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Mercury evidence for combustion of organic-rich
sediments during the end-Triassic crisis
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The sources of isotopically light carbon released during the end-Triassic mass extinction

remain in debate. Here, we use mercury (Hg) concentrations and isotopes from a pelagic

Triassic–Jurassic boundary section (Katsuyama, Japan) to track changes in Hg cycling.

Because of its location in the central Panthalassa, far from terrigenous runoff, Hg enrichments

at Katsuyama record atmospheric Hg deposition. These enrichments are characterized by

negative mass independent fractionation (MIF) of odd Hg isotopes, providing evidence of

their derivation from terrestrial organic-rich sediments (Δ199Hg < 0‰) rather than from

deep-Earth volcanic gases (Δ199Hg ~ 0‰). Our data thus provide evidence that combustion

of sedimentary organic matter by igneous intrusions and/or wildfires played a significant role

in the environmental perturbations accompanying the event. This process has a modern

analog in anthropogenic combustion of fossil fuels from crustal reservoirs.
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G lobal environmental and biotic perturbations, including
extreme warming, ocean acidification and anoxia, and a
mass extinction, characterize the Triassic–Jurassic (T–J)

transition (~201Ma)1–4. These consequences are believed to have
been driven by rising atmospheric CO2 levels, which have been
linked to the emplacement of the Central Atlantic Magmatic
Providence (CAMP). Although the magnitude of the CO2 rise
(~2–4×) during the T–J transition has been estimated by plant
stomatal ratios as well as pedogenic carbonate isotopes5,6, debate
continues regarding the source(s) of excess CO2, with proposals
of mantle-derived CO2

7, heating and devolatilization of organic-
rich and carbonate-bearing sedimentary rocks8, and release of
methane from permafrost or marine clathrates9. These hypoth-
eses are partly motivated and supported by the negative carbon
isotope excursions (CIEs) observed in both organic and inorganic
records of the T–J transition. For example, a direct link between
the CAMP and CO2 release from organic-rich sediments in
Brazilian basins was recently inferred by Heimdal et al.8 based on
carbon-cycle modeling combined with radiometric dating con-
straints. However, the negative CIE of the T–J transition ranges in
magnitude from <1‰ to ~8‰ in different settings, suggesting
that biological and chemical processes, preservation, as well as
sedimentation rates imparted a large local overprint on the global
signal10, which complicates analysis of the magnitude of CAMP
emissions based on carbon-cycle mass-balance calculations11.

Mercury (Hg) concentrations and isotope ratios in sediments
are widely used as a proxy for volcanic activity in stratigraphic
successions (see review by Grasby et al.12, Supplementary
Notes 1–3). Volcanogenic emissions, the largest natural Hg
source, supply Hg to the atmosphere with a residence time of
0.5–2 yr, playing a significant role in the global Hg cycle13

(Supplementary Note 1). Owing to the low vapor pressure of Hg,
massive volcanic inputs (e.g., from large igneous provinces, or
LIPs) can overwhelm normal buffering mechanisms, leading to
spikes in both raw and normalized Hg concentrations (e.g., ratios
of Hg to total organic carbon, Hg/TOC) in diverse facies
globally14,15. Moreover, Hg isotopes, especially mass independent
fractionation (MIF) of odd isotopes (i.e., Δ199Hg), yield char-
acteristic values in different reservoirs, facilitating their use as a
Hg provenance proxy16 (Supplementary Note 1). MIFs of odd
isotopes (i.e., Δ199Hg) are largely unaffected by physical, chemi-
cal, and biological processes other than photo-reduction16.
Reservoir-specific MIF values can be used to interpret Hg sources
because Δ199Hg values are near-zero for direct volcanic emissions
from the deep Earth, distinguishing them from terrestrial and
atmospheric fluxes, which generally show negative and positive
Δ199Hg values, respectively16 (Supplementary Note 3). Paired
measurement of Hg concentrations and isotopes thus greatly
enhances the potential of Hg as a proxy for volcanism in Earth
history.

