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Density-functional fluctuation theory of crowds

J. Felipe Méndez-Valderrama® !, Yunus A. Kinkhabwala® 2, Jeffrey Silver® 3, Itai Cohen® & T.A. Arias® *

A primary goal of collective population behavior studies is to determine the rules governing
crowd distributions in order to predict future behaviors in new environments. Current top-
down modeling approaches describe, instead of predict, specific emergent behaviors,
whereas bottom-up approaches must postulate, instead of directly determine, rules for
individual behaviors. Here, we employ classical density functional theory (DFT) to quantify,
directly from observations of local crowd density, the rules that predict mass behaviors under
new circumstances. To demonstrate our theory-based, data-driven approach, we use a model
crowd consisting of walking fruit flies and extract two functions that separately describe
spatial and social preferences. The resulting theory accurately predicts experimental fly
distributions in new environments and provides quantification of the crowd “mood”. Should
this approach generalize beyond milling crowds, it may find powerful applications in fields
ranging from spatial ecology and active matter to demography and economics.
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dentifying the role of social interactions and environmental

influences on living systems has been the goal of many recent

studies of collective population behavior!~1>. Current agent-
based models of crowds can reproduce many emergent behaviors,
ranging from random milling to swarming, but often must pos-
tulate preconceived rules for individual agent interactions with
each other and their environment!~10. In contrast to such
bottom-up approaches, some studies have inferred interaction
rules from observations of individual motions within a crowd for
a few species of fish!112, birds'3, and insects!41%, but these stu-
dies have largely been limited to specific behaviors and have not
been developed for making predictions under new circumstances.
To date, a general predictive approach to emergent collective
behavior in living systems has been lacking.

Such approaches, however, have been developed successfully
for large collections of interacting atoms and molecules in the
field of statistical physics. One of the central tenants of statistical
physics is that generic thermodynamic behaviors emerge from
underlying interaction rules among large numbers of
particles!®17, Remarkably, these emergent behaviors are often
insensitive to the detailed nature of the underlying interactions.
Here, we pursue the hypothesis that a similar scenario emerges in
the study of large crowds!8-2% so that behaviors arising from
generic agent-based models can be predicted using a top-down
approach. Accordingly, our strategy is to begin with a family of
models that roughly capture the “microscopic” behaviors of
individuals as they rearrange within a crowd. We do this, not
because we are interested directly in individual behaviors, but
rather because we are interested in the generic “macroscopic”
behaviors that emerge in crowds en masse. This tack is not a
priori obvious since active systems do not possess a fixed energy,
their temperature is ill-defined, and there are no obvious equili-
brium states?®>. Nonetheless, we show here that mathematical
equivalents of free energy, the Hamiltonian, and equilibrium
states arise naturally from plausible models of crowd behavior.

In this work, we present the following results. We introduce a
general class of plausible agent-based models in which two dif-
ferent functions,“vexation” and “frustration,” quantify location
and social preferences, respectively. For this class of models, we
develop a coarse-grained approach stemming from classical
density-functional theory (DFT) that allows us to determine the
general mathematical form of the probability distributions
describing a crowd. We then discuss the conditions a system must
possess to be describable by our theory and test our approach
using a living system consisting of walking fruit flies (Drosophila
melanogaster), which we confine to a variety of two-dimensional
environments. For this fruit-fly system, we successfully extract the
vexation and frustration functions corresponding to a variety of
different physical settings. Furthermore, these functions are suf-
ficiently stable that, by mixing and matching functions from
different experiments, we accurately predict crowd distributions
in new environments. Finally, by exposing the fly system to
conditions that elicit distinct social motivations, we are able to
identify changes in the overall behavior of the crowd, i.e., its
“mood,” by tracking the evolution of the social preference
function.

Results

General mathematical form of crowd-density distributions.
Consider, as an example, a crowd at a political rally (Fig. 1a).
Under such circumstances, individuals will seek the best locations
—presumably closest to the stage—while avoiding overcrowded
areas where there is insufficient “personal space.” Moreover,
individuals will, from time to time, move to new, better locations
that become available.

A plausible agent-based model of this behavior would assign an
intrinsic desirability of each location x through a “vexation”
function V(x) that takes its minimum value at the most ideal
location near the stage. In addition, it would account for
crowding effects through the local crowd areal density n(x) by
introducing a “frustration” function f(n), so that the relative
preferablity of location x is actually the sum of vexation and
frustration effects, V(x)+ f(n(x)). Finally, this model would
include a behavioral rule to account for the tendency for
individuals to seek improved locations. When an agent considers
a move from location x to x’, the change in the agent’s
dissatisfaction is AH=(V(X') + f(n(x") — (V(x) + f(n(x)). A
rule where each agent executes such moves with probability 1/
(eAH 4 1) captures the intuition that moves that increase the
dissatisfaction AH >0 are unlikely, and moves that decrease the
dissatisfaction AH < 0 are likely, while moves where AH = 0 occur
with 50% probability. The disadvantage of such an agent based
modeling approach is that the rules for each agent are postulated
and comparison with experiment requires gathering statistics
from repeated simulations, each of which scales as the number of
agents or worse. Again, our purpose here is not to develop such a
model in detail, but rather to explore the top-level, global
behaviors that emerge from this class of models, which we
conjecture should apply to crowds more generally.

