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Abstract: The bacterial flagellum is a helical filamentous organelle responsible for motility. In bacterial
species possessing flagella at the cell exterior, the long helical flagellar filament acts as a molecular
screw to generate thrust. Meanwhile, the flagella of spirochetes reside within the periplasmic space
and not only act as a cytoskeleton to determine the helicity of the cell body, but also rotate or undulate
the helical cell body for propulsion. Despite structural diversity of the flagella among bacterial species,
flagellated bacteria share a common rotary nanomachine, namely the flagellar motor, which is located
at the base of the filament. The flagellar motor is composed of a rotor ring complex and multiple
transmembrane stator units and converts the ion flux through an ion channel of each stator unit
into the mechanical work required for motor rotation. Intracellular chemotactic signaling pathways
regulate the direction of flagella-driven motility in response to changes in the environments, allowing
bacteria to migrate towards more desirable environments for their survival. Recent experimental
and theoretical studies have been deepening our understanding of the molecular mechanisms of the
flagellar motor. In this review article, we describe the current understanding of the structure and
dynamics of the bacterial flagellum.

Keywords: bacterial flagellum; chemotaxis; ion motive force; ion channel; mechanochemical coupling;
molecular motor; motility; torque generation

1. Introduction

Bacterial motility is an extremely intriguing topic from various scientific aspects. For example,
motility can be a crucial virulence attribute for pathogenic bacteria, such as Salmonella enterica (hereafter
referred to Salmonella) and Helicobacter pylori [1,2]. Bacterial motility also plays a significant role
in mutualistic symbioses [3,4]. Furthermore, motile bacteria are also a representative example for
understanding the underlying physical principles that form the basis of energy conversion, force
generation and mechanochemical coupling mechanisms [5]. Active motilities of bacteria are represented
by movement in liquid (e.g., swimming motility in Escherichia coli and Salmonella) and on solid surfaces
(e.g., flagella-driven swarming motility in Proteus mirabilis and Vibrio parahaemolyticus, gliding motility
in Mycoplasma mobile, and twitching motility in Pseudomonas aeruginosa), and passive motility is typically
actin-based locomotion (e.g., Listeria monocytogenes and Shigella spp.) [6]. Since bacterial motility varies
among bacterial species, bacteria utilize their own motility system optimized for their habitats.

E. coli and Salmonella use flagella viewable from the cell exterior as a thin, long, helical filament
(Figure 1a). On the other hand, the flagella of spirochetes reside within the periplasmic space, and so
they are called periplasmic flagella [7]. Whether the bacterial flagella are exposed to the cell exterior or
are hidden within the cell body, the flagellum is divided into three structural parts: the basal body
as a rotary motor, the hook as a universal joint and the filament as a molecular screw in common
(Figure 1b), and flagellar formation and function involves more than 60 genes [8–10].
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Figure 1. Salmonella flagellum. (a) Electron micrograph of Salmonella cell. The micrograph was taken 
at a magnification of ×1200. (b) Electron micrograph of hook-basal bodies isolated from Salmonella 
cells. (c) CryoEM image of purified basal body. Purified basal body consists of the L, P, MS and C 
rings and the rod. A dozen MotAB complex are associated with the basal body to act as a stator unit 
in the motor but is gone during purification. 

The bacterial flagellar motor is powered by the transmembrane electrochemical gradient of ions, 
namely ion motive force (IMF) and rotates the flagellar filament to generate thrust to propel the cell 
body. The maximum motor speed reaches 300 revolutions per second in E. coli and Salmonella [11] 
and 1700 revolutions per second in a marine bacterium Vibrio alginolyticus [12]. Thus, the rotational 
speed of the flagellar motor is much faster than that of a manufactured car engine such as formula 
one car. The flagellar motor is composed of a rotor and multiple stator units. Each stator unit acts as 
a transmembrane ion channel to conduct cations such as protons (H+) or sodium ions (Na+) and 
applies force on the rotor [13,14]. 

The flagellar motors of E. coli and Salmonella rotate in both counterclockwise (CCW) and 
clockwise (CW) without changing the direction of ion flow. E. coli and Salmonella cells can swim in a 
straight line by bundling left-handed helical filaments behind the cell body (run) when all of them 
rotate in CCW direction. When one or multiple motors switch the direction of rotation from CCW to 
CW, the flagellar bundle is disrupted, enabling the cell to tumble and change the swimming direction. 
E. coli and Salmonella cells sense temporal changes in nutrients, environmental stimuli, and signaling 
molecules to coordinate the switching frequency of the motor. Transmembrane chemoreceptors, 
energy-related taxis sensors and intracellular phosphotransferase systems detect environmental 
signals and then convert them into intracellular signals. Then, an intracellular signal transduction 
system transmits the signals to the flagellar motor to switch the direction of motor rotation from CCW 
to CW. The cells repeat a run–tumble pattern to explore more favorable environments for their 
survival [15]. This review article covers our current understating of flagella-driven motility 
mechanism in E. coli and Salmonella. We also describe the structural and functional diversities of the 
bacterial flagella. 

