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Abstract

Kidneys are one of the targets for SARS-CoV-2, it is reported that up to 36% of patients with

SARS-CoV-2 infection would develop into acute kidney injury (AKI). AKI is associated with

high mortality in the clinical setting and contributes to the transition of AKI to chronic kidney

disease (CKD). Up to date, the underlying mechanisms are obscure and there is no effective

and specific treatment for COVID-19-induced AKI. In the present study, we investigated the

mechanisms and interactions between Quercetin and SARS-CoV-2 targets proteins by

using network pharmacology and molecular docking. The renal protective effects of Querce-

tin on COVID-19-induced AKI may be associated with the blockade of the activation of

inflammatory, cell apoptosis-related signaling pathways. Quercetin may also serve as

SARS-CoV-2 inhibitor by binding with the active sites of SARS-CoV-2 main protease 3CL

and ACE2, therefore suppressing the functions of the proteins to cut the viral life cycle. In

conclusion, Quercetin may be a novel therapeutic agent for COVID-19-induced AKI. Inhibi-

tion of inflammatory, cell apoptosis-related signaling pathways may be the critical mecha-

nisms by which Quercetin protects kidney from SARS-CoV-2 injury.

Introduction

The international outbreak of coronavirus infection disease 2019 (COVID-19) is caused by the

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1, 2], which leads to the

severe infection in the respiratory system and induces comorbidities with multiple organ dys-

function [3]. As of 15th December 2020, COVID-19 had been tracked 1.62 million deaths and

72.8 million confirmed cases worldwide. Emerging evidence had shown that kidneys are the

one of the targets for SARS-CoV-2, suggesting the acute kidney injury (AKI) as the fatal out-

comes of COVID-19 [4]. Besides, hospitalized patients with COVID-19 had shown a high
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prevalence of developing into AKI, approximately 36.6% of the confirmed patients developed

into AKI [5, 6]. Nevertheless, patients who heal from the disease are still in a high risk of devel-

oping into CKD due to the irreversible damage to kidneys caused by SARS-CoV-2 infection

[7].

Although the underlying mechanisms linking COVID-19 and the incidence of AKI are still

poorly understood, the significant roles of renal tubular, podocytes, other resident cells and

inflammatory cells in mediating this link is gaining support by latest studies [8, 9]. Clearly, the

direct infection of the kidneys by SARS-CoV-2 had been confirmed by using light and electron

microscopy, that the presence of viral particles was observed in the renal tubular epithelium

[10]. Of note, direct evidence also had shown the invasion of coronavirus particles in podo-

cytes, as well as the positive staining of SARS-CoV nucleoprotein antibody in renal tubules

[10, 11]. Moreover, as one of the main SARS-CoV-2 receptors, the angiotensin-converting

enzyme 2 (ACE2) is highly expressed in the kidneys [12]. Recent evidence had also proven an

upregulated expression of ACE2 in the proximal tubular cells [11]. As important receptor pro-

tein for coronavirus, SARS-CoV-2 main protease 3CL (3CLpro) plays a vital role in the life

cycle of SARS-CoV-2 for endocytosis [13]. These two receptors are of great significance to pro-

vide drug targets to halt the progression of COVID-19.

Nevertheless, renal damages in COVID-19 patients may also be induced by renal-toxic anti-

viral compounds, complement activation, aggressive inflammation and deficiency in blood

oxygen supply [14, 15]. With the elevating baseline serum creatinine (SCr), blood urea nitro-

gen (BUN), proteinuria, and hematuria, patients with renal disease were in higher risk for the

in-hospital death [16]. Until now, the pandemic COVID-19 continue to spread around the

world with substantial morbidity and mortality, however, no specific vaccine or safe and effec-

tive therapies are available for the treatment against the coronavirus infection. Therefore, we

are in urgent need of medications and treatment options for COVID-19 and comorbidities.

It is reported that herbal medicines play a protective role in the treatment of patients

infected with SARS-CoV-2, highlighting the possibility of herbal compounds as one of the

promising drugs for COVID-19 and its comorbidities [17]. Quercetin is a naturally abundant

flavonoid that widely distributes in various herbal medicines, which had been predicted as one

of the potential antiviral drugs that might halt the coronavirus infection via multiple signaling

pathways [18]. Based on the supercomputer SUMMIT drug-docking screen and expression

profiling experiments of Gene Set Enrichment Analyses (GSEA), Quercetin was listed as one

of the promising compounds to serve as scaffolds that could inhibit the infection of SARS--

CoV-2 [19]. The protective role of Quercetin in kidney diseases had been reported by a num-

ber of studies [20–23]. Notably, Quercetin was demonstrated as effective drug on ameliorating

AKI by modulating the polarization of M1/M2 macrophage and Mincle/Syk/NF-κB signaling-

mediated macrophage inflammation [24, 25]. These findings have proven Quercetin as reason-

able drug for COVID-19-induced AKI.