Sedimentary Hg concentrations and isotopes around the T–J
transition have previously been investigated in various marine,
near-coastal and terrestrial settings (Fig. 1). Both marine and
terrestrial sections show elevated Hg concentrations and Hg/TOC
ratios during the T–J extinction interval, and these enrichments
have been linked to volcanic sources based on near-zero Δ199Hg
values17–19. However, recent studies have painted a more
nuanced picture, revealing that terrestrial and nearshore sections
received Hg from multiple sources, including seawater, terrestrial
materials (e.g., vegetation, soil), and the atmosphere18–22.
Although processes of removal of Hg from pelagic seawater are
complex23,24, analysis of a pelagic open-ocean section far from
continental influences is needed to gain a better understanding of
atmospheric Hg fluxes during the T–J transition15.

In this study, we present Hg concentration and isotope data
(Supplementary Data 1) for a biostratigraphically well-dated

pelagic radiolarian chert section from the central Panthalassic
Ocean (Katsuyama, Japan; 35.4267°N, 136.9591°E, see Methods).
The remote oceanic location of the study section, far from any
continental margin or known volcanic arc, strongly limits the
potential for terrestrial or non-CAMP volcanic influences25,
increasing the potential for recovering a CAMP signal. Further-
more, owing to slow rates of pelagic sedimentation at abyssal
water depths, the study section has the potential to yield a more
globally integrated signal of atmospheric Hg transport than most
other T–J transitional sections analyzed to date. Finally, the
location of the study site antipodally to the CAMP allows an
assessment of the areal extent of CAMP volcanic influences.

Results
Geochemical records. Hg concentrations are mainly low
(<5 ppb) in the background intervals below and above the T–J
extinction interval (−3.2 m to −2.0 m) but rise to >60 ppb (max
163 ppb) within it (Fig. 2a). Total organic carbon (TOC) and total
sulfur (TS) values are low (<0.2%) throughout the section,
without any significant variations between the background and
extinction intervals (Fig. 2b, c). Similarly, thorium (Th) con-
centrations exhibit limited variations (<3%) throughout the sec-
tion, with two peaks at −3.2 m (13.2%) and 0.8 m (6.5%)
(Fig. 2d). Ratios of mercury to total organic carbon (Hg/TOC),
total sulfur (Hg/TS), and thorium (Hg/Th) rise to >500 ppb/%,
>2000 ppb/%, and >20 ppb/% in the T–J extinction interval from
the background values of <50 ppb/%, <500 ppb/%, <5 ppb/%,
respectively (Fig. 2b–d). Mass independent fractionation (MIF) of
odd Hg isotopes (Δ199Hg) shows slightly positive values (0 to
+0.11‰) within the background intervals and slightly negative
values (−0.14 to −0.05‰) within the extinction interval (Fig. 2e).
Mass independent fractionation (MIF) of even Hg isotopes
(Δ200Hg) exhibits near-zero values within the background inter-
vals and slightly negative values (−0.08 to 0.06‰) within the
extinction interval (Fig. 2f).

Discussion
Mercury has been used in T–J transitional research to track
mantle-derived volcanic inputs to continental as well as shallow-
to intermediate-depth marine sections proximal to the Pangean
supercontinent11,14,17–19,26,27 (Fig. 1). Near-zero Δ199Hg values
in association with Hg enrichments have been reported from two
continental19 and three shelf-slope sections17,18. This relationship
was interpreted as evidence of volcanogenic Hg inputs linked to
the CAMP, although in nearshore settings an intermediate
Δ199Hg value (i.e., near-zero) could also be produced through
mixing of multiple Hg sources, e.g., a combination of terrestrial
(negative Δ199Hg) and atmospheric (positive Δ199Hg)
inputs18–22. Mercury data from a remote pelagic setting such as
Katsuyama permit the global atmospheric signal to be isolated
more effectively.

