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Abstract

A major goal of neuroscience is to understand the relationship between neural structures and their function. Recording of
neural activity with arrays of electrodes is a primary tool employed toward this goal. However, the relationships among the
neural activity recorded by these arrays are often highly complex making it problematic to accurately quantify a network’s
structural information and then relate that structure to its function. Current statistical methods including cross correlation
and coherence have achieved only modest success in characterizing the structural connectivity. Over the last decade an
alternative technique known as Granger causality is emerging within neuroscience. This technique, borrowed from the field
of economics, provides a strong mathematical foundation based on linear auto-regression to detect and quantify ‘‘causal’’
relationships among different time series. This paper presents a combination of three Granger based analytical methods
that can quickly provide a relatively complete representation of the causal structure within a neural network. These are a
simple pairwise Granger causality metric, a conditional metric, and a little known computationally inexpensive subtractive
conditional method. Each causal metric is first described and evaluated in a series of biologically plausible neural
simulations. We then demonstrate how Granger causality can detect and quantify changes in the strength of those
relationships during plasticity using 60 channel spike train data from an in vitro cortical network measured on a
microelectrode array. We show that these metrics can not only detect the presence of causal relationships, they also provide
crucial information about the strength and direction of that relationship, particularly when that relationship maybe
changing during plasticity. Although we focus on the analysis of multichannel spike train data the metrics we describe are
applicable to any stationary time series in which causal relationships among multiple measures is desired. These techniques
can be especially useful when the interactions among those measures are highly complex, difficult to untangle, and maybe
changing over time.
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Introduction

Recent advances in multichannel extracellular recording

techniques have enabled access to the activity of hundreds or

thousands of neurons simultaneously. Because of this and other

technologies, investigators are now addressing one of the primary

challenges in neuroscience. That is, linking measurements of a

network’s structural topology with that of the network’s potential

functions. This effort has been supported in part by a simultaneous

advance in the quality of analytical tools that attempt to quantify

the often highly complex interactions that are observed (e.g., cross-

correlation [1], coherence [2], and directed transfer [3]). Although

methods such as cross-correlation have been useful, they do not

provide one of the key pieces of information investigators desire.

That is, a mathematically sound measure of ‘‘causal’’ relations

within their data, the strength of that relation, and perhaps more

importantly, the direction of that relationship. This is particularly

true of brain activity recorded from a large array of electrodes

where increases in the number of electrodes has resulted in a

combinatorial explosion in the number of potential interactions

that must be evaluated. In contrast, Granger causality (GC) [4] has

emerged in recent years as an alternative analytical method

providing a mathematically rigorous means for estimating the

causal strength of complex relationships among brain areas in vivo

recordings in humans [5], rats [6,7] and primates [8–18].

This analytical method is also emerging as a tool to assess

structural information changes in the strength of connectivity

during plasticity [16,19–23]. It is not clear how changes in the

estimated causal strength between different electrodes relates to

the actual changes in the synaptic weights. Determining this

relationship in vivo would be complicated by both the complexity

and limited access to the entire network. However, these

limitations could be assessed in a more constrained situation such

as within in vitro networks recorded with MEAs. In this

preparation, a small network of approximately 25,000 neurons

from the rat are excised, separated, and placed onto the surface of

a small grid of electrodes less than 2 mm in diameter [24]. An

example of one of these arrays is shown in Figure 1. Neurons on

these arrays rapidly reconnect forming a spontaneously active

living network whose electrophysiological activity can be measured

continuously with a MEA for hours, days, and even months at a

time [25–29]. This preparation offers the same multichannel
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access to neural activity as in vivo, but in a smaller network where

complex interactions may be more easily assessed to characterize

the accuracy of GC or its ability to measure plasticity.

In this paper we will focus on analytical techniques based on

Granger causality that address some of its limitations. Although

the metrics described in this paper apply to virtually any

multivariate recording, our description and analysis will be in

the context of spike train data generated from simulated networks

to illustrate the limitations and solutions followed by an application

to a living network of cortical neurons on an MEA. The overall

objective of this paper is to 1) describe the mathematical concepts

behind Granger causality, 2) define, simulate, and characterize

network topologies that can distort estimates of the structure and

strength of causal interactions and provide solutions, and 3)

demonstrate the application of this technique as a potentially

powerful tool to resolve complex changes in plasticity measured

with an MEA in an in vitro cortical network.

We begin with a description of the mathematical foundation of

Granger causality for determining the causal strength of pairwise

relationships (e.g., the strength of A causing changes in B or

conversely, B driving changes in A). The pairwise technique alone

can be quite useful to unravel any interdependencies in a network

and outline its structure. However, this technique encounters

significant limitations in more complex networks where the

relationship between a pair of neurons (or electrodes) can be

mediated by other elements, which is a much more common

scenario. A conditional Granger causality (CGC) metric is then

described that can overcome some of those limitations and a

computational method is also provided to accelerate this analysis.

By combining each of these methods to estimate the actual or

direct causal relationships or Direct Granger causality (DGC), we

can successfully uncover complex relationships among individual

neurons. These methods are first applied to simple neural

simulations to test their ability to recover the synaptic weights

embedded within a network of five neurons. Each simulation

embodies various structural relationships that might be encoun-

tered and the problems that appear in estimating a network’s

structural information from spike trains. The accuracy of DGC

will then be assessed in a large-scale complex network composed of

100 biologically plausible neurons. Finally, we examine how this

combination of techniques may provide a superior measure for

describing plasticity related changes in connectivity within a living

network of cultured cortical neurons.

Methods

Autoregressive Modeling
We begin by providing a brief description of autoregressive

modeling (AR) which represents the foundation of Granger

causality methods. Time series in multivariate neural data are

typically recorded from multiple electrodes and may include

multiple trials of data. While AR models are often presented in a

theoretical context, the examples reported here are provided in the

context of a typical multichannel recording of action potentials

(spikes) from a neural process either in vivo, or in vitro. However,

this description would also apply to the analysis of field potentials,

membrane potentials, etc. Consider the multivariate random

process, X(t), consisting of p independent electrodes:

X tð Þ~

X1 tð Þ
X2 tð Þ
. . .

Xp tð Þ

2
6664

3
7775 ð1Þ

A recording of a time series from these electrodes would be

considered a single realization of this neural process. Multiple

realizations of the neural process (e.g., trials) are often advanta-

geous to creating a more accurate model describing this process

Figure 1. Living Rat Cortical Neurons on a 60 Electrode Microelectrode Array (MEA) from MultiChannel Systems. A 60 electrode MEA
(upper left) used to measure neural activity from a small network of cultured neurons. The upper right corner shows a magnified view of the array
consisting of an 868 grid of 60 electrodes with living rat cortical neurons at 6 days in vitro. Each electrode is spaced 200 um apart and measures the
extracellular potential of neurons nearby the electrode. Example of an extracellular action potential measured with a single electrode (window scale
100 ms650 uV). Neurons on these arrays are spontaneously active producing synchronized bursts of activity throught their lifetime (up to two years).
doi:10.1371/journal.pone.0003355.g001
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(see Ding et al. [30] for an example). Although raw voltage time

series data can be used directly, discrete spike train data can be

transformed to a time series which has the advantage of removing

any nonstationarities and reducing noise. A digital filter can then

be applied to limit the range of potential interactions one wishes to

study. The multichannel time series X(t) is described using an mth

order AR equation assuming that X(t) is a stationary process.