In our study, the potential effects and mechanisms of Quercetin on COVID-19-induced

AKI were analyzed by network pharmacology. Molecular interactions between Quercetin and

SARS-CoV-2 target receptors were studied by molecular docking (Fig 1).

Materials and methods

Prediction of Quercetin-associated target genes and their intersection on

COVID-19-induced acute kidney injury

The absorption, distribution, metabolism, excretion (ADME), oral bioavailability (OB), and

drug-likeness (DL) information of Quercetin was obtained on TCMSP database (http://

tcmspw.com/tcmsp.php) [26]. Quercetin is a polyphenolic flavonoid with a molecular weight
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of 302.23g/mol, pharmacological properties, chemical structure and molecular formula of

Quercetin were indicated in S1 Table and S1 Fig. Target proteins of Quercetin were obtained

in the TCMSP database. The SMILES structural formula of Quercetin was downloaded from

PubChem database (https://www.ncbi.nlm.nih.gov/pccompound) [27]. The SMILES structural

formula was input in the SwissTargetPrediction database (http://swisstargetprediction.ch/)

and TargetNet database (http://targetnet.scbdd.com/home/index/) to obtain the target pro-

teins with a probability> 0 [28], and the SEA database (http://sea.bkslab.org) to obtain the cor-

responding target genes. The corresponding target genes were obtained associated with their

target proteins through the String database (https://string-db.org/) [29] and UniProt databases

(https://www.uniprot.org/) [30].

Target genes related to new coronary pneumonia were obtained from GeneCards (https://

www.genecards.org/) [31], OMIM (https://omim.org/) [32], and DisGeNET (https://www.

disgenet.org/) [33] databases by using keywords such as "2019-nCoV, novel coronavirus pneu-

monia or COVID-19". Target genes referred to acute renal failure and/or acute kidney injury

were obtained. Next, the potential target genes of new coronary pneumonia, acute renal fail-

ure, and acute kidney injury were combined and recorded into documents of txt. format. The

Venn analysis tool [34] was utilized to obtain the combination target genes of acute renal fail-

ure, acute kidney injury, and COVID-19, this cluster of targets gene was regarded to be the

kidney damage-related genes which were induced by COVID-19. The cluster was further

Fig 1. General workflow of network pharmacology and molecular docking in the present study.

https://doi.org/10.1371/journal.pone.0245209.g001
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combined with the target genes of Quercetin to get a new cluster, which is referred to the clus-

ter of Quercetin-related potential target genes on COVID-19-induced AKI. A Venn diagram

was plotted using the OmicShare platform, a free online platform for data analysis (http://

www.omicshare.com/tools).

Construction of the Protein-Protein Interaction (PPI) network and

analysis on gene ontology (GO) enrichment and KEGG pathways

The cluster of target genes of Quercetin, COVID-19, ARF (acute renal failure), and AKI were

imported to the String database, "homo sapiens" was defined as current setting, and the confi-

dence level was set to 0.4 to obtain the relationship on protein interactions. The result was

saved as a file of TSV format and imported into Cytoscape 3.6.0 to build a PPI network [35].

The cluster of target genes of Quercetin, COVID-19, ARF, and AKI were analyzed by

DAVID database and the species was set to "homo sapiens" [36]. The gene ontology (GO)

enrichment analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis

were performed. The GO enrichment analysis includes biological process (BP), cell compo-

nent (CC), and molecular function (MF). Top 15 GO analysis results together with their signif-

icant P value were selected to draw a histogram; the results of top 20 KEGG pathways with

significant P value were also obtained to draw a bubble chart. A P value�0.05 was considered

significant. A bubble chart was plotted using the OmicShare platform, a free online platform

for data analysis (http://www.omicshare.com/tools).