To extract such global behaviors, we develop a top-down
approach by considering the system as a whole and summing the
changes in the individual agent dissatisfactions AH to obtain a net
global population dissatisfaction functional H[n(x)] (Methods).
Integrating over dn and area element dA yields

Hln(x)] = F[n(x)] + /V(x)n(x)dA, (1)

where the net frustration effect at location x is described by
f(n) = [f'(n)dn, and a local density approximation®%2°
Fln(x)] = [f(n(x))dA is in this case sufficient for capturing the
crowd behavior. This global functional H[n(x)] and the model
described above then lead mathematically to the prediction
(Methods) that the probability for observing a crowd arrange-
ment with density n(x) will be given by the probability density
functional

Pn(x)] = 2" exp(~H[n(x)]), 2)
where Z is an overall normalization constant. Since we cannot
measure the function n(x) directly in experimental crowds, we
instead consider discrete counts of individuals within equal area
bins (quadrats)?®. Thus, to make contact with experiments we
discretize Eq. las H =), ngh + vbth>, where vy, is the average
value of the vexation V(x) over bin’b, and fy = f(N,/A)A
approximates the total frustration contribution of bin b of area A
(Methods). Substituting this discretization into Eq. 2, the overall
probability factors into independent distributions for each bin of
the form

s (e7)Ne

Pb(N):Z;1N|

3)
where z, is a bin-dependent normalization constant and N!
accounts for equivalent configurations among the bins (Meth-
ods). Thus, we predict that the fluctuations of the bin counts will
be statistically independent and follow a modified Poisson form
for each bin. This formulation dramatically reduces the complex-
ity of the system description from tracking each individual to
tracking the local density in each bin. Additionally, instead of
rules with potentially complex interactions for each agent, the
global system behavior of the density is determined by just two
functions, v, and a bin-independent fy. Because this reduction in
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Fig. 1 Resulting density-functional approach. a Schematic of crowd in which agents attempt to get as close to the stage as possible while avoiding
overcrowding. b In the absence of interactions, the mean of each probability distribution (vertical dashed line) indicates location preference, from which we
can extract a bin-dependent vexation functional, v,. ¢ Resulting bin-dependent vexations. d-f Crowds in environments with uniform vexation but with
neutral, repulsive, or attractive interactions. For neutral interactions, we expect complete spatial randomness leading to Poisson distributed counts within
each bin. The repulsive and attractive interactions are thus reflected in the deviation of the probability distribution from the Poisson form2€. From these
deviations we can extract a bin-independent frustration functional, fy, whose curvature indicates the nature and intensity of the interaction

the number of variables is the result of transitioning to a local-
density description as in classical density-functional theory, but
now with the modification that interactions are inferred from
density fluctuations, we call our approach density-functional
fluctuation theory (DFFT).

Remarkably, rather than postulating these functions, they can
be extracted directly from measurements of density distributions
in each bin. In particular, in the case of neutral interactions (fy =
0), the bin counts will be single-parameter Poisson distributed, as
expected for an experiment counting so-called completely
spatially random events?®, From the mean of these distributions
one can extract an effective v, (Fig. 1b, c), or logarithm of the so-
called intensity?, that can arise either from actual preferences for
particular locations or from other kinetic interactions with the
environment, such as slowing down near barriers?’. In the case of
interactions, such probability distributions can vary substantially
from their non-interacting form (Fig. 1d) when the interactions
are included (Fig. le, f). For example, so-called contagious
distributions, which correspond to attractive interactions and
show increased variance-to-mean ratios, have been
observed?0:28:29_ If the interaction is strongly attractive, groups
will form, resulting in a bimodal bin probability distribution
corresponding to low and high density regions (Fig. le), with the
high density region constrained by the packing limit. In contrast,

highly repulsive interactions (Fig. 1f) lead to more uniform
distribution of individuals in the crowd?® and will narrow the bin
probability distribution. Finally, from distortions off of the
Poisson form, we can determine an effective frustration function
fn» without assuming any particular functional form, that
describes any local interaction, attractive or repulsive. This
formulation holds whether the interaction is directly related to
density or to more complex factors such as orientation
distributions, as well as higher-order many body interactions
(Methods). The power of this approach is that, since v, is tied to
the interactions with the environment and f is tied to inter-agent
interactions, it may be possible to combine vexations and
frustrations from previous measurements to predict future crowd
behaviors.

Several conditions must be met when applying this methodol-
ogy to crowds under realistic circumstances. For example, the
system must be sufficiently ergodic. Thus, the time scales for
measurements must be longer than the system decorrelation time.
In addition, the agent interactions with their environment should
be sufficiently independent of the agent density, the agent
interactions should be sufficiently independent of location, and
both should be stable over the measurement time. Finally, bin
sizes must be appropriately chosen. The bins must be large
enough to yield reliable estimates of density, as well as to avoid
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trivial correlations in neighboring bins, yet small enough that the
underlying vexation and local density are nearly constant across
each bin.

Extraction of functionals for model system of walking flies. To
test whether this approach applies to actual populations, we
consider a model crowd consisting of wild-type male Drosophila
melanogaster from an out-bred laboratory stock. It is well know
that flies exhibit complex spatial preferences’®3! and social
behaviors3233. Here we seek to determine whether a large crowd
of individuals with such complex behaviors indeed can be
described within our vexation and frustration framework. The
flies are confined in 1.5 mm tall transparent chambers where they
can walk freely but cannot fly or climb on top of each other. We
record overhead videos of the flies, bin the arena, and use custom
Matlab-based tracking algorithms (Methods) to measure the
individual bin counts N, in each video frame. To explore a variety
of behaviors, we use arenas of different shapes3? and apply heat
gradients®* across the arenas to generate different spatial pre-
ferences. We find that the flies fully adjust to such changes in
their environments after 5 min. We also find that the behavior of
the flies changes slowly over a time scale of hours (Methods). We
thus take care to make our observations over 10 minute windows
during time periods where the behavior is stable.

