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The Ki-67 proliferation index (PI) is a prognostic factor in neuroendocrine tumors (NETs) and defines tumor grade.
Analysis of Ki-67 PI requires calculation of Ki-67-positive and Ki-67-negative tumor cells, which is highly subjective.
To overcome this, we developed a deep learning-based Ki-67 PI algorithm (KAI) that objectively calculates Ki-67 PI.
Our study material consisted of NETs divided into training (n = 39), testing (n = 124), and validation (n = 60) series.
All slides were digitized and processed in the Aiforia� Create (Aiforia Technologies, Helsinki, Finland) platform. The
ICC between the pathologists and the KAI was 0.89. In 46% of the tumors, the Ki-67 PIs calculated by the patholo-
gists and the KAI were the same. In 12% of the tumors, the Ki-67 PI calculated by the KAI was 1% lower and in
42% of the tumors on average 3% higher. The DL-based Ki-67 PI algorithm yields results similar to human observers.
While the algorithm cannot replace the pathologist, it can assist in the laborious Ki-67 PI assessment of NETs. In the
future, this approach could be useful in, for example, multi-center clinical trials where objective estimation of Ki-67 PI
is crucial.
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INTRODUCTION

Neuroendocrine neoplasms (NENs) arise from cells
of the diffuse neuroendocrine system dispersed
throughout the body. NENs are a rare tumor entity
comprising approximately 2% of all malignancies
[1]. The most common primary tumor locations are
the gastrointestinal tract (65%) and lungs (25%)
[2]. While NENs share neuroendocrine differentia-
tion based on immunolabeling, for example, chro-
mogranin A and synaptophysin, they present
widely differing etiologies, morphological and geno-
mic findings, hormonal activity, clinical presenta-
tion, and prognosis.

NENs are in general classified by morphological
features and immunohistochemical biomarkers as
well-differentiated neuroendocrine tumors (NETs)
and poorly differentiated neuroendocrine carcinomas
(NECs) [3]. All NECs are high-grade malignancies
with >20 mitoses per 2 mm2 and a Ki-67 proliferation

index (PI) of >20%. Most NETs present low (1-20%)
proliferation and are graded as G1 or G2 based on
mitoses per 2 mm2 and a Ki-67 PI. G3 tumors have a
Ki-67 PI >20%. Of note, Ki-67 PI assessment is not
included in the current WHO classification for pul-
monary NENs [4]. However, in both gastroen-
teropancreatic (GEP)-NETs and pulmonary NETs,
Ki-67 PI is considered as a prognostic factor [5, 6].

Ki-67 PI assessment starts with immunohisto-
chemical labeling of tumor cells with a validated
primary antibody typically clone MIB-1. After this,
the percentage of tumor cells expressing Ki-67 is
determined by counting at least 500 tumor cells or
0.4 mm2 of the tumor area in the highest labeling
regions (hotspots) [3, 7]. Several scoring methods
are available including eyeball estimation, manual
counting of cells (through microscope eyepiece,
using a printed image or from a monitor), and
computer-assisted quantification using digital image
analysis [8–13]. However, to our knowledge, no
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consensus exists on the best method. Eyeball esti-
mation has shown to suffer from considerable inter-
observer variation and is thus discouraged [11–13].
More reproducible manual counting method is
accurate but has typically a long application time
and is labor-intensive [8, 11, 12]. To eliminate man-
ual counting, automated counting methods for Ki-
67 PI utilizing digital images have been developed
for clinical practice. Many of them have been eval-
uated in NETs with fluctuating results: Others state
that digital image analysis yields similar results than
manual counting while others experience miscalcu-
lations [9–12, 14–18].

The development of machine learning techniques
has opened new avenues in histopathology [19].
Deep learning (DL) is a subtype of machine learn-
ing in which algorithms are trained for specific
tasks by exposing a multilayered artificial neural
network to training data [19]. In the case of super-
vised learning, the algorithm is trained with
human-made training annotations [20]. In
histopathology, this means that a human being
annotates desired features by labeling digital tissue
images. This creates the ground truth, the reference
from which the neural network learns.