At Katsuyama, the T–J extinction interval is characterized by
elevated raw (Fig. 2a) and normalized (TOC-, TS-, Th-, Fig. 2b, c,
d) Hg concentrations, providing evidence of excess Hg loading.
The average excess loading exceeds background values by a factor
of 57X for raw Hg (Fig. 2a), 71X for Hg/TOC (Fig. 2b), 60X for
Hg/TS (Fig. 2c), and 49X for Hg/Th (Fig. 2d). This pattern cannot
be attributed to local controls12,28–30, e.g., sedimentation rates,
redox conditions, or specific host minerals (Supplementary
Note 2), an inference supported by the global distribution of Hg-
enriched T–J transition sections (Fig. 1). The excess Hg at Kat-
suyama was almost certainly sourced from the atmosphere given
the distance of this pelagic section from continents (i.e., several
thousand kilometers). Although warm and humid climate condi-
tions may have increased Hg weathering fluxes, most river-borne
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detrital materials are deposited on continental shelves, within
~100 km of river mouths31,32. In addition to distance, a terrestrial
Hg source is rendered unlikely due to lack of a significant corre-
lation between Hg and Th (Supplementary Fig. 1), and to the
relatively short residence time of Hg in seawater (101–102 years33),
limiting its redistribution within the ocean system32 (Supplemen-
tary Note 1). Furthermore, multiple Hg peaks near the extinction

interval in the present study section and at correlative sites14,17–19

document that the CAMP eruptions were likely to have been
pulsed, an inference supported by U-Pb dating1,2.

Mercury isotopes, especially odd-isotope MIF (e.g., Δ199Hg),
are a promising tool for tracking Hg sources to sediments
(Supplementary Fig. 2 and Note 3). At Katsuyama, a significant
perturbation of Δ199Hg (~2‰ decrease) is associated with T–J
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transitional beds containing excess Hg, indicating a shift in the
source(s) of Hg relative to the background flux (Δ199Hg > 0‰)
(Figs. 2e, 3). Mercury readily participates in photochemical
reactions during atmospheric transport, resulting in negative
Δ199Hg in the gaseous Hg(0) species and positive Δ199Hg in the
oxidized Hg(II) species34. For this reason, terrestrial Hg pools

normally show negative Δ199Hg due to the uptake of gaseous
Hg(0)35,36. On the other hand, atmospheric Hg(II) is soluble and
easily scavenged from the atmosphere through rainfall37, result-
ing in oceanic Hg pools (e.g., seawater and marine sediments)
showing positive Δ199Hg due to wet deposition of Hg38 (Fig. 4). If
Hg participates in photochemical reactions during atmospheric
transport, more positive Δ199Hg values will be generated in
remote settings than in proximal areas, although the magnitude
of the MIF produced can vary39.

Interpretation of Hg isotope signals in continental shelf settings
is complicated by the influence of riverine terrestrial inputs. At
Nevada, T–J transitional strata exhibit near-zero Δ199Hg values
that were assumed to record volcanic release of deep-mantle
Hg17, although an alternative is mixing of atmospheric (positive
MIF) and terrestrial (negative MIF) Hg sources. At Levanto18,
T–J transitional strata record only a slight decrease of Δ199Hg
relative to the background flux (which was dominantly derived
from seawater), rendering distinction of volcanic, atmospheric,
and terrestrial sources difficult. At the epicontinental St. Audrie’s
Bay site18, background Hg fluxes were dominantly of terrestrial
origin (Δ199Hg −0.4‰ to −0.2‰), but rising Δ199Hg within the
extinction interval (−0.17‰ to −0.07‰) resulted from either
dominantly atmospheric deposition (Δ199Hg −0.17‰ to
−0.07‰) or a mixture of atmospheric and terrestrial sources that
were weighted toward the former. For the two terrestrial settings
(Haojiagou and Qilixia)19, the relatively higher Δ199Hg values
near the extinction interval (−0.2‰ to −0.1‰, and −0.05‰ to
+0.05‰ for Haojiagou and Qilixia, respectively) than that during
the background interval (−0.4‰ to −0.2‰ for Haojiagou, and
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−0.2‰ to −0.05‰ for Qilixia) document mixing of terrestrial
and atmosphere sources.