A top down image of 65 flies in a quasi 1D arena that is
uncomfortably heated on the right is shown in Fig. 2a. We find
that a bin size of 0.15cm? corresponding to the area of
approximately 7 flies, ensures that the counts are spatially
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independent (Fig. 2b) and that the density does not vary
substantially over each bin. We also find that the decorrelation
time for N, is about 5s (Fig. 2c) indicating the system is
sufficiently ergodic over the time scale of our observation
windows. We show representative probability distributions
Py(N) for a high and a low density bin in Fig. 2d, e, respectively.
We find that the distribution peaks are centered at higher N near
the left side of the chamber suggesting lower vexation there.
Additionally, the high density probability distribution is sig-
nificantly narrower than the fitted Poisson distribution, hinting
that there are repulsive interactions among the flies.

To validate our description and quantify the vexations and
frustrations, we plot what we call as a mnemonic the “pseudo-free
energy” —In(N!Py(N)) = (vpN +1n z;) + fyy versus N in Fig. 2f. To
determine whether the frustration fy is indeed universal, we
subtract a linear term corresponding to a bin-dependent vexation
and normalization constant, v,N +lnz, from each curve.
Remarkably, the resulting curves can be made to collapse,
indicating that a single, universal frustration function fy applies
equally well to all bins (Fig. 2g). The positive curvature indicates
that higher densities are less preferable than expected from non-
interacting populations, and thus indicates repulsive interactions.
We also show the bin-dependent vexation values v, used to
collapse the curves in Fig. 2h. Finally, as an indicator of the
strength of the collapse, we find that modifying the best least-
squared fit Poisson distributions by including just eight universal
frustration values (f, through f,) decreases our reduced y* value
for 166 degrees of freedom from 8.1 to 0.95. Additionally, our
DFFT model is favored by the likelihood ratio test with probability
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Fig. 2 Statistical analysis and extraction of functionals for walking fruit fly experiments. a Single frame of 65 flies walking in a quasi 1D chamber of
dimensions 10 cm x 0.8 cm divided into 48 bins with approximate area 0.15 cm?2. Heat is applied on the right side of the chamber so that the temperature
varies from 35 °C on the left to 50 °C on the right. b Averaged spatial correlation function. ¢ Averaged temporal correlation function. d-e Probability
distributions of the number of flies in the two bins outlined in a in red and magenta, respectively. f The “pseudo-free energy,” —In(N!P,(N)), for eight
representative bins. The observed positive curvature indicates deviations from the Poisson form and repulsive interactions. g Frustration functional, f,
obtained from collapse of the pseudo-free energies for all 48 bins upon removal of the Poisson contributions. h Vexation for each bin as measured from the
Poisson contributions to the pseudo-free energies. S.d. error bars in d-f computed from Bayesian posterior distribution assuming a Dirichlet prior. S.d.

errors bars in g computed from linear propagation of errors displayed in f
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Dense observation in new environment
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Fig. 3 Predictions of large crowd distributions in three new environments. a Experimental observations of dense crowds (124, 219, and 189 flies) in three
chambers with different geometries, two with applications of heat creating temperature differences of up to 20 °C. b Measured single-fly probability
distributions, Naye/Nrot. €, d DFFT protocol applied to the stair-case geometry. € Measurement of the density for 3 flies is used to determine the vexation,
vp. d Combining this vexation with the extracted quasi 1D frustration from Fig. 2 leads to the high density DFFT prediction. @ Comparison of single-fly
probabilities for the sparse and dense populations shows significant population shifts as indicated by a correlation coefficient r = 0.73 and a 6mean = 3.8. f
DFFT analysis that incorporates interactions predicts the measured dense population distribution within statistical uncertainty (r = 0.96 with a 6inean =
1.0). Vertical error bars correspond to s.d. of bin-occupation distributions and horizontal error bars correspond to s.e.m. of the observed density within a

given bin

P <0.001 for accepting the hypothesis that the frustration values
should be taken to be zero and a vexation-only model be used.
This latter test confirms that the aforementioned reduction in y? is
not a result of overfitting (Methods).

Predictions of crowd density under new circumstances. An
important consequence of the physical independence of fy from
vp is that it should be possible to use the frustrations extracted
from the quasi-1D chamber to predict fly distributions in distinct
vexations (Fig. 3). We demonstrate this capability by predicting
the measured density distributions for large numbers of flies (on
the order of 100) in three distinct geometries and temperature
gradients (Fig. 3a). Using measurements of just a few flies in each
chamber, we extract density distributions and determine the
corresponding vexation v;,. Combining this few-fly vexation for
each environment with the many-fly frustration fy extracted from
the quasi 1D geometry, we predict the fly distributions under
dense conditions. Fig. 3b shows this procedure for the stair-case
geometry. We find that the individual fly probability distributions
(density normalized by total number of flies) for low and high
densities are significantly different (Fig. 3¢). In contrast, including
the interactions through our DFFT approach predicts a more
homogeneous population that matches the observed distribution
(Fig. 3d). These results demonstrate that, using our DFFT ana-
lysis, it is indeed possible to make accurate predictions by com-
bining vexations from low-density experiments in different
environments with a frustration that corresponds to a particular
behavior (“mood”).

