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Uveitis is a typical type of eye inflammation affecting the middle layer of eye

(i.e., uvea layer) and can lead to blindness in middle-aged and young people.

Therefore, a comprehensive study determining the disease susceptibility and

the underlying mechanisms for uveitis initiation and progression is urgently

needed for the development of effective treatments. In the present study,

108 uveitis-related genes are collected on the basis of literature mining,

and 17,560 other human genes are collected from the Ensembl database,

which are treated as non-uveitis genes. Uveitis- and non-uveitis-related

genes are then encoded by gene ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) enrichment scores based on the genes and

their neighbors in STRING, resulting in 20,681 GO term features and 297

KEGG pathway features. Subsequently, we identify functions and biological

processes that can distinguish uveitis-related genes from other human

genes by using an integrated feature selection method, which incorporate

feature filtering method (Boruta) and four feature importance assessment

methods (i.e., LASSO, LightGBM, MCFS, and mRMR). Some essential GO terms

and KEGG pathways related to uveitis, such as GO:0001841 (neural tube

formation), has04612 (antigen processing and presentation in human beings),

and GO:0043379 (memory T cell differentiation), are identified. The plausibility

of the association of mined functional features with uveitis is verified on the
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basis of the literature. Overall, several advanced machine learning methods are

used in the current study to uncover specific functions of uveitis and provide

a theoretical foundation for the clinical treatment of uveitis.
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Introduction

Uveitis is a typical type of eye inflammation affecting the
middle layer of eye, i.e., the uvea layer (Chang et al., 2006;
Mutawa and Alzuwawi, 2019). Patients with uveitis have the
following characteristics: various vision-associated symptoms,
including but not restricted to light sensitivity and vision
field floating spots (Selmi, 2014), and eye tissue-associated
symptoms, including eye redness and pain (Mandeville et al.,
2001). Different from other eye-associated diseases (like age-
related macular degeneration), uveitis has an acute type, which
initiates and progresses quite fast into the chronic type (Chen
et al., 2015). Acute uveitis can cause severe symptoms, like
blindness, in less than six weeks. In 2018, more than 30,000 new
cases of blindness are confirmed to be caused by uveitis, which
has been identified as one of the main reasons for blindness
(Suttorp-Schulten and Rothova, 1996; Durrani et al., 2004).
Thus, uveitis is a key threat for human eye health that cannot
be ignored.

The pathogenesis of uveitis has been partially revealed.
Uveitis can be easily divided into infectious and noninfectious
uveitis in accordance with the cause of uveitis initiation (Takase
et al., 2006). For infectious uveitis, virus [like HSV, herpes
simplex virus (Wensing et al., 2018), varicella zoster virus
(Kido et al., 2008), and cytomegalovirus (Chee and Jap, 2010)],
and bacteria [like mycobacteria (Rao et al., 2006)] have all
been reported to participate in the pathogenesis of uveitis.
For noninfectious uveitis, multiple systematic immune diseases,
including Behcet’s disease, sarcoidosis, Vogt–Koyanagi–Harada
disease, have also been reported to be associated with uveitis
initiation and progression (Takeuchi et al., 2021). Although
multiple pathogenetic factors have been validated to be
associated with uveitis, the disease susceptibility and underlying
mechanisms for uveitis initiation and progression have not been
systematically summarized and clarified.

Gene ontology (GO) is an integrated bioinformatics
initiative for computational analyses on the biological process,
cellular component, and molecular function across different
species (Consortium, 2019). Kyoto Encyclopedia of Genes and
Genomes (KEGG) is another bioinformatics tool that describes
the networks of genes and molecules (Kanehisa and Goto,
2000). Each gene can be encoded into a vector by extracting
enrichment scores of the gene set, including itself and its