2. Axial Structure 

The axial structure of the bacterial flagellum is commonly a helical assembly composed of 11 
protofilaments and is divided into at least three structural parts: the rod, the hook and the filament 
from the proximal to the distal end. The rod is straight and rigid against bending and twisting and 
acts as a drive shaft. The hook is supercoiled and flexible against bending and acts as a universal joint 
to smoothly transmit torque produced by the motor to the filament. The filament is also supercoiled 
but stiff against bending. The filament is normally a left-handed supercoil to act as a helical screw to 

Figure 1. Salmonella flagellum. (a) Electron micrograph of Salmonella cell. The micrograph was taken at
a magnification of ×1200. (b) Electron micrograph of hook-basal bodies isolated from Salmonella cells.
(c) CryoEM image of purified basal body. Purified basal body consists of the L, P, MS and C rings and
the rod. A dozen MotAB complex are associated with the basal body to act as a stator unit in the motor
but is gone during purification.

The bacterial flagellar motor is powered by the transmembrane electrochemical gradient of ions,
namely ion motive force (IMF) and rotates the flagellar filament to generate thrust to propel the cell
body. The maximum motor speed reaches 300 revolutions per second in E. coli and Salmonella [11]
and 1700 revolutions per second in a marine bacterium Vibrio alginolyticus [12]. Thus, the rotational
speed of the flagellar motor is much faster than that of a manufactured car engine such as formula
one car. The flagellar motor is composed of a rotor and multiple stator units. Each stator unit acts
as a transmembrane ion channel to conduct cations such as protons (H+) or sodium ions (Na+) and
applies force on the rotor [13,14].

The flagellar motors of E. coli and Salmonella rotate in both counterclockwise (CCW) and clockwise
(CW) without changing the direction of ion flow. E. coli and Salmonella cells can swim in a straight line
by bundling left-handed helical filaments behind the cell body (run) when all of them rotate in CCW
direction. When one or multiple motors switch the direction of rotation from CCW to CW, the flagellar
bundle is disrupted, enabling the cell to tumble and change the swimming direction. E. coli and
Salmonella cells sense temporal changes in nutrients, environmental stimuli, and signaling molecules to
coordinate the switching frequency of the motor. Transmembrane chemoreceptors, energy-related taxis
sensors and intracellular phosphotransferase systems detect environmental signals and then convert
them into intracellular signals. Then, an intracellular signal transduction system transmits the signals
to the flagellar motor to switch the direction of motor rotation from CCW to CW. The cells repeat
a run–tumble pattern to explore more favorable environments for their survival [15]. This review
article covers our current understating of flagella-driven motility mechanism in E. coli and Salmonella.
We also describe the structural and functional diversities of the bacterial flagella.

2. Axial Structure

The axial structure of the bacterial flagellum is commonly a helical assembly composed of
11 protofilaments and is divided into at least three structural parts: the rod, the hook and the filament
from the proximal to the distal end. The rod is straight and rigid against bending and twisting and
acts as a drive shaft. The hook is supercoiled and flexible against bending and acts as a universal joint
to smoothly transmit torque produced by the motor to the filament. The filament is also supercoiled
but stiff against bending. The filament is normally a left-handed supercoil to act as a helical screw
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to produce thrust for swimming motility. The filament undergoes polymorphic transformation from
the left-handed supercoil to right-handed ones when bacterial cells tumble and change swimming
direction [16].