Several DL-based algorithms have been devel-
oped but very few of them have reached clinical
implementation [19]. In the field of NETs and Ki-
67 PI, researchers have utilized DL for example to
improve accuracy and save time in Ki-67 PI analy-
sis by using Ki-67 and synaptophysin double-
immunostained slides or by predicting Ki-67-
positive cells directly from hematoxylin and eosin-
stained slide [21, 22]. Both methods are novel but
not easily implemented in clinical routine.

Here, we aimed to train a DL-based algorithm
for automated assessment of Ki-67 PI in NETs and
compared its performance to human observers. To
our knowledge, this approach is now documented
for the first time for NETs.

MATERIALS AND METHODS

This study consisted of two steps: 1) development and
testing of a DL-based algorithm for calculating Ki-67 PI
in NETs and 2) validation of the algorithm in an indepen-
dent slide series. In addition, variation in Ki-67 PI analy-
sis between human observers was evaluated.

Tumor specimens

Three tumor series were used: DL training, DL testing,
and DL validation series (Table 1). Pulmonary NETs for
training were a part of our previous study where the mate-
rial was collected from the Finnish Biobanks [23]. Pancre-
atic NETs for training were collected from the archives of

the Department of Pathology, Helsinki University Hospi-
tal (HUH), Helsinki, Finland.

The DL testing series comprised 124 previously
reported pulmonary NETs, none of which was included
in the DL training series [24]. The DL validation series
included whole slides of 60 NETs, none of which was
involved in the DL training or in the DL testing series.
These tumors were surgically removed between 2015 and
2019 at HUH, formalin-fixed and paraffin-embedded.
The original Ki-67-labeled slides were retrieved from the
archives of the Department of Pathology, HUH and
digitized. The study protocol was approved by Ethics
Committee IV of HUH (HUS/1258/2020). Informed
consents were not obtained since the study utilized only
slides.

Immunohistochemistry and whole-slide imaging

Immunohistochemical labeling for Ki-67 was performed at
the Department of Pathology, HUH. Briefly, 3.5 µm sec-
tions were cut on adhesive slides and deparaffinized. Anti-
gen retrieval was performed using CC1 reagent (Ventana
Medical System, Inc., Roche, Tucson, AZ, USA), and the
primary antibody Ki-67 (clone MIB-1, dilution 1:100,
Dako, Agilent Pathology Solutions, Santa Clara, CA,
USA) was incubated for 32 min. Immunoreactions were
visualized with OptiView Universal DAB Detection Kit
(Ventana Medical System) and counterstained with hema-
toxylin.

Ki-67-labeled slides were digitized with a Pannoramic
250 FLASH III whole-slide scanner (3DHISTECH, Buda-
pest, Hungary) using a 20x objective with a resolution of
0.242 µm/pixel. The digitized images were uploaded to
Aiforia� (Aiforia Technologies, Helsinki, Finland), which
is a commercial cloud-based platform for managing and
viewing digitized whole-slide images and for training neu-
ral networks for automated image analysis.

Training and testing of the Ki-67 PI algorithm

In Aiforia� Create, we first trained a deep convolutional
neural network algorithm to identify the tissue on the
slides and then recognize Ki-67pos and Ki-67neg tumor cells
as objects in 14 pulmonary NET samples. The training
data for our Ki-67 PI algorithm (KAI) included super-
vised manual annotations of 354 Ki-67pos and 3003 Ki-
67neg pulmonary NET cells (Fig. 1). Since we aimed to
classify tumor cell nuclei rather than whole cells, we used
an object feature size of 7 µm, which fitted inside the
nuclei, together with the following augmentation of the
training image data: size scaling between �20% and 20%,
20% aspect ratio change, 20% shear distortion, luminance
change between �20% and 20%, contrast change between
�20% and 20%, 5% white balance change, noise level of
5 units, jpg compression quality between 40% and 60% in
0.5% of the training data per training epoch, and blurring
using a blur radius of one pixel in 0.5% of the training
data per training epoch.