Molecular docking

The underlying mechanisms and interactions between Quercetin, COVID-19-related target

proteins such as SARS-CoV-2 main protease 3CL (PDBID: 6LU7) and ACE2 (PDBID: 1R42)

may be revealed and predicted by docking strategy. Molecular docking was applied to verify

and test how Quercetin (ligand) interacts with target proteins (receptors). The 3D crystal

structure of Quercetin (CID: 5280343) was obtained from the PubChem (http://pubchem.

ncbi.nlm.nih.gov/compound/). 3D structure of Quercetin has been shown in Fig 6A. The 3D

crystal structure of receptors SARS-CoV-2 main protease 3CL and ACE2 were selected from

Protein Data Bank (PDB) (http://www.rcsb.org/pdb/), as shown in Figs 6B and 7A,

respectively.

Ligand and proteins were prepared and docked by the Autodock 1.5.4 tools (Molecular

Graphics Laboratory, the Scripps Research Institute). AutoDockTools 1.5.6. The results were

shown with binding energy (BE), a weighted average of docking score, to assess the reliability

and describe the accuracy of the ligand positioning. The more negative energy is, the better the

ligand [37]. The BE of Quercetin and two target proteins were shown in S1 Table. The docking

results were analyzed in Discovery Studio (DS) 2.5 (Accelrys Software Inc., San Diego, U.S.A.)

to evaluate the potential interactions of ligand and the proteins. The DS program was run by

using a local host 9943 server on the system of Microsoft Window 7 according to previous pro-

tocol [38].

The datasets downloaded from the databases in the present study have been uploaded and

can be accessed by this link: https://doi.org/10.6084/m9.figshare.13379273.v1

Results

Potential Quercetin-related target genes in COVID-19-induced AKI

Quercetin appears as yellow needles or yellow powder. It converts to anhydrous form at 203–

207˚F. The pharmacokinetic properties of Quercetin were shown in S1 Table. The OB and DL
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are important information in pharmacology. On one hand, OB refers to the relative amount of

drug absorbed into the systemic blood circulation after administration by extravascular route.

One the other hand, DL refers to the similarity of a compound to a known drug. The standard

criteria were described as OB�30% and DL�0.18 [39, 40]. In our study, the OB and DL of

Quercetin is 46.43% and 0.28%, respectively.

A total of 317 target proteins were collected from TCMSP, SwissTargetPrediction and Tar-

getNet databases. We obtained 300 significant target genes from String, Uniprot, SEA data-

bases. From the GeneCards, OMIM, and DisGeNET databases, 447 COVID-19-related target

genes and 8323 target genes responsible for ARF and AKI were collected. 385 target genes

were joint genes in the two clusters of AKI-ARF and COVID-19-related genes. Furthermore,

among these 385 potential target genes, 50 out of them were analyzed to be significantly

responsible to Quercetin treatment on COVID-19-induced AKI (Fig 2A), detail information

on these target genes were shown in Table 1.

PPI networks

String database was used to obtain the protein and protein interactions of those 50 target

genes. The result was then analyzed by Cytoscape 3.6.0 software and the PPI network was built

(Fig 2B), Cytoscape plugin cytoHubba was used for ranking nodes in a network by their net-

work features.

Degree is one of the 11 topological analysis methods provided by cytoHubba, target genes

with higher degrees tend to be key target genes. Each node shows a different depth of color

according to its own degree. The darker the color, the higher the degree [41]. The average

degree was 22.52. There were 25 target genes with a higher degree than 22.52, and they were

regarded as potential significant genes that play the key role in the mechanisms of Quercetin

treatment to COVID-19-induced kidney injury (Fig 2C).

GO enrichment analysis and KEGG pathway analysis

By GO analysis, a total of 86 GO items with P <0.05 were obtained, including 59 biological

process entries, 8 cell component entries, and 19 molecular function entries. In biological pro-

cesses, the target genes were involved in the regulation of apoptotic process, immune response,

platelet activation, etc. In the cell components, the target genes potentially play roles in the

extracellular space, extracellular region and nucleoplasm; In molecular functions, the target

genes may play roles in the process of DNA binding, cytokine activity, protein kinase activity,

etc. To better understand the gene ontology enrichment of these 50 target genes, top 15 entries

with the most significant P value of each component were visualized and shown in Fig 3. A

total of 84 KEGG pathways were also analyzed. The top 20 pathways with significant P value

were converted into a bubble chart (shown in Fig 4).