2.1. Flagella Filament

The flagellar filament of E. coli is formed by ~30,000 copies of flagellin, FliC. Salmonella has the
fljB gene encoding another flagellin subunit in addition to the fliC gene. Because flagellin is a major
target of host immune system (H-antigen), such an additional flagellin subunit enables Salmonella cells
to escape from adaptive immune response of the host more efficiently compared to E. coli cells [17].
The FliC-type filament structure derived from Salmonella has been solved at the atomic level [18–20].
Salmonella FliC is composed of four domains D0, D1, D2 and D3, arranged from the inner to the outer
part of the filament structure. Domains D0 and D1 are well conserved among bacterial species whereas
domains D2 and D3 are variable even among Salmonella spp., because these two domains are the major
targets of antibodies [21].The supercoiled forms of the filament structure are generated by combinations
of two distinct left-handed (L-type) and right-handed (R-type) helical conformations of flagellin
molecule and packing interactions of the L- and R-type protofilaments, and so the helical properties
of each supercoil are determined by a ratio of L-type protofilaments to R-type ones in the filament
structure [22,23]. The intermolecular distance along the L-type straight filament consisting of all L-type
protofilaments is 0.8 Å longer than that of the R-type one composed of all R-type protofilaments [24].
Since a conformational change of a β-hairpin in domain D1 generates the 0.8 Å difference in repeat
distance, this β-hairpin is thought to be responsible for the supercoiling switching [17]. Therefore,
it seems likely that an abrupt reversal of motor rotation applies mechanical stress on each protofilament
to induce the sliding motion between flagellin subunits along the protofilament, thereby changing the
filament structure from the L-type supercoil to R-type one to disrupt the flagellar bundle for tumbling
of the cell body [18]. Recent high-resolution electron cryomicroscopy (cryoEM) imaging analyses of
L- and R-type straight filaments derived from Bacillus subtilis and P. aeruginosa have shown that the
switching of the supercoiled forms of these flagellar filaments occurs in a way similar to the Salmonella
filament [25].

Although the flagellar filaments of E. coli and Salmonella are formed by a single flagellin subunit,
many bacterial species have multiple flagellins for the synthesis of flagellar filaments. The single polar
flagellum of Caulobacter crescentus is composed of six flagellins, FljJ, FljK, FljL, FljM, FljN, and FljO [26].
Although the function of each flagellin subunit and their organization are not yet characterized, they are
not essential for filament formation because some flagellin defects are compensated by others [26].
The flagellar filament of Sinorhizobium meliloti consists of four flagellins, FlaA, FlaB, FlaC, and FlaD,
and that of Rhizobium lupini contains just three of them FlaA, FlaB, and FlaD. For the flagella of these
soil bacteria, FlaA is the principal component, and others are secondary ones [27]. The flagellar filament
of Rhizobium leguminosarum comprises three major proteins, FlaA, FlaB, and FlaC, and four minor
proteins, FlaD, FaE, FlaH, and FlaG [28]. Agrobacterium tumefaciens also possesses four flagellins,
FlaA, FlaB, FlaC, and FlaD; FlaA and FlaB are abundant in the filament in comparison with FlaC and
FlaD, and the swimming ability of A. tumefaciens is considerably decreased by a loss of FlaA but not
by that of FlaB [29]. Bradyrhizobium diazoefficiens has two flagella systems: One is subpolar flagella,
of which filament is composed of four flagellins, FliC1, FliC2, FliC3, and FliC4, whereas the other is
lateral flagella, of which filament is made up of two flagellins, LafA1 and LafA2 [30]. The bi-polar
flagellar filaments of Campylobacter jejuni comprise two distinct FlaA and FlaB subunits, both of which
share 92.3% sequence identity. The FlaB filament grows first and then FlaA filament grows on the
FlaB filament [31]. Consistently, two different flagellins, FlaA and FlaB (86% sequence identity) form
the single polar flagellar filament in Shewanella putrefaciens, and FlaA forms a proximal part of the
filament whereas FlaB makes the remaining portion [32]. The spatial assembly by these two distinct
flagellin subunits benefits motility under a various range of environmental conditions [32]. Because the
assembly of the flagellar filament by multiple flagellins affects its mechanistic properties for flagellar
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function in different environments [26,32–35], the composition of the flagellar filament structure would
be optimized for environmental conditions, in which the bacteria live and survive.

2.2. Hook and Rod

The Salmonella hook is formed by about 120 copies of the hook protein FlgE. Salmonella FlgE consists
of three domains D0, D1, and D2, arranged from the inner to outer parts of the hook structure and the Dc
region connecting domains D0 and D1 [36,37]. The hook forms several supercoils, and axial interactions
between a triangular loop of domain D1 and domain D2 are responsible for hook supercoiling [36,38,39].
However, a truncation of neither the triangular loop nor the D2 domain affects the bending flexibility
of the hook structure [38]. Since there are gaps not only between D1 domains but also between D0
domains, these gaps make the hook flexible for bending. The amino-acid sequence of FlgE of C. jejuni
(864 a.a for strain NCTC 11168) is much longer than that of Salmonella (402 a.a), and so FlgE of C. jejuni
has two additional outer domains, D3 and D4, and these two domains are involved in the interaction
within and between protofilaments, conferring stiffness and robustness on the C. jejuni hook structure
to act as a universal joint under highly viscous condition [40].