X tð ÞzA 1ð ÞX t{1ð Þz . . . zA mð ÞX t{mð ÞzE tð Þ ð2Þ

A(i) is a p by p coefficient matrix where i = 1,2,…,m and E(t) is a

zero mean uncorrelated noise vector with a covariance matrix of

S. Since A(i) and S are unknown they must be estimated from the

realizations of X(t). This is accomplished by multiplying Equation 2

by XT(t2k), where T denotes a transposed matrix. The

expectation is then taken on the resulting equation yielding the

Yule-Walker equations for k = 1,2,…m containing a total of mp2

model coefficients to be solved for.

R {kð ÞzA 1ð ÞR {kz1ð Þz . . . zA mð ÞR {kzmð Þ~0 ð3Þ

R(n) = ,X(t)XT(t+n). is the auto covariance function of X(t) with

a lag n. Note that the lag n is n = |2k+1|, ranging from 0 to m21.

The auto-covariance function is then calculated from each

realization, x(t), of X(t) of length N. For a single realization this

would be:

R nð Þ~ 1

N{n

XN{n

i~1

x ið ÞxT iznð Þ ð4Þ

If multiple realizations of the data are available the auto

covariance is averaged across realizations. Once the auto

covariance function has been calculated the mp2 model coefficients

of the A(i) coefficient matrix can be solved for because there are

mp2 equations within Equation 3. There are several methods that

can be used to solve this matrix including simply solving for each

of these coefficients or using methods such as the Levinson,

Wiggins, and Robertson’s method or Morf’s method [31], used for

this analysis. Alternatively S may be obtain by the following

equation:

S~R 0ð Þz
Xm

i~1

A ið ÞR ið Þ ð5Þ

This method can be used to estimate the multivariate AR model

for any model order m. An efficient model order can be

determined using several methods including the Akaike Informa-

tion Criterion (AIC) and the Bayesian Information Criterion

(BIC). The BIC is more often used for neural applications as it

compensates for the large N (number of data points) common to

neural data sets. Thus, the BIC will be the primary method used to

determine model order in these studies.

AIC mð Þ~{2log det Sð Þ½ �z 2p2m

N
ð6Þ

BIC mð Þ~{2log det Sð Þ½ �z 2p2m log N

N
ð7Þ

The BIC can then be plotted as a function of the model order m.

The correct model order usually corresponds to a minimization of

BIC. However, when the model order becomes too large this may

result in excessive computation time. Often, a smaller model order

with a similarly minimized value of BIC is used rather than the

absolute minimum BIC for this reason. The final step is to

determine whether this AR model is an adequate representation of

the data set by determining whether the residual noise is white. To

do this the difference between the actual values and the model’s

prediction of those values is calculated and compared to a white

noise distribution [2]. The resulting time domain AR model will

be the basis for the calculation of both time and spectral domain

granger causality, that will be discussed in the following section.

For the following spike train analysis a model order of 8

(corresponding to 8 ms) was chosen as higher orders added little

additional information.

Granger Causality
Pairwise Granger causality (PGC) was initially developed by the

economics community to describe and quantify the ‘‘causal

relationship’’ between data from two different economic time

series. The concept of Granger causality has played a significant

role in the field of economics since 1960s. The foundation for

Granger’s analysis can be traced back to Wiener [32] who

proposed that for any two simultaneously recorded time series, one

series could be called causal to another if incorporating past

knowledge of the first time series permits more accurate prediction

of the second series. Granger formalized this idea in the context of

linear regression models of stochastic processes [4]. Specifically,

consider two simultaneously recorded time series x1, x2, x3… xn

and y1, y2, y3… yn. Suppose one would like to construct a linear

predictor of the current value of the x series based on m prior

values: xn = a1xn21+a2xn22+…+amxn2m+en. More formally they are

individually represented as:

X tð Þ~
Pm
j~1

ajX t{jð Þze tð Þ, S1~var e tð Þð Þ ð8Þ

for x and y as:

Y tð Þ~
Pm
j~1

bjY t{jð Þzg tð Þ, C1~var g tð Þð Þ ð9Þ

This is nothing more than a single variable autoregressive (AR)

model in which standard procedures can be applied to yield the

model order m and model coefficients aj and bj, where the variance

S1 and C2, of the error series, en, and gn, are a gauge of the

prediction accuracy.

Bivariate Case
Now consider a joint predictor of the current values of the x

series by including both the previous values of the x series and the

previous values of the y series, namely:

X tð Þ~
Pm
j~1

axxX t{jð Þz
Pm
j~1

axyY t{jð Þ ze tð Þ

Y tð Þ~
Pm
j~1

ayxX t{jð Þz
Pm
j~1

ayyY t{jð Þ zg tð Þ

0
BBB@

1
CCCA ð10Þ

and the covariance matrix S is:

S~
S2 U2

U2 C2

� �
~

var e tð Þð Þ cov e tð Þ,g tð Þð Þ
cov e tð Þ,g tð Þð Þ var g tð Þð Þ

� �
ð11Þ
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This is the multivariate AR model where the procedures

described in the previous section can be used to calculate the

model coefficients aj and an efficient model order m. The value of

S1 from Equation 8 is the estimate of the accuracy of the

autoregression for the x series based on prior values, while S2

represents the accuracy of predicting X based on both the X and Y

time series. Based on Wiener’s idea, Granger formulated that if S2

is less than S1 in some suitable statistical sense (i.e. the prediction

of x is improved by incorporating past knowledge of y), then we

can say that the y series has a causal influence on the x series. This

relationship can be quantified by the log ratio of these two values:

Fy?x~ln
S1

S2

ð12Þ

If X and Y are independent, then S1 =S2, C1 =C2, the

covariance, U2, is zero, axy and ayx would be uniformly zero, and

the resultant causal influence of y upon x, FyRx would be zero.

However, FyRx would be greater than zero if there were a causal

influence from Y upon X. Similarly the causal influence of X upon

Y would be:

Fx?y~ln
C1

C2
ð13Þ

Any interactions between each series not explained by the above

(e.g., possible exogenous driving influences that may act upon both

series) is defined by:

FX.Y ~ln
S2C2

Sj j ð14Þ

where |.| is the determinant of the enclosed matrix and represents

the ‘‘instantaneous’’ causality. The total interdependence of each

series is then:

FX ,Y ~ln
S1C1

Sj j ð15Þ

where FX,Y = FXRY+FYRX+FXNY. Hence we can decompose the total

interdependence between the x and y time series into its three

components: the causality from X upon Y, the causality from Y upon

X, and the instantaneous causality representing any mutual

exogenous driving input into both. With these set of equations we

can determine the pairwise causal relation (i.e., pairwise Granger

causality), between data from any combination of electrodes or

times series. Natural time series, including ones from neurobiology,

often contain oscillatory aspects in specific frequency bands,

however. For this application a spectral representation of Granger

causality developed by Geweke [33] and others [34] is available that

allows casual interactions to be quantified at specific frequencies.