immediate neighbors in STRING, and GO terms or KEGG
pathways. A high enrichment score for the gene and one GO
term or KEGG pathway indicates a close relationship. In this
study, we try to attribute the initiation and progression of uveitis
to specific biological functions described by GO terms and
KEGG pathways, providing a new computational analysis to
explore the pathogenesis of this complex disease. To identify key
biological functions associated with uveitis, multiple machine
learning algorithms, including least absolute shrinkage and
selection operator (LASSO) (Tibshirani, 1996), light gradient
boosting machine (LightGBM) (Ke et al., 2017), Monte Carlo
feature selection (MCFS) (Micha et al., 2008), and minimum
redundancy maximum relevance (mRMR) (Peng et al., 2005) are
introduced, which are widely used for disease pathogenic factor
recognition in previous publications.

As described above, we apply multiple machine learning
algorithms to recognize key GO terms and KEGG pathways
that can describe uveitis pathogenesis. The comparison
between the results yielded by different machine learning
algorithms can help us fully identify key functions that
contribute to uveitis pathogenesis. The biological functions
associated with uveitis found by this research are backed
up by the literature, validating the efficacy and accuracy
of machine learning-based gene function analysis and
pathogenesis exploration.

Materials and methods

Data acquisition

Literature mining in PubMed1 is used to collect uveitis-
related genes. In previous studies, Lu et al. (2017, 2018)
conducted a PubMed search by using the keywords “uveitis”
and obtained 744 relevant articles. A total of 98 review
publications with basic summary of uveitis-related genes are
manually reviewed. A total of 121 genes are identified from
96 out of 98 review papers reporting functional genes that
may be significant for uveitis pathogenesis. Among these genes,
108 are annotated by GO terms and KEGG pathways, and

1 https://pubmed.ncbi.nlm.nih.gov/
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those without annotation information are removed. These 108
genes obtained are used as positive samples. A total of 17,560
other human genes containing GO and KEGG annotation
information are collected from Ensembl database and used as
negative samples.

Feature construction

Uveitis- and non-uveitis-related genes should be
transformed into some features so that they can be processed
by generally machine learning algorithms (Zhou et al., 2020; Li
et al., 2022; Pan et al., 2022; Tang and Chen, 2022; Wang and
Chen, 2022; Wu and Chen, 2022; Yang and Chen, 2022). Here,
we use GO and KEGG enrichment theory to generate numerical
values for representing each gene (Carmona-Saez et al., 2007;
Huang et al., 2011; Huang et al., 2012).

Gene ontology enrichment indicates the association
between GO terms and genes. For one gene g, its direct
neighbors in STRING and g are termed as neighborsg genes
in this paper. A score is calculated for neighborsg genes and
each GO term GOj, which is commonly referred to as the GO
enrichment score. The score is computed as the −log10 of the
hypergeometric P-value for neighborsg genes and the gene set,
in which genes are annotated by the GOj (called GOj gene set).
The equation is shown as follows:

ESGO

(
neighborsg, GOj

)
= − log10

 n∑
x = k

(m
x
) (N−m

n−x

)
(

N
n

)
,

(1)
where k is the number of neighborsg genes that appear in the
GOj gene set, m is the number of genes in the GOj gene set, n
is the number of neighborsg genes, and N is the total number of
genes considered (gene universe). A high score for neighborsg
genes and GOj indicates the close relationship between
g and GOj. Finally, 20,681 GO term enrichment features
are obtained.

Similarly, for neighborsg genes and each KEGG pathway
KEGGj, the enrichment score is calculated to evaluate
the relationship between g and KEGGj by using the
same method described above. The equation is shown
as follows:
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(2)
where k is the number of neighborsg genes that are also in the
KEGGj gene set, m is the number of genes in the KEGGj gene set,
n is the number of neighborsg genes, and N is the total number
of genes considered (gene universe). A high score indicates the
close relationship between g and KEGGj. Finally, 297 KEGG
pathway enrichment features are obtained.