Frustration used to quantify the “mood” of a crowd. Con-
versely, by keeping the environmental conditions fixed and ana-
lyzing different time points in the experiments or changing the
ratio of male to female flies, the resulting change in “mood” can
be quantified by extracting the corresponding functionals. For

example, after spending about six hours in the chamber without
food or water, the flies exhibit transient groups or clusters of
about 10-20 individuals. This change in behavior is quantified by
the different curvatures for the frustrations fy characterizing the
initial (blue curve) and deprived states (red curve) in Fig. 4. The
nearly flat frustration associated with this behavior indicates that
male flies are willing to surmount their natural repulsion and
form higher density groups under deprivation conditions, a
previously undocumented spontaneous self-organized change in
collective behavior313%3>, Attraction between individuals can be
induced by introducing female flies. For groups of flies with equal
numbers of males and females which have been separated for
several days, we find pair formation (yellow ellipses). This
behavior is characterized by a sharp downward curvature in the
frustration at low N (yellow curve). Exposing this population to
similar deprivation conditions drives formation of larger groups
(purple circle) at the expense of pair formation. This behavior is
captured by the shift of downward curvature in the frustration to
larger bin occupations of N=7 (purple curve). These data establish
that the DFFT approach has the power to detect and quantify
changes in social behaviors.

Discussion

Collectively, these results demonstrate that top-down approaches
are a promising method for predicting crowd distributions and
quantifying crowd behaviors. The DFFT analysis that we present
is particularly powerful because it separates the influence of the
environment on agents from interactions among those agents.
This separation then enables predictions of crowd distributions in
new situations through mixing and matching of the vexations and
frustrations from previous observations in different scenarios. In
addition, the real-time quantification of frustrations opens the
door to tracking behavioral changes and potentially extrapolating
the time evolution of frustrations to anticipate future behaviors.
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Fig. 4 Extracting frustrations to quantify changing behavior. Frustrations
measured for flies in a 4 cm square chamber. The experiment duration was
seven hours. The frustrations were extracted from two different 10 minute
intervals corresponding to the initial and final stages of experiments on two
different populations. The blue curve (903) exhibits a positive curvature at
all occupancies, indicating an aversion to crowding at all densities. The red
curve characterizes interactions for the same population 6 hours later. The
lower curvature indicates significantly reduced aversion to grouping. The
yellow curve (308 + 259) exhibits a downward curvature at low
occupations, reflecting mating interactions between pairs of flies (yellow
ellipses). At higher occupancies, the lack of curvature indicates a more
neutral response to changes in occupation number. Finally, the purple curve
characterizes interactions for the same mixed-sex population 6 hours later.
The downward curvature shifts to higher occupancies and is followed by a
region of positive curvature. The corresponding inflection point indicates a
preference for group formation with a density of about eight flies per bin. S.
d. error bars calculated from the maximum likelihood (ML) covariance
matrix of DFFT distribution in Eq. 3

There are a number of directions in which the formal frame-
work suggested here can be extended, paralleling developments
from the traditional density-functional theory literature. Exten-
sions to time-dependent DFT methods (TDDFT)3¢37 would
enable the prediction of situations in which crowds gather and
disperse in response to changes in the environment. This
approach would also apply to situations in which the center of
mass of the entire group is moving as whole, such as in herd
migration and bacterial and insect swarming. Moreover, by
including the local current density (“flow”) in the functional, such
approaches may even be able to describe crowds where correlated
subgroups move with different local velocities, such as in flocks of
birds. Likewise, extensions to multicomponent DFT38 would
enable corresponding predictions and observations in crowds
composed of distinct groups exhibiting interactions such as inter-
group conflict, predator-prey relations, or mating behavior.

Should these results extend to human populations, the impli-
cations are profound. From publicly available video data of people
milling in public spaces, this approach could predict how people
would distribute themselves under extreme crowding. Addition-
ally, a simple application running on a hand-held device could
easily measure density fluctuations and extract functionals that
are indicative of the current behavioral state or mood of the
crowd. Through comparison with a library of functionals mea-
sured from past events, such an application could provide early
warning as a crowd evolves towards a dangerous behavior.
Finally, given the recent proliferation of newly available cell-
phone and census data3*40 these approaches may also extend to
population flows on larger scales, such as migration. Here,
vexations could correspond to political or environmental drivers
and frustrations to population pressures. The resulting

predictions of migration during acute events would enable better
planning by all levels of government officials, from local muni-
cipalities to international bodies*%4!, with the potential to save
millions of human lives.

Methods

Global dissatisfaction functional H[n(x)]. The main text describes a net global
population dissatisfaction functional H[n(x)]. To derive this functional, we begin
by considering a deterministic model, in which agents reject or accept potential
moves with unit probability according to whether AH = (V(x') + f (n(x")) — (V(x)
+f (n(x)) is positive or negative, respectively. In such a model, it is clear that
equilibrium is attained and all motion ceases when AH = 0 for all pairs of points x
and x'. This statement is equivalent to the combination V(x) + f (n(x)) attaining
some constant value y across the system,

V(x) +f(n(x)) = p. 4)

This equation corresponds precisely to the Lagrange-multiplier equation for
minimization of the functional

Hln(x)] = /f(n(x))dA + /V(x)n(x) dA, (5)

subject to the constraint of fixed number of agents N = [n(x) dA, with y being the
corresponding Lagrange-multiplier. Here, y plays an analogous role to the
“chemical potential” from Statistical Physics.