Potential targets and therapeutic pathways of Quercetin on COVID-

19-induced acute kidney injury

Based on the current understanding of the pathogenesis of AKI or ARF, and the results of the

KEGG pathway analysis, we further constructed the potential TNF, HIF-1α, Toll-like receptor

(TLR), apoptosis-related, and VEGF signaling as the therapeutic pathways in Quercetin treat-

ment to COVID-19-induced acute kidney injuries (as shown in Fig 5). This network reveals

significant potential signaling pathways involved in the pathogenic process of SARS-CoV-2

infected kidneys. Of note, it provides evidence on explaining that Quercetin may exert benefi-

cial effects by improving angiogenesis, vascular tone, survival, inflammation, and apoptosis in

AKI.
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Interactions and binding modes of Quercetin with COVID-19-related

target proteins

By geometry and energy matching, the ligand and the receptor recognize each other and bind

together. Molecular docking has provided a new insight into the ligand-receptor interactions

and structural features of the two molecules within the active site [42, 43]. In our study,

CDOCKER program was performed to analyze the interactions and binding features. As

shown in Figs 6B and 7A, Quercetin (3D structure shown in Fig 6A) could be docked into

the active sites of SARS-CoV-2 main protease 3CL (PDBID: 6LU7) and ACE2 (PDBID: 1R42)

in the binding pocket, respectively. The 3D Quercetin was surrounded by amino acids of the

target protein (6LU7) (Fig 6C). Amino acid ASN72, ALA70, LYS97 and GLY15 formed the con-

ventional hydrogen bond, carbon hydrogen bond, Pi-Cation and Pi-Alkyl interactions

Fig 2. Potential Quercetin-related target genes in COVID-19-induced AKI. (A) Venn diagram of the intersection

relationship of target genes between Quercetin, AKI-ARF and COVID-19. (B) PPI network of potential target genes

related to Quercetin treatment on COVID-19-induced AKI. (C) 25 significant target genes with a degree score over

22.52 points were indicated to take part in the process of COVID-19-induced AKI with Quercetin treatment.

https://doi.org/10.1371/journal.pone.0245209.g002
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Table 1. Potential target genes of Quercetin treatment on COVID-19-induced acute kidney injury or acute renal failure.

No. UniProtID Gene Symbol Gene name

1 P05231 IL6 Interleukin-6

2 P04637 TP53 Cellular tumor antigen p53

3 Q1HBJ4 MAPK1 Mitogen-activated protein kinase

4 P42574 CASP3 Caspase-3

5 P22301 IL10 Interleukin-10

6 P60568 IL2 Interleukin-2

7 Q04206 RELA Transcription factor p65

8 P10145 CXCL8 Interleukin-8

9 P01584 IL1B Interleukin-1 beta

10 P35354 PTGS2 Prostaglandin G/H synthase 2

11 E9PFD7 EGFR Receptor protein-tyrosine kinase

12 P13500 CCL2 C-C motif chemokine 2

13 P01579 IFNG Interferon gamma

14 P01100 FOS Proto-oncogene c-Fos

15 P05362 ICAM1 Intercellular adhesion molecule 1

16 P42224 STAT1 Signal transducer and activator of transcription 1-alpha/beta

17 Q14790 CASP8 Caspase-8

18 Q96DI8 HMOX1 Heme oxygenase

19 P16220 CREB1 Cyclic AMP-responsive element-binding protein 1

20 Q07817 BCL2L1 Bcl-2-like protein 1

21 P37231 PPARG Peroxisome proliferator-activated receptor gamma

22 P55211 CASP9 Caspase-9

23 P29474 NOS3 Nitric oxide synthase

24 P35228 NOS2 Nitric oxide synthase

25 P02778 CXCL10 C-X-C motif chemokine 10

26 P29965 CD40LG CD40 ligand

27 P01137 TGFB1 Transforming growth factor beta-1

28 P02741 CRP C-reactive protein

29 P10914 IRF1 Interferon regulatory factor 1

30 Q07820 MCL1 Induced myeloid leukemia cell differentiation protein Mcl-1

31 P01583 IL1A Interleukin-1 alpha

32 P00441 SOD1 Superoxide dismutase [Cu-Zn]

33 P19875 CXCL2 C-X-C motif chemokine 2

34 P04792 HSPB1 Heat shock protein beta-1

35 P11021 HSPA5 Endoplasmic reticulum chaperone BiP

36 O14625 CXCL11 C-X-C motif chemokine 11

37 P09874 PARP1 Poly [ADP-ribose] polymerase 1

38 P27986 PIK3R1 Phosphatidylinositol 3-kinase regulatory subunit alpha

39 L7RSM7 PRKCA Protein kinase C

40 P10415 BCL2 Apoptosis regulator Bcl-2

41 P27487 DPP4 Dipeptidyl peptidase 4

42 P05771 PRKCB Protein kinase C beta type

43 P06400 RB1 Retinoblastoma-associated protein

44 Q07812 BAX Apoptosis regulator BAX

45 P23219 PTGS1 Prostaglandin G/H synthase 1

46 Q02156 PRKCE Protein kinase C epsilon type

47 P48736 PIK3CG Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform

(Continued)
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between Quercetin and SARS-CoV-2 main protease 3CL (Fig 6D). The pocket views of the

hydrophobic surface and hydrogen bond donor-acceptor residues had shown the binding of