The calculations for the spectral version are, however, very similar

to the formulation and are therefore not repeated here.

Significant Limitations of Pairwise Granger Causality
In a simple two-neuron network in which neuron X is

connected with one or more synapses to Z, pairwise Granger

causality can easily discriminate a direct causal relationship from

X to Z and determine the direction of that relationship. In this

case the value produced by PGC would be directly related to the

overall synaptic efficacy (coupling) of X to Z. However, the

accuracy of the pairwise approach encounters methodological

limitations in more complex networks where direct, mediated, and

serial influences exist between these neurons. These influences will

confound estimates of the actual synaptic efficacy and lead to

erroneous conclusions. For example, consider a case of three-

neurons in which neuron X is coupled via a synapse to a mediating

neuron, Y, who is then connected to a third neuron, Z, illustrated

in panel (a) of Figure 2. A Granger causality analysis between each

pair would correctly identify the relationship between X and Y,

and Y to Z. However, it would also identify an erroneous causal

connection between X and Z illustrated in panel (b), even though

this pair is not directly coupled. The reason for this is that the

activity of X does in fact causally influence the activity of Z, but

does so only through a mediating relationship through Y.

Second, the serial relationship that cascades from X to Y and Z

produces an estimate of causal influence of X upon Z via Y that

will erroneously contribute to the estimated strength of the

pairwise estimate of Y upon Z. In other words, the values of PGC

from Y to Z are now distorted by X and no longer a true reflection

of their true causal strength nor their actual synaptic weight. Of

course this problem may become acute in more complex networks

with many interacting neurons or brain areas where these

relationships may be commonplace. In the following sections,

several techniques are described to address these problems.

Conditional Granger Causality
Any highly multivariate data can be analyzed by PGC by reducing

the problem to a number of simple bivariate (pairwise) cases. In fact,

this approach is often the most straightforward and can be an

effective method for analyzing causal relations within simple systems.

As we have shown earlier however, this simple pairwise methodology

can sometimes yield distorted results especially in more complex

systems. Conditional Granger causality (CGC) [18,34,35] is an

alternative technique that can be used to identify and conditionally

remove erroneous direct connections that are actually mediated

though other neurons. In this procedure described by Geweke [35],

the causal relationship between X and Z is now made conditional on

Y. The trivariate AR model for X, Y, and Z is defined by:

X tð Þ
Pm
j~1

axxX t{jð Þz
Pm
j~1

axyY t{jð Þz
Pm
j~1

axzZ t{jð Þzl tð Þ

Y tð Þ~
Pm
j~1

ayxX t{jð Þz
Pm
j~1

ayyY t{jð Þz
Pm
j~1

ayzZ t{jð Þzm tð Þ

Z tð Þ~
Pm
j~1

azxX t{jð Þz
Pm
j~1

azyY t{jð Þz
Pm
j~1

azzZ t{jð Þzu tð Þ

0
BBBBBBBB@

1
CCCCCCCCA
ð16Þ

Figure 2. Conditional Pairwise Granger Causality In a Three
Neuron Network. If pairwise Granger causality were applied to
determine the connectivity of both of these network configurations the
results for both would resemble panel a). Using pairwise Granger
causality alone, it is not possible to differentiate between these network
configurations. Conditional Granger causality is needed to determine if
the connection from X to Z is real or mediated through Y by
determining how well Z can be predicted by X with versus without the
inclusion of Y.
doi:10.1371/journal.pone.0003355.g002
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The time domain formulation of CGC compares the variance of

the estimation of Z including X shown earlier in Equation 10 and

11 (where Z is substituted for X and X is substituted for Y), with

the prediction of Z including X and Y in Equation 17 below.

S~

Sxx Uxy Uxz

Uxy Cyy Uyz

Uxz Uyz Dzz

0
BB@

1
CCA

~

var l tð Þð Þ cov l tð Þ,m tð Þð Þ cov l tð Þ,u tð Þð Þ

cov l tð Þ,m tð Þð Þ var m tð Þð Þ cov l tð Þ,u tð Þð Þ

cov l tð Þ,u tð Þð Þ cov m tð Þ,l tð Þð Þ var u tð Þð Þ

0
BB@

1
CCA

ð17Þ

The influence of X on Z is entirely mediated through Y when

the prediction of z is not improved in the trivariate over the

bivariate model. Specifically, CGC is calculated by taking the log

of the ratio of the variance of the prediction error of Z from the

bivariate example in Equation 11 (where Z is substituted for X,

and X is substituted for Y in Equation 10) over the variance of the

prediction error of Z in Equation 17 defined as:

Fx?z yj ~ln
S2

Dzz

ð18Þ

Conditional Granger causality calculated using this equation is

greater than zero when some of the power from Y is directly causal

on Z. The result would be equal to zero when the influence of X on

Z is entirely mediated through Y. Thus, this method allows the two

examples stated earlier to be easily differentiable. This method is,

however, computationally expensive and may be impractical with

very large electrode arrays due to the combinatorial number

combinations that must be addressed. Interestingly, Geweke also

noted that it might be possible to directly subtract the PGC

calculated from Y to Z from the PGC value from X to Z when the

influence from X to Z is entirely mediated through Y. This recovers

the same quantity as calculating CGC from X to Z conditional on

Y, without having to perform the computationally intensive CGC

analysis. This concept will be evaluated empirically later.

Remaining Limitations
Finally, while conditional Granger causality addresses some

specific deficiencies in the original formulation, there remains

several further weaknesses that need to be considered when

drawing any conclusions. First, the time scale and the sampling

rate are two variables that can have a intertwined yet diametrically

opposed effects on a causal analysis. Selection of a time scale and

sampling rate is highly dependent on the processes being observed.

If the sampling rate is too low, it can be difficult to observe time

delayed influences in the system because the system may be

interacting at time scales of a higher frequency than the sampling

rate. Conversely, if the sampling rate is too high it can be

computationally intractable to model far enough into the future

(i.e. high model order m) to capture interactions. Additionally, it is

possible that two time series may interact differently on two largely

different time scales which would then require separate analysis.

Perhaps a more fundamental problem when analyzing neural

systems is Granger’s inability to detect the presence of inhibitory,

rather than excitatory, contributions. Inhibitory synapses, unlike

their excitatory counterparts, decrease activity in their targets. In

other words, activity of these inhibitory neurons upon a target

would result in a reduction in the causal influence measured

between other neurons and this target. In a Granger causality

analysis the presence of this inhibitory relationship would be

indistinguishable from other relationships where no causal

influence is present. Hence, the presence of activity by these

inhibitory neurons will likely lead to distorted causal influences

among other neuron pairs even though the actual causal influence

may be strong. In the future it may be possible to untangle these

inhibitory influences with, for example, the addition of conditional

logic to identify occasions where this might be a problem and

remove the contribution of these neurons.