The bending flexibility of the hook structure is required for the formation of a bundle structure
behind the cell body of E. coli and Salmonella [41,42]. The hook length is also important for maximum
stability of the flagellar bundle. Shorter hooks are too stiff to function as a universal joint whereas
longer hooks buckle and create instability in the flagellar bundle [43]. The hook length is controlled by
the molecular ruler protein FliK, which is secreted via a type III protein export apparatus during hook
assembly [44].

The elasticity of the hook is also important for changing swimming direction in V. alginolyticus,
which is a monotrichous bacterium. When V. alginolyticus cell changes swimming from forward
to backward by the switching of direction of flagellar motor rotation from CCW to CW, the hook
undergoes compression and buckles, resulting in an axis mismatch between the flagellar filament and
the cell body to induce a flicking motion of the cell body. As a result, the swimming direction changes
by ~90◦ [45].

The rod is composed of three proximal rod proteins, FlgB, FlgC, FlgF, and the distal rod protein
FlgG [46,47]. FliE is postulated to connect the MS ring and the most proximal part of the rod formed by
FlgB [48]. These four rod proteins and FliE are well conserved among bacterial species [9,10]. Domains
D0 and D1 of Salmonella FlgG show high sequence and structural similarities to those of FlgE, thereby
allowing direct connection of the rigid rod with the flexible hook [49]. However, one major structural
difference between the rod and hook is the orientation of their D1 domains relative to the tubular
axis, and so axial packing interactions between domains D1 of FlgG are tight whereas those of FlgE
are loose. As a result, such a structural difference is likely to be responsible for the bending rigidity
of the rod and flexibility of the hook [49]. The Dc region of FlgG has a FlgG specific sequence (GSS;
YQTIRQPGAQSSEQTTLP). Since the GSS insertion into the Dc region of FlgE makes the hook straight
and rigid, the GSS contributes to the rigidity on the rod structure [42]. However, since FlgE of B. subtilis
and C. jejuni has the GSS-like sequence in their Dc region [32,34], it remains unknown how the hook of
B. subtilis and C. jejuni can form a curved structure with bending flexibility.

3. Type III Protein Export Apparatus

The assembly of the axial structure begins with the rod, followed by the hook and finally the
filament. A type III protein export apparatus transports axial component proteins from the cytoplasm
to the distal end of the growing flagellar structure to construct the axial structure beyond the cellular
membranes [50]. The type III protein export apparatus consists of an export gate complex made of
five transmembrane proteins, FlhA, FlhB, FliP, FliQ and FliR, and a cytoplasmic ATPase ring complex
consisting of FliH, FliI and FliJ [51–53]. The transmembrane export gate complex is located within the
basal body MS ring and acts as a H+–protein antiporter to couple an inward-directed H+ translocation
through the export gate with an outward-directed protein export [54,55]. FliP, FliQ, and FliR form
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a right-handed helical assembly with a 5 FliP to 4 FliQ to 1 FliR stoichiometry inside the MS ring,
and FliO is required for efficient assembly of the FliPQR complex [52,56,57]. The FliPQR complex
has a central channel with a diameter of 1.5 nm [57]. Since FliP and FliR are likely to interact with
FliE [51,57,58], the central channel of the FliPQR complex is postulated to be a protein translocation
pathway. FlhA and FlhB associate with the FliPQR complex [52]. FlhA forms a nonameric ring structure
through its C-terminal cytoplasmic domain [59–61] and forms an ion channel to conduct both H+

and Na+ [62]. FliH, FliI and FliJ form the cytoplasmic ATPase ring complex with a 12 FliH to 6 FliI
to 1 FliJ stoichiometry [63–65]. The ATPase ring complex is associated with the basal body through
interactions of FliH with FlhA and a C ring protein FliN [66–69]. The FliI6 ring hydrolyzes ATP to
activate the transmembrane export gate complex, thereby driving H+-coupled flagellar protein export
by the export gate [55,70].

4. Basal Body Rings

The basal body has multiple ring structures, namely L ring, P ring, MS ring, and C ring [71]
(Figure 1c). The L and P rings, which are formed by the lipoprotein FlgH and the periplasmic protein
FlgI, respectively, are embedded in the outer membrane and the peptidoglycan (PG) layer, respectively,
and they together act as a bearing for the rod. The LP ring complex is missing in the basal body of
gram-positive bacteria such as B. subtilis [9]. In contrast, the MS and C rings are well conserved among
bacterial species [9,10]. The MS ring is composed of the transmembrane protein FliF and is part of
a rotor [71]. FliG, FliM, and FliN form the C ring on the cytoplasmic face of the MS ring. The C ring acts
not only as a central part of the rotor for torque generation but also as a structural device to switch the
direction of motor rotation in E. coli and Salmonella [71]. Diameters of the LP ring complex, the S ring,
the M ring, and the C ring are ~25 nm, ~24.5 nm, ~30 nm, and ~45 nm, respectively, in Salmonella.