6LU7 with Quercetin, as provided in Fig 6E and 6F. As for 1R42, Quercetin may be docked

into the active site of receptor and form conventional hydrogen bond and Pi-Alkyl interactions

by amino acids of TRP69, LEU391, LEU73 and ALA99 as shown in Fig 7B and 7C. The pocket

view of hydrophobic and hydrophilic regions, hydrogen bond donor-acceptor residues

between Quercetin and ACE2 (1R42) were shown in Fig 7D and 7E.

Table 1. (Continued)

No. UniProtID Gene Symbol Gene name

48 P05186 ALPL Alkaline phosphatase

49 P02766 TTR Transthyretin

50 Q14209 E2F2 Transcription factor E2F2

https://doi.org/10.1371/journal.pone.0245209.t001

Fig 3. The gene ontology (GO) enrichment was performed on screened genes. The GO analysis had shown 59

entries on biological processes, 8 entries on cell components, and 19 entries on molecular functions with P<0.05. The

top 15 entries with the most significant P value are shown.

https://doi.org/10.1371/journal.pone.0245209.g003
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Discussion

In the present study, we tried to find clues from the active compound—Quercetin, that it may

serve as one of the promising drugs for COVID-19-induced AKI. By using in silico approaches

such as network pharmacology and molecular docking, we elucidated the potential therapeutic

network of COVID-19-induced AKI and the key signaling network of Quercetin treatment on

this fatal disease. In addition, KEGG pathway analysis had indicated several signaling path-

ways, including TNF signaling, HIF-1α signaling, TLR signaling, VEGF signaling, apoptosis-

related signaling pathways, and downstream molecules may play vital roles in the pharmaco-

logical mechanisms of Quercetin in treating COVID-19-induced renal injuries.

Fig 4. The top 20 potential KEGG pathway enrichment of screened target genes in COVID-19-induced acute

kidney injury. Potential signaling pathways were shown as possible mechanisms and interactions in COVID-

19-induced AKI. The index of rich factor represents the ratio of the number of the pathway-related target genes, and it

represents the number of annotated genes in certain pathway, the higher score of rich factors, the higher level of

enrichment. The size of the dots represents the number of target genes in their representative pathways, P values with

scales were also highlighted with different colors as indicated on the top of the figure.

https://doi.org/10.1371/journal.pone.0245209.g004
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Based on current studies, Quercetin may be one of the key flavonoids that inhibits the coro-

navirus infective cycle with pleiotropic functions and low toxicity [44–46]. Luo L et al. had

analyzed 179 single herbal medicines for treating COVID-19 in Chinese patients, the results

have suggested Quercetin as the promising candidate for COVID-19 [47]. Besides, a number

of latest network pharmacological studies also predicted Quercetin to be the most potential

compounds in herbal formula or decoction that treated COVID-19 [48–51]. These findings

have indicated that Quercetin could be an antiviral agent against SARS-CoV-2. Our results

might support the previous findings on inflammation in virus-related acute injured kidneys.

Increasing evidence shows that inflammatory and cytokine storm are associated with the

severity of COVID-19 disease, for example, the level of Serum IL-6 and IL-10 are significantly

higher in severe confirmed cases than in the mild group [52]. Previous studies have verified

that Quercetin could play multiple regulatory roles in halting inflammation during AKI [24,

25]. All these findings have demonstrated the protective role of Quercetin in treating COVID-

19-induced AKI.