To evaluate the accuracy of the KAI, we compared its
output with the ground truth on a DL testing series of 124
pulmonary NETs. After successful testing, we introduced
25 pancreatic NETs to the KAI by manually annotating
327 Ki-67pos and 1301 Ki-67neg pancreatic NET cells.
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Validation of the KAI

The performance of the KAI was validated against man-
ual Ki-67 PI estimation by three independent observers (J.
A., H.L., and M.P.) in 20 pancreatic NETs, 20 small-
intestinal NETs, and 20 pulmonary NETs independent of
the DL training or DL testing series. All three human
observers were specialized endocrine pathologists familiar
with scoring Ki-67 PI, and they interpreted three pre-
marked hotspot regions per tumor from their own com-
puter screens by manually calculating the positive tumor
cell percentage. To calculate one Ki-67 PI value per
tumor, three scores per tumor were averaged.

To prepare the KAI for validation, we used one ran-
domly selected slide of each NET type from the DL vali-
dation series to introduce the algorithm technical
variation (e.g., thickness of section and intensity of stain-
ing). These slides were excluded from the validation. Alto-
gether, 109 Ki-67pos and 1719 Ki-67neg NET cells were
used in the preparing. After this, the same regions inter-
preted by the three pathologists were analyzed with the
KAI. Similarly to manual analysis, results from three hot-
spots per tumor were averaged.

Statistical analyses

Manual training annotations and the detection made by
the KAI were compared in the Aiforia� Create platform.
False positive (FP) refers to the objects that were not
annotated, but were detected by the KAI (independent of
the object class, that is, Ki-67 positive or negative). False
negative (FN) refers to the objects that were annotated,
but were not detected by the KAI, again independent of
the object class. The percentage of FP and FN was calcu-
lated by dividing the count of FP and FN by the total
count of annotated objects. Total area error was the sum
of FP and FN.

The level of agreement between the pathologists and
the KAI was tested by the intraclass correlation coefficient
(ICC) using the model 3 “two-way mixed,” form 1 “single
measures,” and type “absolute agreement” [25]. Values of
<0.5, 0.5–0.75, 0.75–0.90, and >0.90 indicate poor, moder-
ate, good, and excellent reliability, respectively. Bland–Alt-
man plot was drawn to graphically display the differences
between the two scoring methods [26]. Statistical analysis
was carried out by using the Statistical Package for Social
Sciences software version 25.0 (SPSS; Chicago, IL, USA).

RESULTS

Testing of the KAI with pulmonary NETs

After the first round of trainings, the KAI showed
a total object error of 3.78% (false positive 1.58%
and false negative 2.20%). The ICC to measure
agreement between the KAI and the previously
reported ground truth in the DL testing series was
0.90 (95% CI 0.85–0.94).

Agreement between the pathologists scoring the Ki-67

PI manually

In the DL validation series, all three pathologists
interpreted three hotspot regions per tumor con-
taining on average 225 tumor cells per hotspot (me-
dian 223, range 182–279, as calculated with the
KAI). The ICC to measure agreement among the
pathologists in the Ki-67 PI scoring was 0.84 (95%
CI 0.66–0.91). ICCs to measure pairwise agreement
between the pathologists are shown in Table 2.
Fig. 2 presents the Ki-67 PI scores in a heat map

Table 1. Tumor series for training,
testing, and validation of the Ki-67
proliferation index algorithm

Training series Testing series Validation series

Gradus 1 Gradus 2

PNET 25 2 18
SI-NET 7 13
PC 14 124 20

PC, pulmonary carcinoid; PNET, pancreatic neuroendocrine tumor; SI-NET,
small-intestinal neuroendocrine tumor.

Fig. 1. Training of the Ki-67 PI algorithm by manually annotating Ki-67pos and Ki-67neg pulmonary NET cells. Green cir-
cle indicates a Ki-67pos tumor cell and red circle a Ki-67neg tumor cell. Training areas are surrounded by a black line. Sev-
eral small training areas were drawn, and all cells within them were annotated.
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format categorized by NET grades (Ki-67 PI <3%
= G1, 3–20% = G2 or >20% = G3, no mitoses tak-
ing into account).