It is also not possible to describe all variables in a typical

experimental system. Consequently, unobserved time series from

these variables are a factor that must always be considered when

examining causal influences. Implementation and subsequent

interpretation of Granger causality inherently depends on the

availability and selection of variables for analysis. For example, if

the causal relationship between two neurons is influenced by a

third that is not measured (e.g., a neuron too distant from an

electrode) Granger causality would indicate the presence of a

direct causal influence where none truly exists. This is the so called

‘‘hidden unit’’ problem and is a limitation of virtually all analytical

methods. Moreover, the likelihood of this situation increases with

the complexity of the system being observed. The magnitude of

this problem, however, will be dependent on the strength of the

causal influence from those hidden units. Relatively weak

influences should only marginally distort any relationships while

strong causal influences will likely have a profound affect on

causality estimates. This is an important but highly complex

problem in any modest sized network whose analysis is beyond the

scope of this paper (please see [36,37] for a discussion of this

problem and potential solutions).

Results and Discussion

Analysis of Common Network Topologies
In this section, we illustrate the analytical solutions described

earlier within a simple, biologically plausible neural network

model. We have chosen Izhikevich’s simple neuron model [38,39]

a stochastically driven neural network with modifiable synaptic

weighting that provides biologically relevant spikes that can then

be analyzed using GC. Briefly, the model is a reduction of a

Hodgkin-Huxley neuron [40] to a simple two-dimensional system

of differential equations. Equation 19 models the membrane

voltage, v, while the second (Equation 20) models a recovery

variable, u.

v0~0:4v2z5vz140{uzI ð19Þ

u0~a bv{uð Þ ð20Þ

The auxiliary after spike resetting of the neuron is mediated by

Equation 21:

if v§20mV then
v/c

u/uzd

� �
ð21Þ

The variable u is a membrane recovery variable that accounts

for K+ activation and Na+ inactivation in the neuron. The

Causal Measures
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variables a, b, c, and d are dimensionless parameters that effect the

temporal characteristics of the action potential, while v9 and u9 are

the first order derivatives of v and u. These variables remain

constant and are the default values used by Izhikevich for regular

spiking cortical neurons [38]. Each time-step of the model

represents 1 ms, equivalent to a 1 kHz sampling rate of a realistic

neural system. During simulation, neurons can spontaneously fire

based on a stochastic super-threshold fluctuations of membrane

noise injected into each neuron and from synaptic inputs from

other neurons in the network.

Simple Mono-Directional Case. The first model, illustrated

in Figure 3, consisted of a five-neuron network composed of mono-

directional connectivity (i.e., one way singular direction for causal

relations) from Neuron 4 (N4) to 5 (N5) and from Neuron 2 (N2) to

Neuron 1 (N1), with neighboring Neuron 3 (N3) uncoupled (zero

synaptic weight). Hence, the activity of N2 and N4 will have a

causal influence on firing of N1 and N5, respectively. In contrast,

N3 is driven by only its intrinsic random noise which is present, but

independent across neurons. A simple pairwise analysis (PGC)

detected the strong causal relationship for N1 to N2 (PGC = 0.53)

and N4 to N5 (PGC = 1.0) relative to N3 and its neighbors

(PGC,0.1). In contrast, causality within the reverse relationship,

N5 to N4, was near zero and verifies the absence of a bi-directional

relationship between the pair. Similar results using other modeling

systems can be found elsewhere [12,16,22].

Synaptic Weight and Granger Causality. In the previous

example PGC was shown to successfully capture the causal

relationships between two pairs of neurons and determine the

direction of that relationship. The strength of those relationships

are reflected in the magnitude of the PGC values returned.

Although PGC values are correlated with synaptic strength, it is

not clear what the actual relationship might be (e.g., a simple

linear relationship or more complex nonlinear relationship). In

other words, how is the estimate of causality using PGC related to

the actual underlying synaptic weight?

To determine the relationship between synaptic weight and

causal strength between neuron pairs, the synaptic weight between

N1 and N2 was systematically incremented from 0 mV to 75 mV

and the resultant effect on PGC’s estimate of causality was

observed. One hundred instantiations of the model were simulated

for each level of synaptic weight and the average estimate by PGC

and variance of that estimate was calculated. The results of those

simulations, shown in Figure 4, indicate that PGC values are not

linearly related to synaptic weight. In fact, a sigmoid relationship

appears between the synaptic weight from N1 to N2 (S1R2) and

resultant GC, F1R2. There is a region however between 15 mV

and 45 mV where the relationship between S1R2 and F1R2

becomes linear with a slope of 0.033 causal units/mV. Synaptic

weights above this range do not produce significant changes on

F1R2, suggesting that a weight of 45 mV is the point where this

effect is saturated. Similarly, weights below 15 mV produce

negligible changes in causality estimates using PGC. In other

words, this suggests that Granger’s estimate will be distorted if the

underlying synaptic weights are exceedingly large or very small. A

similar nonlinear relationship has been shown between the relative

contribution of synaptic weights within small sub-networks to

macro network behavior [19].

To enable the extraction of synaptic weights from PGC values

the results in Figure 4 were fit with a sigmoid, shown in

Equation 22, to quantify the functional relationship between

Granger estimates and actual synaptic weights and compensate for

this problem. We apply this relationship later to recover synaptic

weights within random network topologies. First however, we need

to address methods to compensate for the systematic errors that

resulting from the presence of mediating relationships.

FY?X ~
1

1 z 384e{0:2124 1 sw
ð22Þ

Figure 3. Topology of a Simple Five-Neuron Network Using
Pairwise Granger causality. In panel a) the synaptic weights from N1
to N2 and N4 to N5 have been synaptically coupled. N3 is left
uncoupled to demonstrate that a pairwise GC will indicate null
connectivity. Equivalent but independent random processes drive each
of the five neurons. 100 realizations of this network using Izhikevich’s
simple neuron model with these weights yields the results shown in
panel b) using pairwise Granger causality. These results demonstrate
that pairwise Granger causality can not only resolve the difference
between null and actual connectivity, but also determine the
directionality of those influences.
doi:10.1371/journal.pone.0003355.g003

Figure 4. The Relationship Between the Causal Strength From
Pairwise Granger causality and Actual Synaptic Weights. The
PGC results from a mono-directional simulation with the weight from
neuron 4 to 5 varied from 0–75 mV in increments of 5 mV. Synaptic
weight is plotted on the x-axis while the resulting PGC values calculated
from the spike timing is plotted on the y-axis. The error bars represent
the standard deviation of the results of 100 simulations for each point in
the plot. The relationship between synaptic weight and PGC is sigmoid
described by Equation 12. Notice that only the region in which the
synaptic weights are between 15 mV and 45 mV is linearly related with
the magnitude of the causality estimate. Areas in which the synaptic
weights are very small or very large will result in a distorted causality
value that changes very little.
doi:10.1371/journal.pone.0003355.g004
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Mediated versus Direct Causal Relationships under

Serial Connectivity. PGC works well for recovering synaptic

weights between two neurons using Equation 22. However, due to

added complexity within the network, there are situations where

PGC values will not adhere to this relationship. Often PGC values

include not only the direct information between neurons but also

include mediated influences described earlier that could distort the

relationship between PGC’s estimate and actual synaptic weights.

This issue could become critical as the number of neurons or

network complexity increases.