In summary, a gene g can be presented as a vector v(g)

consisting of 20,681 GO term features and 297 KEGG pathway
features. v(g) is presented by

v(g) =

(
ESGO(neighborsg, GO1), ..., ESGO

(neighborsg, GO20681),

ESKEGG(neighborsg, KEGG1), ..., ESKEGG

(neighborsg, KEGG297)

)T

. (3)

Combining the 17,668 samples (108 positive samples and
17,560 negative samples), a two-dimensional matrix is obtained
for subsequent analysis.

Feature filtering with Boruta

Lots of GO terms and KEGG pathways are involved
in this analysis. Evidently, only a few of them are highly
related to uveitis, which can be extracted by advanced machine
learning algorithms. Here, the Boruta method is first applied
to exclude irrelevant GO terms and KEGG pathways and
keep essential ones.

Boruta is a widely used feature filtering method that relies
on two concepts, i.e., shadow features and binomial distribution
(Carmona-Saez et al., 2007; Kursa and Rudnicki, 2010; Huang
et al., 2022; Zhou et al., 2022). Features in Boruta compete with
their random versions, which are created by random shuffling.
In terms of feature importance, a feature is called “important”
if its importance is superior to its random counterpart. In each
run, Boruta keeps “important” features. The second strategy,
binomial distribution, focuses on obtaining features with the
probability of being kept in all runs higher than a certain
confidence level. A set of features that are highly correlated with
the target variable is obtained by keeping “important” features,
which are statistically better than the best random features.

In this study, the Boruta package, retrieved from https://
github.com/scikit-learn-contrib/boruta_py, is used to analyze
the features mentioned in section “Feature construction.” Such
package is performed with its default parameters.

Feature ranking algorithms

Boruta is a feature selection algorithm that is designed
to select features highly related to the classification. However,
among them, some may be more important than others. Such
task cannot be achieved by Boruta. Some other machine learning
algorithms follow to further evaluate the importance of each
selected feature. In this study, four feature selection methods
[LASSO (Tibshirani, 1996), LightGBM (Ke et al., 2017), MCFS
(Micha et al., 2008), and mRMR (Peng et al., 2005)] are
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employed. These methods can rank the features according to
their importance to the classification.

Least absolute shrinkage and selection
operator

Least absolute shrinkage and selection operator chooses
important features that are beneficial to classification and
eliminate those that are worthless or redundant (Tibshirani,
1996). This purpose is completed by building a linear regression
model with L1 regularization. The coefficients of features can be
a key indicator to suggest the importance of features. Features
are ranked in a list in terms of their corresponding coefficients.
Here, the LASSO package collected in Scikit-learn (Pedregosa
et al., 2011) is used in this study. The obtained feature list is
called LASSO feature list.

Light gradient boosting machine
A tree-based model can be used to evaluate the importance

of features. LightGBM is a high-performance gradient boosting
decision tree model that recurrently fits a new decision tree by
using the negative gradient of the loss function of the current
decision tree (Ke et al., 2017; Ding et al., 2022). LightGBM
uses the total number of times each feature participates in
creating tree nodes as a measurement of feature importance.
Features are sorted in a list by the decreasing order of their
above-mentioned times. Here, we use the LightGBM package
in Python, downloaded from https://lightgbm.readthedocs.io/
en/latest/, to analyze the features selected by Boruta. The list is
called LightGBM feature list.

Monte Carlo feature selection
The MCFS method is a feature relevance estimation

approach based on decision tree. This method is first introduced
by Micha et al. and has been widely utilized in computational
biology (Micha et al., 2008; Chen et al., 2018; Chen et al., 2019).