Agreement between the pathologists and the KAI in

the Ki-67 PI analysis

After training the KAI with pancreatic NETs and
preparing it for the validation, the total object error
was 2.75% (false positive 0.93% and false negative
1.82%). To test the accuracy of the KAI, the exact
same hotspot regions that had been scored by the
pathologists were analyzed with the KAI, and the
generated Ki-67 PI values were compared with the
pathologists’ results. The ICC between the patholo-
gists and the KAI was 0.84 (95% CI 0.74–0.91).
When the Ki-67 PI scorings were averaged among
the three pathologists and compared with the KAI,
the ICC value was 0.89 (95% CI 0.78–0.94). ICCs
to measure pairwise agreement between the pathol-
ogists and the KAI are shown in Table 2. The Ki-
67 PI scores in a heat map format are shown in
Fig. 2.

Bland–Altman plot was drawn to compare the
results of two analysis methods based on the mean
values and the differences of the Ki-67 PI for each
case (Fig 3). The Ki-67 PI calculated by the KAI
was compared to the averaged Ki-67 PI of the three
pathologists. In the plot, the mean difference of the
methods was 1% and the limits of agreement values
were 5.2% and �3.2%. In 46% (26/57) of the
tumors, there was no difference in Ki-67 PI between
the averaged value of the three pathologists and the
KAI. In seven tumors (12%), the Ki-67 PI calcu-
lated by the KAI was 1% lower. In the rest 24
tumors (42%), the KAI showed higher Ki-67 PI
with an average of 3% (median 2%, range 1-9%).
Two of these tumors were attributed to mild focus-
ing problems in scanning and showed overlapping
cells (Fig. 4).

Agreement between the pathologists and the KAI in

grading tumors

When considering only Ki-67 PI, not the number
of mitoses, the pathologists and the KAI unani-
mously set tumor grades for 17 of the 19 pancreatic
NETs (90%). In two discrepant cases, Ki-67 PI
value analyzed with the KAI was 22% or 23%

indicating grade 3, whereas pathologists scored the
Ki-67 to be <20%, thus assigning grade 2 (Table 3).
In small-intestinal NETs, the pathologists and the
KAI agreed on tumor grades in 15 of the 19 cases
(79%). Four discrepant cases are described in
Table 3.

DISCUSSION

Here, we presented how deep learning (DL) can be
implemented in the Ki-67 PI assessment of NETs.
Our results show that DL-based algorithm can
assist pathologist in calculating Ki-67 PI but it can-
not replace pathologist in its current form. How-
ever, the agreement between the algorithm and
three endocrine pathologists, as measured with
ICC, is similar to the agreement between the three
pathologists.

Gastroenteropancreatic neuroendocrine tumors
(GEP-NENs) represent a heterogeneous group of
tumors featuring differences in prognosis. In the
current WHO classification scheme, mitotic count
and Ki-67 PI are decisive parameters when grading
the tumors [7]. Tumor grade, in turn, has an impact
on the treatment of the patients; thus, standardized
Ki-67 PI scoring is essential. Typically, Ki-67 PI in
NECs is over 50% and thus easier to estimate than
a cutoff of 3% or 20% for G1, G2, and G3 NET.
This is why we included G1 and G2 tumors in our
study. G3 tumors were missing from our cohort
since WHO did not introduce this category until
2019 [7].

Currently, consensus regarding the best method
to assess the Ki-67 PI in NENs is lacking. Eyeball
estimation, manual counting, and digital image
analysis are the three main methods for scoring [8–
13]. Eyeballing is not encouraged due to its low
reproducibility and high inter-reader variability
[11–13]. The manual method involves printing of an
image and marking of Ki-67-positive and Ki-67-
negative tumor cells, which is impractical, time-
consuming, and labor-intensive, although accurate
[11]. Despite inter- and intra-observer variability,
both methods are still preferred over digital image
analysis in many clinical pathology departments
due to their minimal disruption of the current
workflow not pertaining digital pathology. While
manual counting of Ki-67-positive and Ki-67-

Table 2. Intraclass correlation coefficient agreement between the pathologists and the Ki-67 PI algorithm (KAI)

Pathologist 2 Pathologist 3 KAI

Pathologist 1 0.78 (95% CI 0.39–0.90) 0.82 (95% CI 0.46–0.93) 0.86 (95% CI 0.77–0.92)
Pathologist 2 0.94 (95% CI 0.85–0.97) 0.87 (95% CI 0.49–0.95)
Pathologist 3 0.83 (95% CI 0.62–0.91)