The negative Δ199Hg values (ca. −0.14‰) associated with Hg
spikes in the T–J extinction interval of the Katsuyama section
have several potential sources, including photoreduction of Hg
(II) complexed by reduced sulfur ligands in a euxinic photic zone,
terrestrial inputs by soil erosion, and heating of organic matter in
soils and sedimentary rocks (Fig. 4). Photic-zone euxinia is
unlikely due to low concentrations of TS (Fig. 2c) and redox-
sensitive trace elements40 in the study section, and, thus, this
process cannot account for the negative Δ199Hg values41. Fur-
thermore, an insignificant correlation between Δ199Hg and TS
also indicates limited influence by euxinia in both the photic zone
and deeper water column (Supplementary Fig. 1). Terrestrial
inputs of eroded soil through rivers are unlikely to have played a
significant role given the thousands of kilometers separating
Katsuyama from continental sources as well as the lack of cor-
relations between Hg and Th32. We infer that heating of soil and
terrestrial biomass (e.g., vegetation) through wildfires and/or
contact metamorphism of organic-rich sedimentary rocks by
igneous sills was the main source of low-MIF Hg.

Vegetation serves as a major sink of atmospheric Hg13,42,
because plants have a strong ability to accumulate gaseous Hg(0)
through stomata, as shown by negative Δ199Hg values in plant
tissues36,43. Soil could accumulate a substantial amount of Hg
from vegetation13. For this reason, terrestrial materials (e.g.,
vegetation and soil) are commonly characterized by elevated Hg
concentrations44 and negative Δ199Hg values (e.g., ranging from
−0.4‰ to 0‰35,36,45. Furthermore, negative Δ199Hg values have
been observed in coastal sediments that receive Hg mainly via
terrestrial runoff16,32. Mercury has a close association with
organic matter in organic-rich sediments, and decay of organic
compounds can result in release of soil Hg to the atmosphere13.
Negative Δ199Hg values (−0.4 to −0.2‰) in the near-coastal,
shallow-marine St. Audrie’s Bay18 and terrestrial Hajiagou19

successions near the T–J transition are in agreement with results
from similar present-day settings16 (Fig. 4).

In the modern, wildfire combustion of vegetation and soil car-
bon is a major source of Hg to the atmosphere46,47, and these
sources are likely to have been important during the T–J transition
as well. An increased frequency of wildfires linked to CAMP has
been reported from many sections in Pangea as well as on the
northern and eastern margins of the Tethys3,48 (Supplementary
Note 4). Wildfires cause combustion of plant debris and soil humic
matter, releasing Hg with negative Δ199Hg values to the
atmosphere16. Alternatively, photoreduction of Hg(II) in the
atmosphere can alter the isotopic signature of volcanic-Hg (Δ199Hg
near zero), resulting in negative Δ199Hg values in the gaseous Hg(0)
pool and positive Δ199Hg values in the aqueous Hg(II) species.
Gaseous Hg(0) with negative Δ199Hg that is taken up by land plants
through their stomata can be subsequently released by wildfire
combustion. However, this source is unlikely to have been impor-
tant during the CAMP eruptions as pelagic sediments would have
recorded Δ199Hg values ranging only from near-zero (volcanic Hg
inputs) to negative (wildfire-released Hg).