This issue is addressed in a second simulation, where a serial

topology was created to demonstrate separation and recovery of

individual synaptic weights. The five-neuron topology, shown in

Figure 5 panel (a), consisted of causal synaptic weights of 15 mV

from N1 through N5 similar to a synfire chain [41,42]. The

original PGC estimate of causality, shown in panel (b), indicates

erroneous connections among the entire pool of neurons reflecting

the complex causal relationships between each element. Table 1

shows the PGC results for each relationship. Note also that the

PGC values, shown along the elements of the serial chain, steadily

increase from N1 to N5 (diagonal in Table 1), reflecting the

embedded mediated causal influences cascading along the chain.

Application of Conditional Granger Causality. CGC was

applied to discriminate false direct from mediated connections in

order to determine the network’s true connectivity. Panel (c) of

Figure 5 shows the results of CGC, where the topology has been

correctly estimated but includes the systematic errors in estimating

the strength of coupling. The problem arises because the values

remaining after calculating CGC represent a combination of direct

and mediated influences which accumulate towards the end of the

chain. Thus, the direct components between any two neurons

must be separated from mediated influences to relate the direct

component to a meaningful synaptic weight.

Recovery of direct synaptic weights can be achieved using CGC

for a second time on the mediated pathway. However, a simpler

solution exists. If PGC sums the effects of previous elements along

a serially connected chain, then it may be possible to simply

subtract the previous influences. This would essentially condition

out the contribution of false direct influences that represent the

mediated component of the distorted PGC value. For example, by

subtracting N1R3 (0.55) from N2R3 (1.37), a value of 0.82 is

obtained, which better estimates the actual synaptic weights

Figure 5. Application of Pairwise and Conditional Granger Causality Analysis to a Five-Neuron Serial Chain. This was carried out where
a) shows the synaptic weights before simulation. Calculation of PGC for all possible connections for the 5 neurons yields the plot shown in b). Notice
that using PGC alone many new false connections are shown. When CGC is used to eliminate the false connection the plot is reduced to what is
shown in c). After CGC plot c) begins to resemble the connectivity pattern as shown in a), however, the values associated with c) do not scale with the
synaptic weights shown in a). A further step using CGC a second time or using Geweke’s subtraction method is required to detangle direct and
mediated influences. The results after the use of Geweke’s subtraction method to calculate DGC are shown in d) along with corresponding
approximations of synaptic weight.
doi:10.1371/journal.pone.0003355.g005

Table 1. Pairwise causal influences calculated using Granger
causality between the 5 neurons in the simulation displayed
in Figure 8.

To N1 To N2 To N3 To N4 To N5

From N1 - 0.92 0.55 0.38 0.48

From N2 0.01 - 1.38 0.94 0.78

From N3 0.01 0.01 - 2.02 1.25

From N4 0.01 0.01 0.02 - 2.11

From N5 0.00 0.01 0.02 0.01 -

The left column indicates what the source neuron and the top row indicates the
target neuron. For example, to locate the influence of neuron 2 on neuron 3 a
value of 1.38 is reported in entry From N4, To N1.
doi:10.1371/journal.pone.0003355.t001
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incorporated into the model. This process was repeated for each

pair. The resulting estimates are shown in panel (d) of Figure 5 and

Table 2. The relationship between CGC and the simple

subtraction of N1R3 from N2R3 is derived from the properties of

both PGC and CGC, mentioned by Geweke [35], and shown in

Equation 23.

FX?Z Yj ~FXY?Z{FX?Z ð23Þ

In the special case where the bivariate PGC influence of X on Z,

FXRZ, has previously been conditioned out (i.e. equal to zero)

using CGC, Equation 24 is valid.

FXY?Z~FY?Z ð24Þ

This allows for the derivation of Equation 25, which describes

the empirical relationship that allows subtraction of PGC values to

retrieve the DGC value between two neurons.

FX?Z Yj ~FY?Z{FX?Z ð25Þ

A direct comparison of the accuracy of these methods for

calculating DGC was investigated using a Monte Carlo simulation

of a 3-neuron chain. One hundred realizations of this simulation

were created and both methods were used to recover DGC from

the PGC output of the synapse at the end of the chain. The

synaptic weights for each realization of the simulation were

randomly generated between 15 mV and 45 mV. Figure 6 plots

the Granger estimate for each synaptic weight produced by the

difference method versus CGC for each realization. Overall, both

methods produce similar estimates of the actual synaptic weight.

This supports the idea that the difference method presented in

Equation 23 can produce DGC values similar to that of CGC as

shown in Equation 18.

Monte Carlo Simulations with Random Synaptic

Weights. A Monte Carlo simulation was conducted to further

test DGC in a 5-neuron serial chain with random synaptic weights.

This experiment was designed to assess the accuracy of the

relationship between synaptic weights and the recovered DGC for

each synapse in the serial chain. The synaptic weights S1R2, S2R3,

S3R4, and S4R5 were randomly generated for each of the 100

realizations assessed using a uniform distribution from the 15 mV

to 45 mV linear range of the sigmoid relationship derived from the

first experiment. The DGC for pathways with mediated influences

(F2R3, F3R4, & F4R5) was calculated for each synapse using the

difference method by subtracting the conditioned F(N-1)M pathway

from FNRM and retained. The synaptic weights S1R2 and F1R2

were also retained to serve as a baseline for comparison. Monte

Carlo distributions for the DGC pathways should mirror the

relationship between S1R2 and F1R2, a purely direct pathway.

Figure 7 shows that the distributions for the DGC at each

synapse from N1 to N4 which mirror the linear distribution from

the purely direct S1R2 to F1R2. The higher variance for the DGC

farther down the chain (e.g., upper left vs. lower right panel) is due

to additive error from the way DGC is calculated. This empirical

relationship shows that the conditioned pathway, F(N21)M, is a

reasonable representation of the mediated component of the

remaining pathway, FNRM. The empirical relationship also

suggests that DGC is an accurate representation of the direct

component between two neurons and can be used to calculate a

meaningful synaptic weight using the relationship described earlier

in Equation 22. This simple method which may be useful for

processing serial chains also has significant limitations when

networks become more complex. For example, the presence of

significant additional interacting connections among the five or

from outside influences can significantly impact the accuracy of

this assessment and requiring conditional Granger causality to

resolve.

Application to a More Complex Biologically Plausible
Neural Network

Each of the five-neuron cases described above illustrate the

application of Granger based methods to determine the effective

synaptic weights for specific sub-topologies that might be

encountered. However, in a typical network of neurons cultured

Table 2. Pairwise causal influences using Granger causality
following application of significance thresholds, conditional
Granger causality analysis, and removal of mediated
influences.