In this method, s feature groups are randomly constructed.
For each feature group, a training dataset and a test dataset
are randomly sampled from the original dataset. A decision
tree is set up based on the training dataset and evaluated its
performance on the test dataset. This procedure is repeated t
times, thereby constructing t decision tree. After considering
all s feature groups, a total of t × s decision trees are built.
Based on these decision trees, a relative importance (RI) value
is computed to assess the importance of each feature g, which
can be expressed as follows:

RIg =
∑st

τ = 1
(wAcc)u

∑
ng (τ)

IG
(
ng (τ)

)
(

no.in ng (τ)

no.in τ
)

v
,

(4)
where wAcc is the weighted accuracy of the decision tree τ,
IG
(
ng (τ)

)
represents the information gain of ng (τ), a DT

node with the attribute g in tree τ, no.in ng (τ) stands for the
number of samples in ng (τ), no.in τ stands for the number
of samples in the tree root, and u and v are two settled
positive integers. The present study uses the MCFS program

retrieved from https://home.ipipan.waw.pl/m.draminski/mcfs.
html. Default parameters are adopted. Based on decreasing
order of RI values, features are ranked in a list, which is termed
as MCFS feature list in this study.

Minimum redundancy maximum relevance
The mRMR evaluates the importance of features by

both considering the relevance to the target variable and
redundancies to other features (Peng et al., 2005; Wang et al.,
2018; Zhao et al., 2018; Yu et al., 2020; Zhu et al., 2020;
Chen et al., 2022). In theory, features with high relevance
to the target variable and low redundancies to other features
can receive high ranks in the final list. The relevance and
redundancy are all evaluated by mutual information (MI).
The ranks of features are determined by a loop procedure.
In each round, the importance of one feature is assessed
by the difference of its relevance to target variable and its
redundancies to already-selected features. The feature with
highest difference is selected and appended to the list. Here,
the mRMR program obtained from http://home.penglab.com/
proj/mRMR/ is used and is run with default parameters.
The list generated by this method is called mRMR feature
list.

As each of above-mentioned methods has its own merits
and limitations, the usage of one method cannot fully uncover
the essential biological functions related to uveitis. Each method
can only depict a part of the whole picture on the biological
functions of uveitis. By employing multiple methods, a more
integrated picture can be obtained. Thus, we use all above-
mentioned four feature selection methods, trying to mine
biological functions of uveitis as complete as possible.

Results

Advanced machine learning methods are used in this
research, with the entire analysis procedure depicted in Figure 1.
The results of each analysis stage are listed in detail below.

Results of Boruta

The Boruta algorithm is performed on original features
to eliminate nonrelevant features. Finally, 118 features related
to the classification are chosen from 20,978 features, which
are listed in Supplementary Table 1. These 118 features are
functionally linked to the development of uveitis. Among these
118 features, 110 are related to GO terms, where the rest eight
features are about KEGG pathways. Considering the features
on GO terms are much more than those on KEGG pathways,
such results are reasonable. For these 118 features, uveitis is
highly correlated with some of them and weakly correlated with
others, implying that the importance of the features should be
investigated further.
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FIGURE 1

Flow chart of the whole analytical process. A total of 108
uveitis-associated genes and 17,560 other human genes are
collected. Uveitis- and non-uveitis-related genes are then
encoded by GO and KEGG enrichment scores, resulting in
20,681 GO term features and 297 KEGG pathway features.
Boruta is used for feature filtering to obtain functional features
related to uveitis. Subsequently, LASSO, LightGBM, MCFS, and
mRMR are used to evaluate feature importance, and features are
ranked from highest to lowest in terms of feature importance in
four feature lists. Finally, highly relevant features were obtained
by taking the intersection of the top 40 features in each feature
list.

Results of feature ranking and
evaluation

Four methods, namely, LASSO, LightGBM, MCFS, and
mRMR, are used to measure the importance of 118 features

selected by Boruta. A total of 118 features are ranked in four
feature lists (LASSO, LightGBM, MCFS, and mRMR feature
lists) based on their ability in distinguishing uveitis genes. These
lists can be seen in Supplementary Table 1.