Probability density functional P[n(x)]. To make the transition to the probability
functional P[n(x)], we note that the stochastic model described in the text maps
directly onto a particular Markov chain. Each step on this chain corresponds to a
three-stage process. First, (a) an agent is selected at random to consider a possible
move from current location x. Selecting a random agent at each time step allows
agents to adjust their locations at equal rates. In this approach, choosing the
physical time interval between Markov steps to be inversely related to the number
of agents preserves the time scale of the overall crowd dynamics. Second, (b) a
location x’ nearby x is selected at random as a move to be considered by the given
agent. We note that for this work, we assume that the new location x’ is selected in
a symmetric way so that that agents at x contemplate moves to x’ with the same
probability that agents at X" contemplate moves to x. This assumption seems most
plausible given the systems we consider here. Other selection criteria, however, are
possible and would modify the distribution below. Finally, (c) the contemplated
move is accepted or rejected according to the probability 1/(eAH + 1), where AH is
defined specifically as the change in the value of the functional described in Eq. 5 as
a result of the move.

There are two critical things to note about this Markov chain. The first is that it
gives a very natural description of agent behavior. The second is that it corresponds
precisely to the standard Metropolis-Barker algorithm*>43 for drawing random
samples from the Boltzmann distribution P « exp(—H) for a Hamiltonian H. Thus,
under our proposed motion model, the population itself naturally samples from the
distribution quoted in the text,

P[n(x)] = Z""exp(—H[n(x))). (6)

Discretization H=Z,(fy + v,N,). To arrive at the discretization described in the
text, it is important to note that the density n(x) appearing in the probability
functional P[n(x)] corresponds to the fluctuating crowd density, as opposed to the
average density 7,.(X). As such, in practice, this density must be described in terms
of the discrete locations x, of all agents a in the crowd at any give time. The most
natural description for the associated density operator is

n(x) = 25(”)(x, X,), 7)

where 8©)(x, x,) is a function describing the range over which the presence of an
agent at x,, contributes to the density n(x) at point x. To conserve number of
agents, this function must integrate to unity. The analysis carried out in the text
divides space into bins b of area A;, and estimates the density in each bin as n=
Ny/A, where N, corresponds to the total number of agents in bin b. This definition
sets the range function as

if xand x, are in the same bin b

09 (x,x,) = {AL» (8)

0  otherwise

To capture relevant variations in vexation and density, the bins cannot be
selected so large that these quantities vary significantly across each bin. Alternately,
to avoid missing the effects of nearby agents, the bins cannot be selected to be
smaller than the agent’s interaction range.
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Finally, combining equations 5, 7, and 8, yields

Hin(x)] = ZfN,, + Z VpNp, (9)
b b
where fy = f(N,/Ay)A, and v, = [, V(x)dA/A,.

Bin occupation probability distributions P,(N). To arrive at the final discrete
probability expression in the text, there are now two routes. One can directly
insert Eq. 9 above into Eq. 2 from the main text, or one can employ Eq. 9
directly to compute AH to determine the probabilities for moves. In the latter
case, the predicted probability distribution becomes exact so long as we inter-
pret f'(n) in the main text at points x’ and x to represent forward and reverse
finite difference derivatives f, (n(x’)) = (f(n(x') + A) — f(n(x)))/A and

£ (n(x)) = (f(n(x)) — f(n(x) — A))/A, respectively, where A = 1/A,. Finally,
because the Boltzmann factor above gives probabilities for individual arrangements
of agents among bins, we must account for the multiple ways to realize a set of bin
counts {N;} by permuting individuals among the bins. Multiplying by the com-
binatorial factor Ny, !/(Ny!...Ny!...), we find

Nt tI e*fwb —vN,
ot

P({N,}) = 7 TN
b !

; (10)

where Z is a normalization factor.

As described in the text, we note that the form of the joint probability
distribution above predicts the occupations of different bins to be very nearly
statistically independent. The only deviation from complete statistical
independence comes from the constraint of a fixed total number of agents
Nt = >y Np,. Due to this constraint, the probability distribution is difficult to use
in making predictions. We can overcome this difficulty using a standard technique
from statistical physics. Specifically, introducing a factor ¢* removes the
constraint without significantly affecting the calculated local distributions. As a
result, the individual bin distributions then become statistically independent and of
the form

1 N
PN =5 (e*W*W) e (11)

In statistical physics this mathematical transformation corresponds to using a
Grand Canonical Ensemble?* to simplify statistical calculations. Physically, this
approach corresponds to relaxing the constraint of a fixed number of agents by
allowing exchanges between the system being considered and a large reservoir
whose vexation is controlled by y. Mathematically, we can add and subtract a
constant within the exponent, (v, — ¢ — (4 — ¢)) without affecting the distribution.
Accordingly, we redefine v, and y with a constant shift such that v, < v, — ¢ and
u — p — c and, further, choose ¢ so that y =0, resulting in Eq. 3 in the text. Note
that motion between bins is controlled only by differences in vexations, so that
none of this affects the dynamics represented in our analysis. When considering a
different number of agents in the same chamber, however, y will take on a different
value and so ¢ — ¢ can no longer be set to zero. Accordingly, to predict
distributions for new numbers of flies, we employ Eq. 11 above and adjust ¢ so that
the vexation of the associated reservoir fixes the new total number of flies.

Orientation and higher-order many-body interactions. Remarkably, our con-
clusions hold also for plausible models in which the inter-agent interactions are not
explicitly expressed in terms of the local density n(x). To see this, we can consider
the same behavioral rule of moves accepted according to probability 1/(eAH + 1),
but with H now defined as a sum of two parts,

H=U,)+ Y Vix,), (12)

where V(x) is the usual vexation function for the individual agents, and now U(x,)
is some potentially complex many-body interaction of finite range depending
explicitly on the locations of all of the agents x,.