FliG consists of N-terminal (FliGN), middle (FliGM), and C-terminal (FliGC) domains. FliGN

directly associates with the C-terminal cytoplasmic domain of FliF (FliFC) with a one-to-one
stoichiometry [72]. Inter-molecular interactions between FliGN domains and between FliGM and
FliGC are responsible for FliG polymerization on the cytoplasmic face of the MS ring [73–76]. FliGC is
involved in the interaction with the stator protein MotA [77–79]. The middle domain of FliM (FliMM)
binds to FliGM with a one-to-one stoichiometry to form the C ring wall [80]. An EHPQR motif in FliGM

and a GGXG motif in FliMM are responsible for the FliGM–FliMM interaction. The C-terminal domain
of FliM (FliMC) shows significant sequence and structural similarities with FliN, and FliMC and FliN
together form a doughnut-shaped hetero-tetramer consisting of one copies of FliMC and three copies of
FliN, and this hetero-tetrameric block produces a continuous spiral density along the circumference at
the bottom edge of the C ring [81]. B. subtilis has a fliY gene, which shows sequence similarity to both
FliMC and FliN, instead of the fliN gene [82]. In B. subtilis, FliG, FliM and FliY form the C ring in a similar
manner to E. coli and Salmonella C ring structures although the overall structure and dimensions of the
B. subtilis C ring remain unclear. Interestingly, high-resolution single-molecule fluorescence imaging
techniques have revealed rapid exchanges of FliM and FliN labelled with a fluorescent protein between
the basal body and the cytoplasmic pool in E. coli, suggesting that the C ring is a highly dynamic
structure [83–85].

The stator units are assembled on the FliG ring (Figure 1c), and so stator–rotor interactions occur
about 20 nm away from the center of the C ring in Salmonella. The Salmonella flagellar motor can
accommodate about 10 stator units [86]. A fliF–fliG deletion fusion significantly shortens the diameter
of the C ring, because FliFC and FliGN, which together form the inner lobe structure connecting the M
and C rings, are missing. It has been shown that the average number of active stator units is two units
less in the FliF–FliG deletion fusion motor than in the wild-type motor [87]. This suggests that the
diameter of the C ring determines the number of active stator units that can be bound to the motor.
This is supported by recent observations that a diameter of the C ring of the C. jejuni and H. pylori
flagellar motors is larger than that of the Salmonella C ring, allowing these motors to accommodate
more active stator units around the rotor to generate much higher torque [88].
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5. Stator

5.1. Diversity of the Stator Unit

The transmembrane stator unit of the flagellar motor conducts ions and exerts force on the rotor.
Based on the coupling ion and sequence similarity, the stator units are classified into three groups:
H+-coupled MotAB complex, Na+-coupled PomAB complex, and Na+-coupled MotPS complex [14].
The MotAB complex is composed of four copies of MotA and two copies of MotB and acts as
a transmembrane H+ channel [89,90]. The PomAB and MotPS complexes form a Na+ channel in a way
similar to the MotAB complex [91–93]. In addition to these stator proteins, bacteria such as S. meliloti
and V. alginolyticus have additional motor proteins. S. meliloti possesses three extra motor proteins,
namely MotC, MotD, and MotE. MotC stabilizes the periplasmic domain of MotB to facilitate proton
translocation through a H+ channel of the MotAB complex. MotD binds to FliM for fast rotation,
and MotE is involved in folding and stability of MotC [94]. V. alginolyticus has MotX and MotY to form
the T ring structure located beneath the P ring, and an interaction between PomB and MotX is required
for stable localization of PomAB complex around the basal body [9,95].

V. alginolyticus and V. parahaemolyticus use a single polar flagellum for swimming in low viscous
liquid and induce lateral flagella when these Vibrio cells encounter solid surfaces [96–98]. The polar
flagellum utilizes the PomAB complex as a stator unit whereas the lateral flagella use the MotAB
complex as a stator unit [99]. B. subtilis possesses two distinct H+-type MotAB and Na+-type MotPS
complexes to drive flagellar motor rotation, and these two types of stator units are exchanged in
response to changes in external pH, external Na+ concentration and viscosity [92,93,100]. Like B. subtilis,
Shewanella oneidensis also utilizes two distinct H+-type MotAB and Na+-type PomAB complexes in
response to changes in the environmental Na+ concentration [101].