Another mechanism for release of Hg yielding negative Δ199Hg
values to the atmosphere is the subsurface combustion of organic
matter in coal and other organic-rich sedimentary rocks (e.g.,
black shales) (Fig. 4). CAMP igneous sills, which had a collective
volume of ~106 km3, are widely distributed across South America,
Africa, Europe, and North America. However, they are con-
centrated (~70%) in Brazilian basins49 such as the Amazonas and
Solimões, in which organic-rich sediments of the Barreirinha,
Jandiatuba, Jaraqui and Ueré formations contain up to 8%
TOC50. Heating of these formations by CAMP intrusives may
have been a major contributor to elevated atmospheric CO2

concentrations and the negative CIE through the T–J extinction
interval8,51. Although Hg concentrations have not been reported
for these organic-rich formations to date, Hg is generally about
one order of magnitude higher in coals and black shales com-
pared to other sedimentary rock types44. Contact metamorphism
of organic-rich sediments, especially those containing abundant
terrestrially derived organics, should therefore emit Hg exhibiting
low MIF, potentially accounting for negative Δ199Hg values in the
T–J extinction interval at Katsuyama (Fig. 2). Contact combus-
tion of organic-rich sediments is also evidenced by abundant
methane-rich fluid inclusions trapped within late-stage magmatic
quartz52 and zircon crystals53. Similarly to the carbon52, mag-
matic Hg concentrations and isotope values may have been
altered by admixture of abundant isotopically light Hg from the
heating of organic-rich sediments.

Further support for the hypothesis of mobilization of Hg from
an organic-rich sedimentary source followed by atmospheric
transport during the T–J transition is provided by negative
excursions of Δ200Hg (Fig. 2f). MIF of 200Hg is produced
exclusively in the atmosphere, e.g., through photo-oxidation of
gaseous Hg(0) to Hg (II)54. Terrestrial soil erosion and volcanic
emissions of mantle-sourced mercury cannot explain the coupled
negative Δ199Hg and Δ200Hg excursions at Katsuyama because
both of these sources are characterized by Δ200Hg of ~0‰35,55. In
contrast, vegetation (and organic-rich sediments derived there-
from) tend to show coupled negative Δ199Hg and Δ200Hg due to
foliage uptake of Hg(0) from the atmosphere16,36,45.

Heating of vegetation and soil in surface as well as organic-rich
sediments (e.g., coal and black shale) in the subsurface represents
a potentially larger Hg flux to the atmosphere than direct volcanic
Hg release from the deep Earth. Sediments containing abundant
volatiles such as Hg, carbon, sulfur, and halogens are likely to play
a significant role in environmental and biotic perturbations56,57.
Much evidence now supports the role of combustion of organic
matter by intrusives (e.g., coal and black shales) and wildfires
(e.g., vegetation and soil) as significant sources of Hg and carbon
to the surface Earth during mass extinctions at the
Permian–Triassic15,20 and Triassic–Jurassic8 boundaries. Com-
bustion of fossil fuels was the largest source of carbon to the
Earth’s surface during 1850-2019, with cumulative emissions of
445 ± 20 GtC (gigatons of carbon)58. The average release rate was
~2.6 GtC yr−1 over that interval, or one order of magnitude
greater than the rate of release of carbon during the T–J transition
(~0.21 GtC yr−1)8. Thus, although it is hard to know the eruptive
rates of CAMP, the amount and rate of release of greenhouse
gases (e.g., CO2) by modern mining and fossil fuel burning are
larger than LIP-related perturbations in deep time, reflecting the
seriousness of present-day anthropogenic emissions and their
implications for the future climate state of the Earth.

In this work, elevated Hg concentrations within the
Triassic–Jurassic transition of a pelagic section from the central
Panthalassic Ocean provide evidence of excess Hg inputs via
atmospheric loading. Negative MIF values associated with these
Hg enrichments support an inference of thermogenic Hg gener-
ated through volatilization of organic matter in sedimentary rocks
heated by CAMP-related igneous sills and/or in soils by wildfires.
These processes are likely to have released large amounts of toxic
gases that were harmful to the contemporaneous environment
and biosphere. The release of Hg by heating of organic-rich
sediments (analogous to modern anthropogenic fossil fuel com-
bustion) is a significant factor in present-day biotic and envir-
onmental perturbations of the Earth-surface system.