As above, the form of the Markov chain associated with the move model leads
directly to the Boltzmann distribution P(x,) = Z~1eH. To recover the frustration-
vexation probability form analyzed throughout the text, we now follow the
standard Statistical Mechanics approach of defining an pseudo-free-energy
functional by integrating out internal degrees of freedom. Specifically, we will keep
the bin occupancies constant while integrating over all arrangements of agents
consistent with these occupancies. For sufficiently small bins in which vexation
does not vary significantly, we again find to a good approximation
> Vi(x,) = >, vpN,, so that vexation simply gives a constant factor. Next, for
sufficiently large bins, the net contributions to U(x,) from interactions occurring
within the bins will be large compared to the boundary effects from contributions
from interactions crossing bin boundaries. Thus, we can imagine decomposing the
overall interaction into a sum over the bins of the interactions just among agents a
within each bin b, U(x,) = >, U({X,}, ;) where we can improve accuracy by
repeating the same agent locations {X,},e, in neighboring bins (so-called periodic
boundary conditions).

Combining these approximations, and summing over all ways to assign agents
to bins with counts {N,} and over all possible locations for the agents within each
bin, yields the same frustration-vexation form considered throughout the text,

N _ZVbNb
— 71 Ny
PN} =2 (Nl!...NB!><1;[e z>e T (13)
where B is the total number of bins, and
e_fNE/ / e Ut X da L dAy (14)
Ja Ja

defines the effective bin-frustration functional fy as an N-dimensional integral over
the area of a single bin (with periodic boundary conditions applied to the
interactions). Finally, we note that the above generalizes naturally to orientation-
dependent interactions by considering the coordinates {x,} to include orientation,
as well as spatial coordinates. If the vexation is orientation-independent, we recover
precisely the form above. Otherwise, the entire framework generalizes naturally to
consideration of joint location-orientation densities n(x,0).

Experimental setup. All experiments were performed 3-15 days post-eclosion
using common fruit flies (D. melanogaster) from an out-bred laboratory stock
reared at room temperature on a 12 h/12h day-night cycle. Flies are anesthetized
using CO, and sorted within a few days post-eclosure. We wait for 24 h after
sorting before running experiments. Most observations started between 1-5 h after
the light was turned on. The experiment chambers are constructed by sandwiching
a 1.5 mm thick aluminum frame between two transparent acrylic sheets. The
chamber is suspended above an LED light table. Holes in the upper acrylic

sheet allow for the introducing flies via aspiration from above. To heat the
chambers, 2 Q high-power resistors are adhered using JB Weld to the aluminum
sheet and powered by a variable power supply. On the opposite side of the sheet, a
beaker of ice water is used as a heat sink. Chamber temperature is measured for two
locations using a contact thermometer to ensure no more than 2 degrees Celsius
drift and consistent temperature gradients between trials. We heat one side of the
chamber to temperatures between 40-50 degrees Celsius>4. The opposing side of
the chamber is connected to a heat sink and kept at temperatures between 25-35
degrees Celsius. We find that the resulting temperature gradient drives a strong
avoidance behavior for the hotter wall while avoiding fly death as the flies avoid the
high-temperature region. A video camera (AVT Marlin, Andover, MA) records
overhead images of flies at frame rates around 30 fps and relays these images to a
computer where they are analyzed by a custom MATLAB program in real-time.
The entire apparatus was enclosed in a black box to prevent biases introduced by
ambient light or additional visual cues.

Image analysis. To label fly centroids, images were thresholded to find fly sil-
houettes. For high density experiments, large groups become common and a more
sophisticated approach is necessary to separate clusters, which may be as large at 10
flies. First, the images of several individual flies are combined to make a single,
averaged fly mask. This mask is then convolved with images of fly groups. The best
fits for these convolutions are used to approximate the locations of flies whose
silhouettes overlap. (For additional details, see code provided under Code Avail-
ability statement below.) Labeling is then manually checked and we find this
technique robust enough to label male flies with 0.25 % error or 1 in 400 flies
mislabeled. The mating flies required extensive manual corrections due to changes
in the fly postures and the polydispersity of fly sizes, since females are larger than
males. For the analysis in this paper we sampled these positions at intervals of 1 s.

Due to wall-exclusion effects, the area of a chamber is different from the area
accessible by the centroid of a fly. We thus exclude the outer area of the chamber
that corresponds to approximately half the width of a fly. Areas of the bins are then
extracted using images from the experiment.

To demonstrate another method for tracking flies that only measures local
densities, a simpler method was used for counting flies in the “C” shaped chamber.
After thresholding, the number of pixels corresponding to a fly were summed in
each bin and then a discrete fly density was assigned to each bin using knowledge
of the total number of flies in the chamber. This method has the advantage of
computational speed, but weights larger flies more heavily and requires reanalysis
for different bin sizes.

Measurement timing and thermal ramp protocol. Observations for Fig. 3 were
conducted using time intervals from approximately 5-15 min after being intro-
duced into the chamber so that the flies could explore their new chamber and
adjust to a steady state. To measure the vexation of the square experiment, we
performed 12 separate single fly measurements each lasting 10 min. Similar results
are obtained if three flies are used over a single 10 min period. Thus, measurements
of vexation in the “C” and stair shaped chambers used two and three concurrent
flies and only needed a single ten minute observation to measure the vexation.
To probe the changing fly behaviors shown in Fig. 4, we track the flies for up to
9 h before flies begin to die from deprivation*>#°, To test whether fly behavior is
changing over our standard 10 minute time windows, we compare the probabilities,
Py(N), from the first 5 min of the window with the last 5 min and find that they are
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consistent. The only exception to this is during the very first 5 min after the flies are
introduced into the chamber as they become oriented to their new environment
that we do not include in our analysis. To elicit different behaviors and location
preferences with the same population of flies, we apply a heat gradient to generate
an avoidance behavior3* starting at 20 min after being introduced to the chamber.
By minute 30, the chamber has reached a steady temperature and we observe that
the flies exhibit an approximately constant average distribution. At minute 40, we
turn the heat off and let it adjust to room temperature for the remainder of the
experiment. Throughout these observations, we qualitatively observe several
different behaviors. For the first 5 min, flies are most active and their frustration
has a slightly higher positive curvature than the frustration for the 5-15 min
period. When the chamber is heated, the frustration stays approximately the same
despite the drastic change in the vexation. After the chamber cools down, flies enter
a readjustment phase where they are much less active. After this readjustment
phase, however, flies again exhibit behavior similar to that from the 5-15 min
interval. By 6 h, flies in all the experiments switch to a grouping behavior as shown
in Fig. 4.