SARS-CoV-2 main protease 3CL is the key player in the replication cycle of the virus, tar-

geting 3CLpro is one of the therapeutic strategies to tackle the translation of viral RNA. Abian

et al. identified Quercetin interacts with 3CLpro and affects the thermal stability of 3CLpro by

using experimental and computational assay, providing evidence for Quercetin as potent

inhibitor of SARS-CoV-2 main protease 3CL [53]. Other study also demonstrated that Querce-

tin might interact with amino acid residues GLU288, ASP289, GLU290 and ALA285 of the main

protease. Interestingly, Quercetin also blocks the interaction sites of the viral spike protein

[54]. In line with these findings, we studied and screened for the interactions between Querce-

tin and 3CLpro and found that Quercetin could be docked into the active site of 3CLpro and

Fig 5. Systematic understanding of the potential targets and therapeutic pathways of Quercetin on COVID-

19-induced AKI. All the indicated therapeutic pathways were concluded by published articles, nodes highlighted with

yellow represent the Quercetin targets and other nodes represent the targets of COVID-19-induced acute kidney

injury/acute renal failure.

https://doi.org/10.1371/journal.pone.0245209.g005
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forming 4 types of bonds with amino acid ASN72, ALA70, LYS97 and GLY15. Investigation on

the binding mode of SARS-CoV-2 main protease suggesting the potential clinical utility of

Quercetin, and mutation on those interactive amino acids may also inhibit the activation and

function of viral main protease.

ACE2 is the well-described entry receptor for SARS-CoV-2 in human cells, ACE2 is also

expressed by vascular endothelial cells in kidneys. The binding interactions of spike glycopro-

tein and ACE2 receptors trigger a cascade of cytokine storm and inflammation, as well as the

membrane fusion and internalization of the virus [55, 56]. Therefore, blocking the interaction

of ACE2 with the S protein of SARS-CoV-2 could be effective therapeutics to inhibit viral

infection and fatal inflammatory storm. In this study, we found that Quercetin is capable of

binding with the active site of ACE2 by forming conventional hydrogen bond and Pi-Alkyl

interactions with amino acids TRP69, LEU391, LEU73 and ALA99. Besides, the activation of

TNF and NF-кB signaling pathways were identified as the novel changes in the pathogenesis

of COVID-19 [57–59]. Our data from network pharmacology also suggested that five signaling

pathways including TNF, HIF-1α, TLR, apoptosis-related, and VEGF signaling may be the

therapeutic pathways in Quercetin treatment to COVID-19-induced AKI.

Fig 6. Diagrams of interaction of Quercetin with crystal structure of COVID-19 main protease 3CL (6LU7). (A)

the 3D structure of Quercetin. (B) the human crystal structure of COVID-19 main protease 3CL (6LU7) with

Quercetin as the ligand in the active binding site of 6LU7. (C) 3D docking pattern and molecular interactions 6LU7

with Quercetin. The interactive bonds are indicated by yellow dashed lines. (D) 2D docking pattern of Quercetin with

amino acids ASN72, ALA70, LYS97 and GLY15 of 6LU7. (E) pocket view of Quercetin binding with 6LU7 and the

hydrophobic surface. (F) pocket view of Quercetin binding with 6LU7 and the hydrogen bond donor-acceptor

residues.

https://doi.org/10.1371/journal.pone.0245209.g006
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Conclusion and future perspectives

The present study highlights the protective role of Quercetin in COVID-19-induced acute kid-

ney injury by network pharmacology and molecular docking study, revealing the possible

pathological mechanisms in renal injuries during coronavirus disease. Although the regulatory

and mechanistic roles of Quercetin in COVID-19-induced AKI remains to be fully clarified,

our study provides functional clues to suggest an alternative possibility in developing Querce-

tin into the promising therapeutic agent to combat the current pandemic. However, there are

several limitations in the current study, including the lack of SARS-CoV-2 induced animal

Fig 7. Diagrams of interaction of Quercetin with the crystal structure of ACE2 (1R42). (A) the human crystal

structure of human ACE2 (1R42) with Quercetin as the ligand in the active binding site of 1R42. (B) 3D docking

pattern and molecular interactions 1R42 with Quercetin. The interactive bonds are indicated by yellow dashed lines.

(C) 2D docking pattern of Quercetin with amino acids TRP69, LEU391, LEU73 and ALA99 of 1R42. (D) pocket view of

Quercetin binding with 1R42 and the hydrophobic surface. (E) pocket view of Quercetin binding with 1R42 and the

hydrogen bond donor-acceptor residues.

https://doi.org/10.1371/journal.pone.0245209.g007
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models and difficulty in mimicking the complex microenvironments of virus-infected renal

cell in vitro. Further studies on the protective role of Quercetin and underlying mechanisms

are still urgently warranted in order to halt this global pandemic.

As COVID-19 spreads, we are now on the road of discovering specific medicines and vac-

cines, the safety and efficacy of these promising candidates still wait for verification by clinical

trials in the future. The challenge moving forward is to translate these potential preclinical

findings into effective therapeutic agents for the treatment of COVID-19 disease and its

complications.
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