The MotPS complex of Bacillus alcalophilus conducts K+ and Rb+ in addition to Na+ [102]. Bacillus
clausii has only MotAB complex as a stator unit, and this MotAB complex exhibits the H+ channel
activity at neutral pH and the Na+ channel activity at extremely high pH [103]. The MotAB complex of
a spirochete Leptospira biflexa has the ability to conduct both H+ and Na+ in an external pH-dependent
manner in a way similar to the MotAB complex of B. clausii [104]. These observations suggest that the
stator function of these species would be optimized for environmental conditions of their habitats.

5.2. Topology of the Stator Complex

MotA, PomA and MotP possess four transmembrane helices (TM1, TM2, TM3, and TM4)
and a relatively large cytoplasmic loop between TM2 and TM3 and a C-terminal cytoplasmic tail
(Figure 2a). MotB, PomB and MotS possess an N-terminal cytoplasmic tail, a single transmembrane helix,
and a relatively large C-terminal periplasmic domain containing a conserved peptidoglycan-binding
(PGB) motif for anchoring the stator units to the rigid PG layer (Figure 2a). A plausible atomic
model of the transmembrane H+ channel of the MotAB stator complex derived from E. coli has been
proposed [105]. The MotAB stator complex has two H+ pathways formed by MotA-TM3, MotA-TM4
and MotB-TM (Figure 2b). A highly conserved Asp-32 residue lies near the cytoplasmic end of MotB-TM
and plays an important role in the H+ relay mechanism [106]. This Asp residue is located on the
surface of MotB-TM facing MotA-TM3 and MotA-TM4 [90]. A plug segment in the flexible linker of
MotB connecting MotB-TM and the PGB domain binds to the H+ channel to suppress massive H+ flow
through the channel until the MotAB complex associates with the motor. It has been proposed that
an interaction between MotA and FliG may induce a detachment of the plug segment form the H+

channel to couple the H+ flow through the channel to torque generation [107,108].
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Figure 2. H+ translocation mechanism of the flagellar motor. (a) Topology of the E. coli MotA and 
MotB and a crystal structure of the peptidoglycan-binding domain of MotB (MotBPGB, PDB code: 
2ZVY). Highly conserved Arg-90 and Glu-98 residues in the cytoplasmic loop between 
transmembrane helices 2 (A2) and 3 (A3) interact with conserved Asp-289 and Arg-281 residues of 
FliG, respectively, to drive motor rotation. Asp-32 of MotB provides a binding site for H+. Pro-173, 
Met-206 and Tyr-217 of MotA and Ala-39 and Leu-46 of MotB are involved in the H+ relay mechanism. 
Cyto, cytoplasm; CM, cytoplasmic membrane; Peri, periplasm. (b) Arrangement of transmembrane 
segments of MotA and MotB. The MotAB complex has two proton channels. Four MotA subunits are 
positioned with their TM3 (A3) and TM4 (A4) segments adjacent to the MotB dimer, and their TM1 
(A1) and TM2 (A2) segments on the outside. (c) A plausible model for H+ translocation through 
MotAB stator complex (see text for details). 

6. Torque Generation 

6.1. Rotation Mechanism 

Highly conserved Arg-90 and Glu-98 residues of MotA, which are located in the cytoplasmic 
loop between TM2 and TM3 of MotA, interact with highly conserved Asp-289 and Arg-281 residues 
of FliG, respectively (Figure 2a) [77,78,79,120]. These two electrostatic interactions are responsible for 
efficient stator assembly around the rotor, and the interaction between Glu-98 of MotA and Arg-281 
of FliG is likely to be involved in torque generation [79]. H+ translocation through the transmembrane 
H+ channel of the MotAB complex allows the cytoplasmic loop of MotA to associate with and 
dissociate from FliG to drive flagellar motor rotation [119]. However, the energy coupling mechanism 
of the flagellar motor remains unknown. 