CI, confidence interval; PI, proliferation index.
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Tumor ID Ki-67 prolifera�on index
KAI Pat 1 Pat 2 Pat 3 All Pats

PNET_1 14 10 11 8 10
PNET_2 11 13 8 11 11
PNET_3 13 17 11 13 14
PNET_4 15 12 11 12 12
PNET_5 13 13 9 10 11
PNET_6 23 12 19 14 15
PNET_7 19 14 15 15 15
PNET_8 11 15 9 10 11
PNET_9 4 5 4 4 4
PNET_10 11 15 8 11 11
PNET_11 9 10 7 9 9
PNET_12 5 5 4 5 5
PNET_13 16 17 11 10 13
PNET_14 9 11 7 9 9
PNET_15 4 4 3 4 4
PNET_16 10 13 7 8 9
PNET_17 22 19 20 15 18
PNET_18 5 8 5 6 6
PNET_19 4 7 5 5 6
SI-NET_1 1 1 1 2 1
SI-NET_2 1 1 1 1 1
SI-NET_3 1 1 1 1 1
SI-NET_4 1 1 1 1 1
SI-NET_5 3 2 3 4 3
SI-NET_6 3 3 3 3 3
SI-NET_7 2 3 2 2 2
SI-NET_8 2 3 2 2 2
SI-NET_9 1 1 1 1 1
SI-NET_10 2 1 2 2 2
SI-NET_11 2 2 2 2 2
SI-NET_12 3 3 3 3 3
SI-NET_13 17 7 10 10 9
SI-NET_14 3 2 3 2 2
SI-NET_15 9 10 7 8 8
SI-NET_16 5 4 4 5 4
SI-NET_17 7 10 7 7 8
SI-NET_18 8 8 6 7 7
SI-NET_19 7 8 6 8 7

PC_1 9 9 7 8 8
PC_2 13 13 9 10 11
PC_3 13 15 12 11 13
PC_4 4 5 4 4 4
PC_5 7 10 5 5 7
PC_6 6 6 4 4 5
PC_7 12 12 9 7 9
PC_8 8 8 6 7 7
PC_9 6 8 5 5 6
PC_10 3 4 3 3 3
PC_11 20 13 11 10 11
PC_12 14 13 10 10 11
PC_13 6 9 4 5 6
PC_14 7 10 8 6 8
PC_15 6 9 5 7 7
PC_16 8 8 7 6 7
PC_17 6 5 4 5 5
PC_18 4 6 4 5 5
PC_19 6 6 5 5 5

Fig. 2. Heat map of Ki-67 PI scores. Rows represent samples, and columns represent scorers (KAI; Ki-67 PI algorithm,
Pat = pathologist). All values are averaged values per three hotspot areas. Green color indicates Ki-67 PI <3% (grade 1),
yellow 3-20% (grade 2), and orange >20% (grade 3) for pancreatic neuroendocrine tumors (PNETs) and small-intestinal
neuroendocrine tumors (SI-NETs). For pulmonary carcinoid tumors (PCs), the gradus is not given since it is not a part of
their classification.
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negative tumor cells on a digital image was shown
to have near-perfect agreement with manual count-
ing on a printout image, the technique itself is still
labor-intensive [8].

Current North American Neuroendocrine Tumor
Society (NANETS) consensus guidelines recom-
mend manual counting of camera-captured digital
images over eyeballing when calculating Ki-67 PI
for pancreatic NETs [5]. NANETS also approves
digital image analysis if it is locally validated. In

fact, to overcome the interobserver variability and
cumbersomeness present in manual counting, auto-
mated counting methods are preferred [9, 10, 12,
18]. In recent years, several studies have attempted
to establish an automated calculation method for
Ki-67 PI in NETs. Different commercial solutions
like Ventana Virtuoso (Roche Diagnostics, Rotk-
reuz, Switzerland), Aperio Nuclear Algorithm
(Leica Biosystems Inc., IL, USA), Automated Cel-
lular Imaging System (ACIS) (Dako, Carpinteria,
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Fig. 3. Bland–Altman plot for Ki-67 PI observed by three pathologists (averaged value) or the Ki-67 PI algorithm (KAI).
SD, standard deviation.