To N1 To N2 To N3 To N4 To N5

From N1 - 0.92 - - -

From N2 - - 0.82 - -

From N3 - - - 1.08 -

From N4 - - - - 0.86

From N5 - - - - -

doi:10.1371/journal.pone.0003355.t002

Figure 6. Comparison of Causality Values from a Traditional
Conditional Granger Causality Analysis and the Computational
Alternative Described in the Text. Direct influences between N2
and N3 were recovered by both methods to allow a comparison of
Geweke’s subtraction method to CGC. Each point was generated from a
Monte Carlo simulation of the serial simulation using randomly
generated synaptic weights between 15 mV and 45 mV. This plot
suggests that both methods provide results consistent with the linear
region expected from the sigmoid plot shown in Figure 4. However,
Geweke’s subtraction method is computationally simple providing the
researcher with a clear advantage in large networks especially under
conditions where the structural connectivity is known to be serially
arranged.
doi:10.1371/journal.pone.0003355.g006
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over an MEA, shown earlier in Figure 1, over 25,000 neurons may

be present spanning over 2 mm in diameter. These so called

‘‘random’’ networks [43,44] are therefore very complex containing

direct, mediated, and serial connectivity patterns among neurons.

Neurons within these networks are spontaneously active producing

semi-periodic bursts of activity observed in neurons from virtually

every brain area and the nervous system including cortical

[24,26,43,45,46], hippocampus [47], spinal cord [28] retina

[48,49] and in seizure like activity in acute hippocampal and

cortical slice [50–52].

Neural Simulation. In this section we first create a more

complex neural simulation composed of 100 neurons in a random

network topology. We then assess the ability of Granger causality

to successfully detect the structural information from a small subset

of these neurons. This simulation consisted of 80 excitatory and 20

inhibitory neurons with 20,000 synapses mimicking the proportion

known to exist within these cultures [53] and would exhibit

spontaneous network wide bursts of activity. Excitatory neurons

are connected to all other neurons using randomly generated

weights from an exponential distribution where most connections

are weak (1–4 mV) while strong connections (up to 70 mV) are

sparse. Inhibitory neurons are connected to the network using a

flat distribution of synaptic weights ranging from 21 to 210 mV.

Five excitatory neurons embedded within the network were

chosen mimicking the sparse recording capabilities of the MEA

and the synaptic weights were set at 40 mV to mimic a serial chain

topology. Hence, each receives input from each preceding

member of the chain in addition to inputs from all other

neurons in the network. An example of the complex topology

for one realization of this network is shown in panel (a) of Figure 8.

Each point represents a neuron with its associated connectivity to

its neighbors denoted with grey lines. The five neurons embedded

within this network that will be assessed are highlighted in red and

the serial chain is also highlighted, among any other potential

mediated and direct connections (highlighted as blue lines) among

the five.

Accuracy of Pairwise Granger Causality. This artificial

network, like its in vitro cousin, is spontaneously active producing

both isolated spiking and oscillatory bursting shown in the raster

plot of spiking activity in panel b) of Figure 8. Pairwise Granger

causality was then used as a measure of the relationship between

these 5 neurons and the resultant PGC values are shown in panel

(c). High causal relations (PGC values near 1.0) are indicated in

red while non-causal relations are shown in blue (PGC near zero).

In each case PGC successfully captured the serial relationship

between 1–2, 2–3, 3–4, and 4–5 where information flows

directionally down the chain. In addition, PGC successfully

discriminated the directionality of those connections. While there

were significant causal influences from 1 to 2, 2 to 3, 3 to 4, and 4

to 5, there was no evidence of reciprocal relationships flowing in

the opposite direction. However, the results of this pairwise

analysis also reflect the limitations of PGC with the appearance of

both mediated and serial influences, indicated by the nonzero

causal influences between 1 and 3, 4, 5, and 2–4,5, and the serial

increase in causal strength along the chain. Although the serial

increase could be compensated by application of the DGC method

Figure 7. DGC values can be recovered at each of the synapses in the serial chain. Random synaptic weights of 15 mV and 45 mV were
generated between each neuron in a five-neuron serial chain and 100 realizations of this chain were created for analysis. These plots demonstrate
that DGC values recovered from entangled pathways (top right, bottom right, and bottom left) along the serial chain mirror those calculated using
PGC on the first pathway (top left). This suggests that DGC values represent the direct influence between two neurons similar to the PGC relationship
that can be calculated between neurons that are not entangled by mediated influences.
doi:10.1371/journal.pone.0003355.g007
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described earlier a more accurate result is provided by a

conditional Granger causality analysis.

Accuracy of Conditional Granger Causality. Conditional

Granger causality was then applied to the spike train data from the

five neurons highlighted in red in Figure 8 to identify and remove

any spurious connections suggested by the PGC analysis. The

resultant and now correct serial structure revealed by CGC is

shown in panel (d) of Figure 8. Thus, Granger causality effectively

recovers the serial chain embedded within this 100-neuron

simulation. The sigmoid relationship between causality and

synaptic weights described previously in Figure 4 was then used

to estimate and recover the synaptic weights. The transformed

causality values, also shown in panel (d), are very similar to the

actual strength (40 mV) between each of the five neurons. Of

course the results from this 100-neuron network are not as

accurate as the results shown previously within simpler networks.

This likely reflects the effects of the many hidden units not

included in our analysis that also influenced the activity of these

five neurons. However, this technique does provide a reasonable

estimate of the actual connectivity in a small network whose

structure is similar to that of its cultured counterparts.

Granger Causality as a Method to Estimate Plasticity
In most living networks the strength of connectivity, plasticity, is

constantly changing. This is especially true of learning paradigms,

for example in vivo, where auditory or visual stimuli are presented

to the subject and the researcher wishes to measure how those

stimuli affect the causal interactions within an underlying structure

[16,20–22,54,55]. Perhaps the simplest method when data from

individual neurons are available is based on changes in firing rate

before and after a stimulus is presented. For example, Jimbo et al.

[56] measured the plasticity induced across a network of cortical

neurons by rapidly stimulating a single location with a tetanic

pulse train (20 Hz stimulation) using an MEA similar to the one

shown earlier in Figure 1. To estimate the location and degree of

plasticity the network was systematically probed with a brief

electrical stimulation delivered sequentially to each of the 60

locations on the 868 electrode grid before and after the tetanus.

The core notion behind this technique is that any changes in the

underlying strength of connectivity within the network will result

in a change in the number of spikes recorded on one or more of

the electrodes of the MEA. Jimbo found that stimulating just one

of the 60 electrodes with the tetanic pulse train resulted in complex

changes in the strength of the underlying connectivity in which

both enhancement and depression of synaptic strength were

observed.