6.2. Torque-Speed Relationship 

Precise measurements of motor rotation are important to elucidate the torque-generation 
mechanism of the flagellar motor. Direct evidence that the bacterial flagellum is a rotary motor is 
obtained by tethered cell assay (Figure 3a), in which the cell body rotates by tethering the filament to 
a glass surface [121]. The tethered cell assay is a simple method to measure the rotation of the flagellar 

Figure 2. H+ translocation mechanism of the flagellar motor. (a) Topology of the E. coli MotA and
MotB and a crystal structure of the peptidoglycan-binding domain of MotB (MotBPGB, PDB code:
2ZVY). Highly conserved Arg-90 and Glu-98 residues in the cytoplasmic loop between transmembrane
helices 2 (A2) and 3 (A3) interact with conserved Asp-289 and Arg-281 residues of FliG, respectively,
to drive motor rotation. Asp-32 of MotB provides a binding site for H+. Pro-173, Met-206 and Tyr-217
of MotA and Ala-39 and Leu-46 of MotB are involved in the H+ relay mechanism. Cyto, cytoplasm;
CM, cytoplasmic membrane; Peri, periplasm. (b) Arrangement of transmembrane segments of MotA
and MotB. The MotAB complex has two proton channels. Four MotA subunits are positioned with
their TM3 (A3) and TM4 (A4) segments adjacent to the MotB dimer, and their TM1 (A1) and TM2 (A2)
segments on the outside. (c) A plausible model for H+ translocation through MotAB stator complex
(see text for details).

5.3. H+ Translocation Mechanism

The maximum rotation rate of the H+-driven flagellar motors of E. coli and Salmonella is reduced
with a decrease in the intracellular pH. In contrast, a change in external pH does not affect the maximum
motor speed at all. These observations suggest that the intracellular H+ concentration affects the rate
of the H+ flow through the MotAB complex [109,110].

Asp-33 of Salmonella MotB, which corresponds to Asp-32 in E. coli MotB, is critical for the
binding of H+ from the cell exterior, and its protonation and deprotonation cycle is directly linked to
a torque generation step caused by stator–rotor interactions [111]. The motB(D33E) mutation results in
a considerable decrease in the rate of H+-coupled conformational change of the MotAB complex [112].
Furthermore, the motB(D33E) mutation causes not only large speed fluctuations but also frequent
pausing of motor rotation at low load. However, neither speed fluctuation nor pausing is seen at high
load [112]. These observations suggest that the protonation and deprotonation cycle of Asp-33 of
MotB may occur in a load-dependent manner. The dissociation of H+ from this Asp-33 residue to the
cytoplasm is linked to conformational changes of a cytoplasmic loop of MotA, which is responsible for
the interaction with FliG. Molecular dynamics (MD) simulation has predicted that the binding of H+ to
this Asp residue induces a conformational change of the proton channel to facilitate H+ release to the
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cytoplasm [105]. Two highly conserved residues, Pro-173 of MotA-TM3 and Tyr-217 of MotA-TM4,
are involved in such H+-coupled conformation changes of the H+ channel [113–115].

Based on MD simulation of the H+ channel of the E. coli MotAB complex, the H+ translocation
through the channel is postulated to be mediated by water molecules aligned along a H+ pathway
(i.e., water wire). Leu-46 of MotB is assumed to act as a gate for hydronium ion (H3O+) and then
to transfers H+ to MotB-Asp32 via the water wire [105]. Mutations at position of Ala-39 of MotB,
which resides on the same side as Asp-32 in the H+ pathway, impair motility and are partially
suppressed by extragenic mutations at Met-206 of MotA [116]. This Met-206 residue is located near
the periplasmic end of TM4 and faces the H+ pathway [105,117]. The motA(M206I) mutation reduces
the H+ channel activity, thereby reducing motility [118]. Taken all together, the H+ translocation
mechanism is postulated to be as follows: (i) H+ permeates a H+ channel in the H3O+ state through
Leu-46 of MotB, (ii) Met-206 of MotA and Ala-39 of MotB are involved in the transfer of H+ along the
water wire, (iii) H+ binds to Asp-32 of MotB, and (iv) the dissociation of H+ from Asp-32 of MotB to
the cytoplasm is facilitated by a conformational change of the H+ channel through Pro-173 and Tyr-217
of MotA (Figure 2c). As a result, the cytoplasmic loop of MotA can interact with FliG to drive flagellar
motor rotation [119].

6. Torque Generation

6.1. Rotation Mechanism

Highly conserved Arg-90 and Glu-98 residues of MotA, which are located in the cytoplasmic loop
between TM2 and TM3 of MotA, interact with highly conserved Asp-289 and Arg-281 residues of FliG,
respectively (Figure 2a) [77–79,120]. These two electrostatic interactions are responsible for efficient
stator assembly around the rotor, and the interaction between Glu-98 of MotA and Arg-281 of FliG
is likely to be involved in torque generation [79]. H+ translocation through the transmembrane H+

channel of the MotAB complex allows the cytoplasmic loop of MotA to associate with and dissociate
from FliG to drive flagellar motor rotation [119]. However, the energy coupling mechanism of the
flagellar motor remains unknown.