Methods
Geological background and study section. The Mino-Tamba terrane complex,
running through central Japan, is one of the largest surviving areas of pelagic
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sedimentation from prior to the Jurassic Period. These sediments, which were
deposited several thousand kilometers from major sources of detrital sediment,
accumulated at extremely low sedimentation rates and preserve a time-integrated
signal of open-ocean conditions59. Our study section is part of the Mino Terrane,
which runs from SW to NE across central Honshu. This accretionary complex is
composed of late Paleozoic through Mesozoic igneous rocks, limestones, silici-
clastic rocks, and bedded radiolarian cherts60. The cherts represent low-latitude
pelagic deposits that accumulated below the oceanic calcite compensation
depth61,62. The bedding of the sediments, which reflects variable chert content, was
likely produced by variations in the sinking flux of siliceous radiolarian tests as well
as climate-driven changes in the delivery of windblown silt and clay
components63–65.

The Katsuyama section is exposed on the northern bank of the Kiso River,
approximately 5.5 km northeast of Inuyama, Aichi Prefecture, Japan (35.4228°N,
136.9708°E). The section is composed of bedded cherts, with individual cherts beds
ranging in thickness from 1 to 10 cm, with most beds being <4 cm in thickness. The
beds are separated by millimeter-scale shale partings and are generally red in color.
There is no major facies change in the Katsuyama section across the
Triassic–Jurassic boundary, though minor changes in the color of the chert may
reflect variation in depositional conditions64. Beds dip nearly vertically and are
deformed by a complex system of faults and tight folds mapped in detail by Fujisaki
et al.66. The data presented in this study come from a single coherent structural
block bounded by the F4 and F9 faults (Fujisaki et al.66, their Fig. 2).

The lowermost beds of our measured section are ~3 meters (−5.1 m to −2.2 m)
below the T–J boundary and are likely Rhaetian (latest Triassic) in age, based on
the occurrence of the Haeckelicyrtium breviora and Globolaxtorum tozeri
radiolarian assemblages as well as the Misikella posthernsteini conodont Zone40.
The Triassic–Jurassic boundary (−2.2 m) in the Katsuyama section was located
based on the transition from the Globolaxtorum tozeri radiolarian Zone to the
Pantanellium tanuense Zone59. This placement is supported by the LAD of the
conodont Misikella posthernsteini59,62 and coincides with a noticeable change in
the color of the chert40,66. The overlying Lower Jurassic beds (−2.2 m to 2.4 m) are
assigned to the Parahsuum tanuense Zone67,68 and exhibit a noticeable transition
from predominantly red to predominantly gray cherts in the middle of Subzone III,
indicating a Hettangian to Sinemurian (Early Jurassic) age for the change in
environmental conditions40,66.

Sample preparation and elemental analyses. Samples were trimmed to remove
visible veins and weathered surfaces and pulverized to ~200 mesh in an agate
mortar for geochemical analysis. Aliquots of each sample were prepared for various
analytical procedures. Hg concentrations (n= 157) were analyzed using a Direct
Mercury Analyzer (DMA80) at Yale University. About 150 mg for chert samples
were used in this analysis. Results were calibrated to the Marine Sediment Refer-
ence Material MESS-3 (80 ppb Hg). One replicate sample and a standard were
analyzed for every ten samples. Data quality was monitored via multiple analyses of
MESS-3, yielding an analytical precision (2σ) of ±0.5% of reported Hg
concentrations.