As mentioned in section “Feature ranking algorithms,” each
method has its limitations. Some essential features related to
uveitis can have high ranks in one feature list, whereas they
may be underestimated in another feature list, that is, their
ranks in the list are not high. Thus, an investigation on all
feature lists is beneficial to fully uncover all essential biological
processes of uveitis. For each feature list, top 40 features are
picked up to comprise a feature set. Accordingly, four feature
subsets are obtained. For each subset, the distribution on GO
terms and KEGG pathways is illustrated in Figure 2, from which
we can see that features on GO terms are much more than
those on KEGG pathways in each feature set. Furthermore, a
Venn diagram is plotted to display the intersection of these
four sets, as shown in Figure 3. The detailed intersection
results on these sets can be found in Supplementary Table 2.
Two features appear in all feature sets, that is, they are highly
ranked by all four methods. These features are considered to
be most essential for distinguishing uveitis-related genes from
other human genes, which are discussed in section “Functional
features recognized by all methods.” As for the other features
identified by three or less methods, they may also be important.
Some of them are analyzed in sections “Functional features
recognized by three methods,” “Functional features recognized
by two methods,” and “Functional features recognized by only
one method.”

Discussion

On the basis of four commonly used machine learning
methods, a set of functional features described by GO
terms or KEGG pathways is identified to be associated
with uveitis pathogenesis. As several features are predicted
by at least two methods, the usage of multiple machine
learning algorithms seems to be effective and robust for
uveitis-associated functional feature selection. As mentioned
in section “Results of feature ranking and evaluation,” we
select the top 40 features from each list yielded by one
machine learning method as features of interest. The typical
features identified by all 4 methods, 3 of 4 methods,
2 of 4 methods, and by 1 method are picked up for
detailed discussion.

Functional features recognized by all
methods

The first functional characteristic predicted by all
methods is GO:0001841 describing neural tube formation.
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FIGURE 2

Distribution of top 40 features on GO terms and KEGG pathways in four feature lists. Features on GO terms are much more than those on KEGG
pathways in each feature list.

In 1983, researchers observed autoimmune-dependent
attack on neural tubes during the pathogenesis of uveitis
(Rahi and Addison, 1983), implying that neural tube formation
is functionally associated with uveitis-related abnormal immune
response. In recent years, an association analyses revealed that
folic acid deficiency may contribute to the progression of
uveitis by inducing neural tube defects (Sijilmassi, 2019),
revealing the potential relationships between neural tube
formation and uveitis. As for the next predicted shared
feature, hsa04612, a KEGG pathway term, describes another
immune-associated pathway, i.e., antigen processing and
presentation in human beings. Antigen processing and
presentation are confirmed to be related to uveitis by multiple
publications from different perspectives (De Smet et al., 2001;
Wakefield et al., 2016; Sharma and Jackson, 2017). Specifically,
a specific subtype of HLA, i.e., HLA-B27, has been confirmed
to participate in the pathogenesis of uveitis and associated
with the susceptibility and prognosis of uveitis (Linssen and
Meenken, 1995; Tay-Kearney et al., 1996; Wakefield et al.,
2011). Therefore, the functional characteristics recognized by
all methods have been validated to be functionally associated
with uveitis, implying the efficacy and accuracy of our
analysis.

Functional features recognized by
three methods

For functional characteristics predicted by three methods,
GO:0043379 (memory T cell differentiation) has been predicted
to be associated with uveitis. According to recent publications,
memory T cell has been recognized during uveitis early
in 2002 (Imai and Ohno, 2002), and a report in 2021
validates that memory helper T cells trigger the autoreactive
immune response during uveitis (Egwuagu et al., 2021).

FIGURE 3

Venn diagram of top 40 features selected by LASSO, LightGBM,
MCFS, and mRMR methods. Overlapping circles indicate the
features identified by multiple methods. Two features are ranked
high by all four feature ranking algorithms.

