the
WTA regime corresponds to a relatively low-fitness popula-
tion with a few high fitness individuals, who eventually become
winners that “take it all.” The most cost-efficient intervention
(Wasserstein geodesic) focuses first on the high fitness part of
the distribution, by decreasing β which describes the part of the
fitness population close to 1 while keeping α approximately con-
stant. Then, the intervention shifts to increasing α at quasi-fixed
β, thus working on the part of the fitness population close to 0. In
contrast, the straight line (Euclidean geodesic) works on both α
and β simultaneously, which corresponds to first building a large
pool of agents with intermediate fitnesses (Fig. 1E). The optimal
intervention thus amounts to decreasing the number of agents
of relatively low fitness while increasing the number of relative
fit ones, while avoiding a population that peaks at intermediate
fitness levels.

Implications and Applications
Since the growth dynamics of many systems may be captured at
least to first order by fitness-based preferential attachment (3–
11), the insights from this paper can be applied to a large class of
systems. Let us discuss a few examples.

Already in the early 20th century, Gibrat had recognized that
the growth dynamics of firms may be described with proportional
growth (28). This model has ever since been extended numerous
times to take into consideration effects such as firm heterogene-
ity (29–32), minimum firm size (33), births and deaths of firms
(34–36), merger and acquisitions (37), or bankruptcy (38). In the
context of our model, the firm dynamics can be described for
instance via preferential attachment of the supply-chain network
(9). The number of customers of a firm is denoted by k and η is
the rate at which its customer base grows. Our results then have
implications for instance for the formulation of antitrust laws.
Regulators are concerned with the merger of two large firms.
The impact of a merger is often assessed in terms of concen-
tration of market power (39). Firm size may be one important
aspect, especially in sectors with only a few firms. However,
our results suggest that a potentially greater harm stems from
the less-monitored acquisitions of successful smaller firms (such
as start-ups) that gradually deplete the pool of high fitness
agents.

At the level of personal wealth, the concept of fitness based
preferential attachment is also relevant. The richer an agent, the
more likely they are to attract more wealth by being exposed
to more opportunities and transactions (10, 11, 40). Denote
by k the wealth of an agent. Then, it holds dk ∝ ηk where
the fitness η is the growth rate in this context. From such
a representation, the effect of a universal base income is to

put a floor on the minimum wealth ki that any agent may
have. It thereby acts as a reflecting lower boundary and this
boundary condition can even make the wealth distribution more
unequal, transforming it from log-normal to power law (33).
However, to sustainably address the problem of income and
wealth inequality, it is the growth rates (i.e., fitnesses) them-
selves that need to be addressed. While our model sheds light
on what should be done and where resources should be tar-
geted, system-specific domain knowledge is required to put these
insights into best practice. A progressive tax system that takes
from the rich and gives to the poor may free up the neces-
sary resources but does not solve the problem sustainably by
itself. While it is expected that the ability to generate income
(i.e., fitness) changes itself with increased wealth, the uncon-
trolled, raw transfer of money may be inefficient, short-lived,
or localized (41, 42). Instead, system-specific actions should be
designed with the goal of increasing growth opportunities for
low-income individuals, for example by enabling them to save
money and earn returns, or better access to opportunities and
investments.

Streaming services and online vendors often recommend new
products to its users based on their popularity (degree k) and
rating (fitness η) (7). To additionally capture a component of
personalized recommendation and the bipartite nature of the
product–customer space, Eq. 1 could be extended to take some
users’ characteristics into consideration. In light of our results,
to avoid that a few products completely dominate and to ensure
the offering of a large variety of large fitness products, suffi-
cient resources obtained from sales of successful products should
be directed toward supporting creativity and inventions of new
styles.

Concluding Remarks
The above results have shown that the emergence of dispropor-
tional dominance is not explained as the action of a single agent,
but rather as a wholistic trait of the system. Our model highlights
the importance of vigorous holistic interventions, which work on
the full distribution of fitnesses, and focus on developing a high-
fitness population. In particular, interventions should emphasize
the support of relatively weak agents rather than punishing the
most dominant ones. This may seem counterintuitive, but the
sequential actions of first building a strong base of high-fitness
individuals followed by pushing upward the fitnesses of the rela-
tively low-fitness individuals is a more effective way of reducing
inequity and increasing robustness.

Given the generic setup which may be adapted to dif-
ferent boundary conditions and its robustness to noise, our
methodology has the potential of becoming a standard tool for
dynamic risk monitoring in interacting systems ranging from
small-scale trading platforms up to globally interconnected social
and economic systems.

Data Availability. Data cannot be shared, but some parts of the data are
available upon request.
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