Carbon and sulfur concentrations (n= 259) were measured using an Eltra 2000
C–S analyzer at the University of Cincinnati. Data quality was monitored via
multiple analyses of the USGS SDO-1 standard with an analytical precision (2σ) of
±2.5% of reported values for carbon and ±5% for sulfur. An aliquot of each sample
was digested in 2 N HCl at 50 °C for 12 h to dissolve carbonate minerals, and the
residue was analyzed for total organic carbon (TOC), with total inorganic carbon
(TIC) obtained by difference.

Trace element abundances (n= 61) were measured by Agilent 7500a
inductively coupled plasma mass spectrometry (ICP-MS) at the State Key
Laboratory of Geological Processes and Mineral Resources, China University of
Geosciences (Wuhan). About 50 mg of each sample powder were weighed into a
Teflon bomb and then moistened with a few drops of ultra-pure water before
addition of 1 mL HNO3 and 1 mL HF. The sealed bomb was heated at 190 °C in an
oven for more than 48 h. After cooling, the bomb was opened and evaporated at
115 °C to incipient dryness, then 1 mL HNO3 was added and the sample was dried
again. The resultant salt was re-dissolved with 3 mL 30% HNO3 before it was again
sealed and heated in the bomb at 190 °C for 12 h. The final solution was transferred
to a polyethylene bottle and diluted in 2% HNO3 to about 80 mL for ICP-MS
analysis. Analysis of the international rock standards BHVO-2 and BCR-2 yielded
an analytical precision better than 5%, according to the relative standard
deviation (RSD).

Mercury concentrations and isotopes. A subset of samples (n= 14) was analyzed
for Hg isotopes at the State Key Laboratory of Ore Deposit Geochemistry, Institute
of Geochemistry, Chinese Academy of Sciences, Guiyang. A double-stage tube
furnace coupled with 40% anti aqua regia (HNO3/HCl= 2/1, v/v) trapping solu-
tions was used for Hg preconcentration, prior to isotope analysis69. All the solu-
tions were diluted to ~0.5 ng mL−1 Hg in 10–20% (v/v) acids using 18.2 MΩ cm
water, and analyzed by Neptune Plus multiple collector inductively coupled plasma
mass spectrometer (Thermo Electron Corp, Bremen, Germany). The instrument
was equipped with the HGX-200 system and an Aridus II Desolvating Nebulizer
System (CETAC Technologies, USA) for Hg and Tl introduction, respectively.

NIST SRM 997 Tl standard (50 ng mL−1) was used as an internal standard for
simultaneous instrumental mass bias correction of Hg. The instrument was tuned
using the NIST SRM 3133 Hg standard solution for maximum intensity of 202Hg
signal using Ar gas flows, torch position, and lenses.

Hg isotopic results are expressed as delta (δ) values in units of per mille (‰)
variation relative to the bracketed NIST 3133 Hg standard, as follows:

δ202Hg ¼ ½ð 202Hg= 198HgÞsample=ð 202Hg= 198HgÞstandard � 1� ´ 1000 ð1Þ
Hg concentration and acid matrices in the bracketing NIST-3133 solutions were
matched with neighboring samples. Any Hg-isotopic value that did not follow the
theoretical mass-dependent fractionation (MDF) was considered an isotopic
anomaly caused by mass-independent fractionation (MIF). MIF values, reported in
Δ notation (ΔxxxHg), were calculated as the difference between measured δxxxHg
and the theoretically predicted δxxxHg value, in units of per mille (‰), as follows:

ΔxxxHg ¼ δxxxHg� β ´ δ202Hg ð2Þ
where xxx= 199 or 200, and β is equal to 0.2520 and 0.5024 for 199Hg and 200Hg,
respectively70. NIST-3177 secondary standard solutions, diluted to 0.5 ng/mL Hg
with 10% HCl, were measured every 10 samples. Standard reference material GSS-4
(soil) was prepared and measured in the same way as the samples. Analytical
uncertainty was estimated based on replicate analyses of the NIST-3177 secondary
standard solution and full procedural analyses of GSS-4.

Data availability
The geochemical data generated in this study are provided in the Supplementary
Data file.
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