Validation of assumptions underlying theoretical analysis. As mentioned
above, we made some general assumptions developing our theory which we now
validate for the walking fly system. First, to verify attainment of equilibrium and
sufficient ergodicity, we consider the normalized autocorrelation function

(3, Ny (N, (¢ + A1),

(M) = NN,

(15)

where <...>, indicates average over all times. This function shows the expected
rapid exponential decay (Fig. 2¢), and has an integral which gives the decorrelation
time 7= 0.92 5. Indeed, we find this time to be quite short, typically on the order of
a few seconds, for all of our experimental runs. This decay time is two orders of
magnitude faster than the typical run time and does not vary significantly when
computed in different time sub-windows, strongly suggesting rapid mixing and
stationarity of the random process, thereby allowing the interchange of time and
ensemble averages, and establishing the existence of equilibrium in the timescales
under study. Our videos thus represent hundreds of independent samples drawn
from the equilibrium ensemble underlying our analysis.

We next consider whether the bins are truly independently distributed as
expected in Eq. 3. Accordingly, we consider the normalized time-averaged spatial-
correlation function

> Nb(t)Nb+A(t)>b,t

NN e (16)

c(A) =

where <...>,, indicates average all times and bins, and A is the two-dimensional
vector displacement between bins (Fig. 2b)). The data show essentially no
correlation between bins, thereby verifying the product form of the global bin
distribution function in Eq. 3 in the main text. This confirms not only that we have
chosen appropriately sized bins but also, more fundamentally, establishes that there
are little or no fly—fly interaction effects between bins S0 that the local density
approximation (LDA) form for the frustration, F[n(x)] = f f(n(x))dA, indeed gives
a good representation of the behavior of the fly populatlons at scales greater than
0.15 cm?.

Parameter estimation. To estimate the frustration and vexation for the crowds in
our experiments, we start by constructing the posterior function P(fx, v4|Ny(t)),
which represents the relative likelihood of different parameter choices for our
model given the data (number counts within each bin) that has actually been
observed. Then, to find the a posteriori estimate of the parameters, we maximize
this likelihood by performing a numerical gradient minimization of

P Mo (1) = -+ T8 (g (a0 + N0+ ), )

+2202+22(ﬂ’

(17)

where C is an irrelevant normalization constant, B corresponds to the total number
of bins in the system, T the total number of independent time samples employed,
and (...), and (...),, represent averages over either all bins or bins and times,
respectively. Finally, for the last two terms, o accounts for the range about zero of a
Gaussian prior distribution on the frustration and vexation parameters. This
Gaussian prior distribution reflects the fact that the frustration and vexation
parameters v, and fyy can in principle take any real value, but in practice generally
fall in a range on the order of from about —15 to 15 because these parameters enter
as exponentials in our probability models. Because the amount of data that we
handle is on the order of tens of thousands of frames, the likelihood peaks strongly
around its maximum, and the precise form of the Gaussian prior is largely irre-
levant. Indeed, changing the value of o from a reasonable value of 15 to an
unreasonably small value of 1, only changes our final results for the frustration by
11.4%. Throughout the rest of our work, we take o= 15.

Uncertainty in parameter estimation. The sharp peaks associated with the large
amount of data ensure the accuracy of the asymptotic Gaussian approximation, in
which the joint probability distribution representing the range of parameters
supported by the data is a multivariate Gaussian distribution. As a result, the
associated covariance matrix of uncertainties in the parameters is the inverse of the
Fisher information matrix I (i.e., the second derivative of —InP evaluated at the
location of its maximum). The matrices of parameter uncertainties and cross-
correlations among them are computed as follows. For our full DFFT model, with
vexation and frustration, and the simple Poisson model, with vexation only, we
calculate the inverses of the following matrices, respectively,

] []
ﬂ x f Ninax X
owrr (A}, ) = | Jmie et (18)
[va} Ny B [IVV]BX B
and
IPoisson({Vb}) = [Ivv]BxB’ (19>
where the matrix elements of each block are
(1] = Towx (Z Py(N) - Z(PB(N)P;(N'))> (20)
b b
[va] = TP,(N ZNPb (21)
2
olp = Ty ZNPb ZNPI: (22)

N

Here, Py(N) is defined as in Eq. 3 in the main text, T again represents the total
number of independent time frames, and the “ ~ ” indicates internal summation
indices.

Finally, a subtle, but important, ambiguity arises in the extraction of frustrations
and vexations. Specifically, because the exponent in the observed probabilities for
each bin takes the form (In z, + v,N + fy), making the replacements (v, — v, — o
zp— 2z, — 5 fv — fn+ B+ alN;) leaves the predictions of the model unchanged,
and any choice of parameters corresponding to these replacements represents the
data equally well. As a result, the Fisher matrices described above are singular. To
resolve this “gauge invariance” and remove the singularity, we must break the
symmetry among equivalent models by adding two constraints (one for & and one
for f3) to our choice of fy. Here, we do this by enforcing the natural choice that f =
0 and f; =0, corresponding to the convention that that the frustration does not
affect the probability for bins with either N=0 or N=1 flies. Finally, in terms of
the information matrices above, implementing this constraint corresponds to
dropping the first two rows and columns associated with these parameters from the
Ipppr matrix.