Unfortunately, employing a change in firing rates as a measure

of plasticity can often be prone to a number of methodological

problems. For example, neural activity is often very noisy

requiring many trials or long trial durations to establish a reliable

measure. Further, changes in firing rate alone could be due to non-

plasticity related processes such as the spontaneous fluctuations in

overall activity that are common in these cultures. Surprisingly,

Granger causality has only recently begun to receive attention as

an alternative measure of plasticity (e.g., [16,19,20,22]). There are

several potential advantages of using Granger causality analysis as

a measure of plasticity. First, Granger causality provides a strong

mathematical foundation that is relatively immune to spontaneous

fluctuations in firing rate. Second, unlike changes in spike rate it

also provides a way to determine the directional influence among

the neurons (i.e., who is causing who to fire). Third, the strength of

any causal relationships can be quantified without the need to

Figure 8. Recovery of Structural Information Using GC and CGC in a Biologically Plausible Complex 100-Neuron Network. A chain of
5 neurons (shown in red) is embedded within a larger network of 100 neurons connected in an all-to-all fashion (grey lines where only a fraction of
the total connections are shown for clarity). The goal of this simulation is to extract the causal core shown in panel A using Granger Methods. Each
synaptic weight in the chain is is set at 40 mV. Panel (B) shows the activity of these five neurons within the full network. Panel (C) shows the results
from only PGC analysis in which the causal serial relationship can be seen along the diagonal. Panel (D) shows the remaining significant connectivity
after CGC analysis and their corresponding synaptic weights. Note that the weights down the chain are significantly underestimated, this is likely due
to the influence of the rest of the network on recovered weights.
doi:10.1371/journal.pone.0003355.g008
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perturb the network (i.e., inducing plasticity to measure a change

indicative of a pathway). Finally, GC analysis often requires less

data to perform its calculations (e.g., fewer trials, or shorter

recording durations). Hence, GC may be a more sensitive and

perhaps a more reliable estimate of plasticity relative to other

measures.

In this experiment, rat cortical neurons were cultured over a 60

electrode MEA electrode grid shown earlier in Figure 1. Each

electrode on the array was probed sequentially at (1 Hz) with a

single brief stimulation pulse (+/2600 mV, 200 us) in a

randomized order for a total of 10 probes per electrode. Each

probe produces a short 100–200 ms burst of activity across the

network measured by the array. The average firing rate was then

calculated individually for each electrode by probe location

producing a 60660 matrix of firing rates (i.e., probe electrode6r-

esponse electrode). A tetanic pulse train was then delivered to one

of the 60 electrodes on the array to induce plasticity. This train

consisted of 20 blocks of 11 stimulation pulses (+/2600 mV/

200 us, 50 ms between each pulse) to induce plasticity across the

network. Each of the 60 electrodes were then probed again and

the difference between firing rates before and after the tetanus

were calculated for each probe location and each electrode. Any

changes in plasticity among the neurons in this network should

result in either an increase (enhancement) or decrease (depression)

in firing rates representing long-term potentiation (LTP) or

depression (LTD), respectively.

Preprocessing of Spike-Train Data. For the following GC

analysis, spike trains containing spike time information were

collected for 200 ms after each probe for each electrode and for

each stimulus location (36,000 200 ms spike trains representing the

response from 60 electrodes610 probes per electrode660 probe

locations). Each 200 ms spike train was converted to a continuous

time series appropriate for Granger causality analysis by binning

the time of each spike into 1 ms bins and low-pass filtering

(200 Hz) so that GC’s results could be compared with the slower

firing rate based measure. The stationarity of the resulting

continuous signal for each segment was then adjusted by

subtracting the mean of each 200 ms segment and dividing by

its’ standard deviation [30]. This adjustment is necessary since the

Granger causality metric depends on the assumption of covariance

stationarity. A pairwise Granger causality analysis (PGC) was

conducted separately for each probe location and among each

electrode pair. For the following correlation results outliers were

removed before calculation.

Plasticity: Comparison of Spike Rate, Pairwise, and
Conditional Causality

Spike Rate Information. Figure 9 shows the results of a

pairwise Granger causality analysis compared with the firing rate

based measure from a replication of Jimbo’s experiment

conducted in our laboratory. The left panel of Figure 9 plots the

results of that firing rate analysis of plasticity for one culture. The

upper right corner of this panel presents the average total change

in firing rate depicted as an 868 grid representing the original

spatial topology of the MEA. Red colors indicated an increase in

spike rate following the tetanus or decrease (blue colors). The

location on the MEA where the tetanic pulse train was applied is

also indicated (see small black box, electrode CR 32

(column6row)). Application of the tetanic pulse train to this

electrode resulted both enhancement and depression of spike rate

activity whose direction was dependent on the stimulus location

producing increased spike rates near the tetanic site (upper left

near tetantic site) and decreases toward distant electrodes and was

seen in all subjects. Overall, the trend for all subjects was a slight

negative skew in the distributions of the change in spike rate (lower

right quadrant).

The plot in the lower left quadrant breaks changes in spike rate

down by probe electrode to illustrate one of the primary results

reported by Jimbo et al. That is, pathway-specific plasticity in

Figure 9. Comparison of Firing Rate and Pairwise Granger Causality Plasticity Measures. The neural activity of rat cortical neurons were
stimulated to induce plasticity and recorded using an 868 grid of MEA electrodes (shown earlier in Figure 1). The left, middle, and right panel
represent plasticity suggested by changes (enhancement or depression) in firing rate, pairwise Granger causality for outgoing ‘‘source’’ and incoming
‘‘sink’’ relationships, respectively. Each panel presents in clockwise order the distribution of values, average total changes by spatial location,
distribution of the direction of change, and changes by probe location for each of the three measures. The vertical axis represents the stimulation
probe site among the 60 electrodes on the MEA. The horizontal axis represents the network’s response at each electrode to each probe. Each pixel is
color coded to indicate the magnitude and direction of any changes that occurred following the tetanus. Application of the tetanus resulted in
substantial changes in the strength of connections among neurons in this network. Comparison of those changes using a firing rate based verses a
Granger causality based measure indicates a great deal of similarity between each measure. Rows where spike rate was enhanced in left panel also
tended show a stronger causal relationship in the right panel. Similarly, rows indicating depression were associated with depressed causal strength in
the right panel. A black arrow along the vertical and horizontal axis denote the electrode that received the tetanizing stimulus to induce plasticity.
The color scale has been set to +/23 standard deviations for each plot.
doi:10.1371/journal.pone.0003355.g009
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which the direction of plasticity measured by each probe was

dependent on the location of those probes (stimulation site) across

the network. In this plot probe location is along the vertical axis

and the resultant average response across trials to those probes is

plotted along the horizontal axis for each of the 60 electrodes. The

order of the electrodes are presented serially beginning from the

upper left corner of the MEA (electrode CR 21) clockwise to the

lower right (CR 87) to partially maintain spatial coherence. The

tetanized electrode is indicated by the black arrow on the vertical

and horizontal axis. Similar to Jimbo’s results, the direction of

plasticity varied by probe location, appearing as horizontal strips

of red or blue corresponding to enhancement or depression,

respectively. These effects are thought to represent pathway-

specific changes in which each probe location preferentially elicits

a particular pathway within the network resulting in the consistent

effect across electrodes (horizontal strip). The effect is not,

however, specific to particular neurons/electrode locations since

both enhancement and depression are observed at each stimulus

location (vertical axis).

Pairwise Granger Causality. The results of the firing rate

analysis were then compared with those based on pairwise

Granger causality. If PGC accurately measures plasticity similar

to firing rate, then the pattern of enhancement and depression

should be similar to that derived from firing rate. The right two

panels of Figure 9 depict PGC’s estimate of plasticity. One

advantage of a PGC analysis is that it can provide information

about the strength and direction and of any causal relationships

permitting a more detailed analysis. Like the firing rate plot in the

left panel, the upper right plots of the right two panels depict the

total change in causality spatially in the 868 electrode grid.