(A) (B)

(C) (D)

Fig. 4. Analysis of hotspot regions with the Ki-67 PI algorithm (KAI). The KAI marks Ki-67neg tumor cells with red and
Ki-67pos tumor cells with green and calculates the cell numbers and percentages. Analysis areas are confined with a black
line. (A) Example of a pancreatic NET hotspot region where scanning was not in focus and cells were overlapping. (B)
The same area as in A, with the KAI marking Ki-67pos and Ki-67neg tumor cells. (C) Example of a small-intestinal NET
hotspot region where the KAI calculated cell numbers correctly (D), but the pathologists overestimated the number of neg-
ative cells. Images taken with magnification 40x; scale bar 50 µm.
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CA), 3DHistech QuantCenter (3DHistech, Buda-
pest, Hungary), and HALO image analysis plat-
form (Indica Laboratories, NM, USA) have been
studied with typically promising results [9–12, 14,
15, 18, ]. However, researchers have experienced
inability of the software to distinguish Ki-67-
positive tumor cells from other Ki-67-labeling cell
types like lymphocytes, endothelial cells, and stro-
mal cells, cells with abundant background pigment
(e.g., hemosiderin) or to detect all negative tumor
nuclei [11, 15]. Similarly, open-source software or
free web application such as QuPath and Immu-
noRatio have been studied in calculating Ki-67 PI
in NETs [16, 27]. Owens et al. reported QuPath to
over-estimate Ki-67 PI due to a tendency to ascribe
positivity to tumor cells that were interpreted as
negative by a pathologist [27]. The main reasons
for this phenomenon were the presence of increased
section thickness, nuclear crowding, or excess back-
ground staining.

We experienced similar difficulties with our algo-
rithm (KAI). The KAI showed the same Ki-67 PI
value as pathologists in 46% of the tumors, one
percent lower Ki-67 in 12% of tumors but on aver-
age 3% higher Ki-67 PI in 42% of the tumors.
These tumors were attributed to mild focusing
problems in scanning and showed overlapping cells,
which caused the KAI to detect less Ki-67-negative
tumor cells than the pathologists did. In addition,
the KAI marked some of only faintly labeled tumor
cells as Ki-67 positive. These factors led to a higher
Ki-67 PI than in the analysis performed by the
pathologists. In some cases, the pathologists
detected less negative tumor cells than the KAI did,
which led to a higher Ki-67 PI assigned by the
pathologists. On the contrary, the KAI did not
detect non-tumoral Ki-67 labeled cells or cells with
background pigment since it was only trained to
detect tumor cells.

One critical aspect in training an algorithm to
detect Ki-67-positive and Ki-67-negative cells is
defining the positivity and negativity, which is to
some extent subjective. We defined positive tumor
cells as tumor cells presenting moderate to strong
brown stain in the nucleus and no counterstain at
all. In this sense, KAI was trained to interpret pale

brown tumor nuclei as negative. Several attempts
to increase concordance in Ki-67 scoring have been
made especially in breast cancer diagnostics, where
Ki-67 PI is essential. For instance, Polley et al. pre-
sented a web-based tool (http://www.gpec.ubc.ca/
calibrator) to calibrate pathologists to Ki-67 scor-
ing [28]. In our case, agreement between the pathol-
ogists was good, which was probably due to their
being from the same institute and working closely
for many years. Thus, the criteria for positive and
negative nuclear staining were similar. More vari-
ance in Ki-67 PI values would be expected if more
pathologists from different departments were
involved. However, this variance can be decreased
by external quality assessment schemes and regular
participation in these proficiency programs [29].

Despite drawbacks, computer-assisted analyses
are suggested to be more reproducible, offer high-
capacity analysis, and eliminate human errors [9,
12, 14]. These methods also have the potential to
reduce pathologists’ workload, which in the grow-
ing shortage of pathologists worldwide is essential
[30, 31]. Nevertheless, it should be recognized that
the implementation of digital image analysis
requires substantial input of both pathologists and
technologists. In addition, pathologist supervision
of image analysis software or algorithm is crucial
when deployed in clinical practice. A strength of a
DL algorithm is that it can be easily trained more
to detect challenging features and it can adapt to
what it has learned. For instance, in this study, we
did not train the KAI with small-intestinal NET
cells, but it still recognized them.