Therefore, such predicted result has been validated by previous
publications, implying the accuracy of our analysis. Another
recognized GO term GO:0045625 (regulation of T-helper
1 cell differentiation) is also functionally associated with
helper T cell-mediated immune responses, which can also
be supported by two publications mentioned above. The
next predicted term, i.e., GO:0071639, describes the positive
regulation of monocyte chemotactic protein-1 production.
Positive correlations between monocyte chemotactic protein-
1 and pigment epithelium-derived factor, a key factor for
uveitis (Zipplies et al., 2009), have been observed (Yoshida
et al., 2007). Therefore, as an immune related regulator,
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monocyte chemotactic protein-1 is a potential biomarker for
uveitis.

Functional features recognized by two
methods

The first GO term predicted by two methods is
GO:0046642, which describes the negative regulation
of alpha–beta T cell proliferation. Few publications
compared the roles of alpha–beta and gamma–delta
T cells during uveitis. Only one mouse model-based
uveitis study confirmed that at least in a mouse
model, alpha–beta T cells are directly associated with
autoimmune-triggered uveitis, validating the efficacy
and accuracy of our analysis. Another identified
GO term by two methods is GO:0045078 (generally
described with GO:0032729), which describes the
positive regulation of interferon-gamma production.
Interferon-gamma has been shown to be associated
with tuberculous-initiated uveitis (Ang et al., 2014).
Staphylococcus aureus infection described by hsa05150
has also been predicted to be associated with uveitis.
S. aureus as a Gram-positive bacteria has been reported
to be identified in various patients with uveitis
and has been shown to initiate uveitis-associated
autoimmune responses (Rosenbaum et al., 1980; Lin,
2015). Therefore, such bacterial infection is associated
with uveitis.

Functional features recognized by only
one method

Some characteristics that have only been predicted by
one method remain. GO:0042102 describes the positive
regulation of T cell proliferation. As discussed above, T
cell-associated biological processes are shown to be related
to uveitis. Therefore, T cell proliferation is speculated to
be associated with uveitis without direct supports. The
next predicted GO term is GO:0005151, which describes
interleukin-1 type II receptor binding. Interleukin-1
alpha, interleukin-1 beta, and tumor necrosis factor are
shown to be associated with endotoxin-induced uveitis
(Yoshida et al., 1994; Tsai et al., 2009). Chemokine
activity (GO:0008009) has also been identified by one
machine learning method. Different from T cell-mediated
immune responses, which can be found in almost every
uveitis case, chemokine abnormality has been commonly
observed in acute active uveitis (Verma et al., 1997;
Van Kooij et al., 2006), indicating that such biological
function may be associated with the rapid progression of
uveitis.

Overall, as discussed above, some top features identified
by different machine learning methods have been validated
to participate in the initiation and progression of uveitis,
implying that machine learning methods are effective tools
in recognizing disease-associated biological functions.
Among these methods, LightGBM has more features
that are also identified by other methods (Figure 3),
implying that LightGBM may be the most proper
method for investigating uveitis. Therefore, our study
recognizes a series of functional characteristics (GO:
biological process, cellular components, and molecular
function and KEGG: pathways) associated with uveitis
and provides a new approach for disease mechanism
exploration.

Conclusion

In this study, a computational analysis, incorporating
multiple feature selection methods is developed to extract
essential functional terms (GO terms and KEGG pathways)
that can be used to distinguish genes associated with uveitis.
First, we collect 108 genes associated with uveitis from
previous literature as positive samples and further collect
17,560 other human genes as negative samples. Subsequently,
GO and KEGG enrichment scores are used to encode
uveitis- and non-uveitis-related genes, yielding 20,681 GO
term features and 297 KEGG pathway features. Finally, we
combine Boruta and four feature ranking algorithms (LASSO,
LightGBM, MCFS, and mRMR), to rank the features by
importance and obtain features that are highly correlated
with uveitis. We elucidate the association of these features
with the occurrence and development of uveitis through
the literature. For example, GO:0001841, which describes
neural tube formation, is recognized by all methods and is
functionally associated with uveitis-related abnormal immune
response. In summary, this study has used GO terms
and KEGG pathways to characterize uveitis genes at the
functional level.
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