Uncertainty in predictions of average occupations. With the uncertainties in the
extraction of the vexation and frustration parameters from above, we next deter-
mined the uncertainties in our predictions of the average bin occupations for large
populations in new arenas. The predicted mean densities are

N, N, :
- 1 Now (v pN—fy
Nb:ZNPb(N):Z_ZNT7 (23)
N=0 b N=0 :
where the normalization is
N (v )N~y
=2 TN (24)
N=0 :

where Py(N) is the probability of having N flies in bin b, v, is the vexation in bin b,
and fy is the frustration associated with having N flies in a bin. We accordingly
computed the associated uncertainties using standard linearized error propagation
as

_ oN,\ 23 9N, ON,
= -2 25
a(N,) (81@) var(v,) NNg o o —2 covar(fy, fy ), (25)

where var(X) and covar(X, Y) represent the variance of random variable X and
covariance between X and Y, respectively, as determined by the inverse of the
Fisher information matrix as discussed above. Finally, the derivatives needed in
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Eq. 25 are
o = —((Ng) = Np), (26)
and

(27)

s

aNb (Nb _ Nb) e N1y,
ofy N Z N,!

where (NZ) = > N?P,(N) with Py(N) as defined above.

A few technical notes are in order to understand the terms present in Eq. 25.
First, note that cross-correlations between vexations in different bins are not
relevant because N, depends solely on v, and not on vexations from other bins.
Also, cross-correlations between extracted vexations v, and frustrations fy are zero
in our case because we extract the vexations and frustrations from different, and
thus independent, experiments when making our predictions for average
occupations. Finally, the uncertainties in f; and f; are not included because these
uncertainties are zero due to the gauge choice discussed in the section above.

Uncertainty in experimentally measured bin statistics. For each independent
bin, we obtain from the experiment a sequence of length N with elements each
corresponding to a bin occupation that can range from zero to the maximum
packing of files, N=0,...,Nyax. From this data, we hope to extract probability
parameters py describing the bin occupation distributions studied in the main text.
For simplicity of notation, we here use lower case p to denote experimentally
measured probabilities.

To account for time-correlations in bin occupancies, particularly at high frame
rates, we down-sample at intervals given by the decorrelation time 7 and actually
consider uncorrelated sequences of length T'= Ny/7. The data then correspond to
the result of a random process of making T independent selections among Ny, +
1 possible bin occupations. Thus, for each bin, the probability of observing a given
data sequence becomes the multinomial distribution,

T
( )pﬁ“ - pr (28)
hy---hy,

where hy represents the number of times (“hits”) we observe each of the possible
occupancies N.

To extract the underlying uncertainties, we note that Bayes’ theorem gives the
following distribution for the probability parameters to take the values {py} given
the actually observed counts {hy},

Ninax B,
(o) = PRI o ( | Z"I>p<{pN}>. (29)

This posterior probability is proportional to an undetermined prior probability
P({pn}) describing our a priori expectations for the values of the {py} parameters.
However, as per our discussion surrounding Eq. 17 above, in the large T limit, the
Poisson-like product factor in Eq. 29 above will be highly peaked, and the unknown
prior P({pn}) will not have a substantial effect on the posterior distribution.

To completely eliminate the effects of unwarranted assumptions entering
through our choice of prior, we assume an uninformative prior distribution that is
consistent with the invariance of the probability values under the inclusion of new
samples, and choose the multivariate generalization of Haldane’s uninformative
improper prior distribution?”,

1
P{pn}) = mx 30
T2 P o

With this choice, upon normalization, Eq. 29 becomes the Dirichlet distribution,

N“m N“m h‘\‘—l
P({py}{hy}) = r( , hN,> HPN (31)

25T (hy)’

where I'(x) is the Gamma function. This distribution yields expected values for the
probabilities equal precisely to the observed frequencies py = hy/T. The variances
of this distribution, then give our desired uncertainties,

ﬁN(l 7PN)- (32)

olby) = T+1

(T+1)

Note that when T is large and py < 1, the uncertainties correspond to what we
would naively expect from Poisson counting, namely an uncertainty of m in the
counts, corresponding to an uncertainty of /Ay /T = 1/Py/T in the extracted
probabilities. Such an analysis, however, misses the important factor of \/1 — py
and leads to significant errors in our case.

Finally, for the uncertainty in the experimental average occupation
Nyt = 2_n Npy, the corresponding variance is

var (Nege ) = > NN covar(py, py ) + > Na(py)’, (33)

N=N' N
where the needed covariances of the Dirichlet distribution are

_ —hyhy _ —PnPy
covar(py, py) = m =i

(34)

Code availability. Readers can access the code related to parameter estimation and
crowd density predictions by going to (https://github.com/MendezV/DFFT) or to
(https://doi.org/10.5281/zenodo.1285931). Readers can also access code related to
image analysis procedures by visitng (https://github.com/yunuskink/Fitfly-fly-
tracking) or (https://doi.org/10.5281/zenodo.1304326). There are no access
restrictions to this software.

Data availability. The fly density data that support the findings of this study are
available in the Open Science Framework database at (https://doi.org/10.17605/
OSF.I0/7UBZ2).
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