In addition to challenges in choosing the best
scoring method for Ki-67 PI, several other issues
need to be taken into account. Apart from vari-
ables in immunohistochemical staining, these
include defining tumor borders and what consti-
tutes a hotspot. NETs present usually high tumor
cell percentage and lack cellular stroma component
and tumor-infiltrating lymphocytes typical, for
example, adenocarcinoma, which simplifies Ki-67
PI calculation in NETs [7]. Still, approaches like
synaptophysin-Ki-67 double-stain may be helpful in
eliminating false-positive signals and in improving
interobserver agreement [21, 32]. Moreover, recent

Table 3. Discrepant cases in terms of grading based on the Ki-67 proliferation index

Pathologist 1 Pathologist 2 Pathologist 3 Ki-67 PI algorithm

Ki-67 PI Grade Ki-67 PI Grade Ki-67 PI Grade Ki-67 PI Grade

PNET_6 12 G2 19 G2 14 G2 23 G3
PNET_17 19 G2 20 G2 15 G2 22 G3
SI-NET_5 3 G2 3 G2 3 G2 2 G1
SI-NET_7 2 G1 3 G2 4 G2 3 G2
SI-NET_8 3 G2 2 G1 2 G1 2 G1
SI-NET_14 2 G1 3 G2 2 G1 3 G2

PI, proliferation index; PNET, pancreatic neuroendocrine tumor; SI-NET, small-intestinal neuroendocrine tumor.
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advances in virtual double-staining allow digital
aligning of serial sections stained with Ki-67 and,
for example, cytokeratin as described for breast
cancer diagnostics [33].

Intratumoral heterogeneity, which is a known fea-
ture of pancreatic NETs, as well as the subjectivity of
hot spot selection, can lead to marked variation in Ki-
67 PI [27]. In this study, hotspot areas were marked in
advance and the idea was to compare KAI’s perfor-
mance with that of pathologists, not to find the best
method for recognizing a hotspot. Naturally, the
identification of hotspots is as irreproducible as
counting and can be an application of DL in NETs as
shown by Balkenhol et al. for breast cancer [34].

For statistical ICC analysis, we chose model 3
(two-way mixed) instead of model 2 (two-way ran-
dom) for three reasons. First, the gold standard is
subjective, and there is a factual disagreement
between pathologists in general. Second, we were
not able to reliably establish, whether our study
pathologists and their performance were truly rep-
resentative of the general population of pathologist,
and third, there is no global ground truth for calcu-
lating Ki-67 PI. Thus, we decided to establish a
study-specific gold standard (ground truth) and to
test the concordance between study pathologists
without seeking the results to generalize to all
pathologists.

This study has strengths and limitations. The
main strength is that we utilized original Ki-67
labeled slides from three different NETs for valida-
tion of the KAI. In addition, three endocrine
pathologists calculated Ki-67 PIs manually, and we
could compare their agreement in scoring. Limita-
tions include the fact that the pathologist did not
use the same computer monitor in scoring, which
might affect in calculating of faintly stained tumor
cells. Moreover, we lack the results of manual scor-
ing of printed images. However, with these promis-
ing results, we aim to utilize this algorithm in
outcome studies of NET patients as well as try to
validate the algorithm with a larger, external tumor
series before implementation into clinical practice.

CONCLUSION

In summary, the Ki-67 PI is a critical parameter in
grading NETs and determining patients’ treatment
and prognosis. DL-based image analysis algorithm
can assist pathologists in determining Ki-67 PI
more accurately and objectively if implemented into
clinical practice, but it cannot replace the patholo-
gist. In the future, accurate and reproducible Ki-67
PI values, alone or coupled with other parameters,

might offer a tool for classifying NETs into several
groups with regard to prognosis, similarly to
adrenocortical tumors [35]. In addition, this web-
based approach could be useful in, for example,
multi-center clinical trials where objective estima-
tion of Ki-67 PI is crucial.
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