However, the results of PGC are now separated into the direction

of causality being measured. The middle panel provides

information about any changes in causality in terms of outgoing

causal strength (‘‘source relationship’’) for each location in the

network. In other words, it is a measure of the causal strength of

each location upon other areas of the network. Conversely the

right panel depicts changes in causal strength in terms of incoming

relationships (i.e., the average causal strength of other areas

driving activity at this location or ‘‘causal sink’’). Like firing rate

the total outgoing causal strength increased for electrodes near the

tetanic stimulation site but tended to decrease further away from

this location. Unlike firing rate, however, PGC results for the

‘‘incoming’’ sink relationship indicated that this increase was also

associated with a decrease in the overall strength of connections

coming into the area near the tetanic site and an increase in some

areas outside this region.

These differences may reflect the effects of preferentially

stimulating pathways during the tetanic pulse train in which

action potentials evoked near this location are followed by a burst

of activity in the rest of the network leading to spike-timing

dependent LTP (e.g., [57]). An explanation of the effects in the

opposite ‘‘sink’’ direction are not as clear. The depression observed

within areas near the tetanic site may reflect the effects of an

opposite spike timing relationship. During the tetanus the spike

timing relationships of outside areas is perhaps more likely to be

one in which tetanus fires before the pre-synaptic neuron (i.e., post-

synaptic -. pre-synaptic) leading to depressed synapses near the

tetanized electrode. In contrast, increased joint pre-post synaptic

pairings may be more likely outside the tetanic area strengthening

the connections within. This would also be much more

probabilistic and complex varying by the relative strength of

pathways originating within those outside areas and might explain

why the correlation was also lower in the sink compared to the

source measure for all subjects. Of course, without information

concerning the actual structure of the network these notions are

difficult to validate. These results are not, however, due to a

sensitivity of the PGC measure to changes in firing rate alone. In a

separate analysis (not shown) a surrogate data set was created in

which firing rates for each probe location, trial, and response

location were maintained but the timing of spikes within each

electrode were randomized. A PGC analysis of this data resulted in

no change in causality being observed (i.e., a completely green

field for Figure 9). These results do, however, highlight the

enhanced capabilities of Granger causality to unravel very

complex relationships among a modest size electrode array and

are consistent with a traditional measure of plasticity based on

firing rate.

The results of the PGC analysis by probe location also were

consistent with those of firing rate producing horizontal strips

representing pathway-specific effects. However, unlike the spike

rate analysis there are a number of gaps within each horizontal

strip. These gaps likely reflect the discriminatory nature of

Granger causality to distinguish between causal changes from

those due to simple increased or decreased rates. For a PGC

analysis a simple increase in firing rate must correspond to a

increase in the driving influence between two spike trains to be

causal. A simple increase in spike rates whose activity is between

the two spike trains is uncorrelated may not result larger causal

values. Hence it is possible that an increase in firing rate may

sometimes result in a decrease in causality estimates and vice

versa. To quantify the similarity between the spike rate analysis in

the left panel and PGC in the right panels the correlation between

the changes in spike rate versus PGC sink, and rate versus PGC

source were calculated. It is expected that these correlation

coefficients would not be extremely high due to the discriminatory

nature of PGC but should none the less be significant.

For the source measure PGC values were significantly

correlated with spike rate for MEA culture whose data is shown

in Figure 9 (Pearson r = .269, p,0.001, df = 3412) and for all

MEA cultures (mean = 0.269, range 0.113 to 0.348, p,0.001,

n = 8). For the sink measure the correlation was also significant but

lower than the source measure (r = 0.246, p,0.001, df = 3426) and

for 6 of the 7 remaining subjects (Mean = 0.157, Range 0.089 to

0.29, p,0.001, n = 5; r = 0.049, p,0.05, n = 1). The correlation

for one subject was not significant (r = 0.016, p.1).

Conditional Granger Causality Analysis. Finally, we

compared the pattern of plasticity suggested by PGC with a

conditional Granger causality (CGC) analysis. The purpose of this

analysis is to refine PGC’s representation of plasticity by removing

erroneous mediating influences discussed earlier. This analysis was

conducted over the entire 868 array but omitted electrodes along

the border (calculated the entire matrix is currently

computationally intractable requiring approximately 15 days for

one subject). Figure 10 plots the conditional (CGC) results for the

sink and source measure, respectively. Application of the

conditional Granger analysis resulted in a substantial refinement

of the plasticity pattern provided by PGC. Examination of the

effects (lower left) by probe location once again revealed the

familiar horizontal pattern of enhancement and depression seen in

the PGC and firing rate results (Note: The continuous vertical

green strips are border electrodes that were excluded from the

conditional analysis and should be ignored). The total causal

change, illustrated in the upper left plot, further revealed a few

primary electrodes whose causality was enhanced by the tetanus.

These remaining causal relationships depicted in Figure 10 may

represent the initial location of the major pathways within the

network that underwent plasticity during this experiment,

pathways which mediated the changes in plasticity observed
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elsewhere by the spike rate and PGC measures. With the

additional information provided by PGC and CGC a number of

additional experimental manipulations could be created to test

these notions. For example, particularly strong pathways could be

stimulated to selectively increase or decrease plasticity using spike-

timing-dependent plasticity rules. Alternatively, particularly strong

causal sources identified by PGC and CGC could be selectively

lesioned which as been shown to have a profound affect on

network activity in neural simulations [20,58].

Conclusions
Granger causality is a powerful statistical technique that can

quantify complex causal relationships, ranging from interactions

between different brain areas to recordings from single neurons. In

this paper, we have described the mathematical foundation of this

technique and explored solutions to overcome some of its potential

limitations. We have shown how simple pairwise causal relation-

ships can be quickly and accurately estimated, and illustrated those

techniques in simple neural network simulations. In more complex

relationships, conditional Granger causality was described and

used to untangle direct and mediated influences removing

erroneous causal influences produced by pairwise Granger analysis

alone. We also examined the relationship between the magnitude

of causal estimates and the strength of the underlying synaptic

weights that drive the relationship among neurons in a simulated

network. The resultant nonlinear sigmoid relationship between

these values indicated that very small or very large synaptic

weights may lead to distorted causal estimates which should be

considered when making inferences about the underlying synaptic

weights. Finally, we have described a plasticity experiment in a

living network of cortical neurons in which the accuracy of

Granger causality’s estimates were directly compared with the

results of a firing rate analysis. The results of that analysis support

the notion that GC may provide a more sensitive, reliable, and

detailed representation for detecting plasticity.

Perhaps one of the most challenging problems remaining with

this and many other techniques is detecting the presence of

unobserved (i.e., unrecorded) ‘‘hidden’’ units, where apparent

causal relationships are actually due to unobserved elements. This

possibility must be considered when drawing conclusions about

complex systems that may contain multiple unobserved processes.

Nonetheless, GC remains a potentially powerful technique with

which to determine if a causal relationship exists between two or

more time series. This is true whether those data are from spike

trains, EEG, MRI, gene expression, or any other situation in

which a researcher wishes to quantify potential causal relation-

ships among their data. Especially when those interactions may

be numerous, complex, and difficult to untangle with other

methods.
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