6.2. Torque-Speed Relationship

Precise measurements of motor rotation are important to elucidate the torque-generation
mechanism of the flagellar motor. Direct evidence that the bacterial flagellum is a rotary motor
is obtained by tethered cell assay (Figure 3a), in which the cell body rotates by tethering the filament
to a glass surface [121]. The tethered cell assay is a simple method to measure the rotation of the
flagellar motor to give fundamental knowledges on the motor mechanism. However, the maximum
speed of tethered cells is limited below 20 Hz, because a cell body (~2 µm in length) is extremely large
load against the flagellar motor (~45 nm in diameter). To measure the rotational speeds of the E. coli
flagellar motor over a wide range of external load, bead assay was developed by the Howard Berg
laboratory (Figure 3b) [11,122,123]. A bead is attached to a partially sheared sticky flagellar filament
lacking domain D3 of flagellin as a probe, and then the rotation of the bead is recoded by a quadrant
photodiode or a high-speed camera with high temporal and special resolutions. Therefore, bead assays
enable us to investigate output properties of the flagellar motor over the wide range of external load by
changing the bead size and medium viscosity. Viscous drags on a bead (γb) and a truncated filament
(γf) are obtained from the bead diameter and the flagellar morphology (filament length and thickness,
and helical pitch and radius), respectively, based on a hydrodynamic theory [124,125], and so motor
torque (M) can be estimated by M = (γb + γf) · 2πf, where f is the rotation rate.

Figure 3c shows a schematic diagram of the torque versus speed relationship of the flagellar motor,
namely torque-speed curve. The torque-speed curve of the flagellar motor consists of two regimes:
a high-load, low-speed regime and a low-load, high-speed regime [11]. As external load is decreased,
torque decreases gradually up to a certain speed and then falls rapidly to zero. The rotation rate of
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the flagellar motor is proportional to IMF over a wide range of external load (Figure 3d) [126,127].
Both deuterium oxide and temperature affect the rotation rate of the E. coli motor operating in the
low-load, high-speed regime but not in the high-load, low-speed regime (Figure 3d), suggesting that
a steep decline of torque seen in the low-load, high-speed regime is limited by the rate of H+-coupled
conformational changes of the MotAB complex [11,123]. Torque at high load is dependent on the
number of active stator units in the motor, whereas the maximum motor speed near zero load is
independent of the stator number [122,128,129]. However, recent two biophysical analyses have
revealed that the maximum speed near zero load increases with an increase in the number of active
stator units in the motor [130,131], suggesting that both torque and speed would be proportional to not
only IMF but also to the stator number over a wide range of external load.
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Figure 3. Characterization of the rotation of the flagellar motor. (a) Tethered cell assay. (b) Bead assay;
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6.3. Stepwise Rotation

Discretely stepwise movements have been observed in many molecular motors. For example,
kinesin, which is an ATP-driven linear motor, moves along a microtubule with steps of 8 nm
interval [132]; myosin V on an actin filament shows stepwise movements with 36 nm intervals with
90◦ random rotation either CCW or CW [133]; and F1-ATPase, which is the ATP-driven rotary motor,
shows a 120◦ step, which is further divided into 80◦ and 40◦ substeps [134]. Such stepwise movements
reflect the elementary process of mechanochemical energy coupling, e.g., 80◦ and 40◦ substeps in
F1-ATPase are coupled with ATP binding and Pi release, respectively, and thus kinetics and dynamics
of the step events are important for understanding the motor mechanism. When the flagellar motor
labelled with a small bead (diameter: ~100 nm) contains only a single stator unit around a rotor and
spins at a few Hz, stepping motions of the motor has been observed. The flagellar motor containing
a single stator unit rotates with 26 steps per revolution in both CCW and CW directions [135,136].
Since the number of steps per revolution is consistent with the rotational symmetry of the FliG ring,
it is suggested that torque is generated through cyclic association–dissociation of MotA with every
FliG subunit along the circumference of the rotor and that such an elementary process is symmetric in
CCW and CW rotation. However, it remains unknown how the protonation–deprotonation cycle of
Asp-32 of MotB is linked to the cyclic association–dissociation of MotA with FliG.

6.4. Duty Ratio

The duty ratio is defined as a fraction of time that a stator unit is bound to a rotor in the
mechanochemical cycle of the flagellar motor. The duty ratio is one of the fundamental properties
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of molecular motors and is an important parameter for understanding the operation mechanism.
The duty ratio of the flagellar motor has been discussed based on the dependency of the rotation rate
on the number of active stator units in the motor [122,128–131]. At high load where torque generation
against load is a rate limiting step, the rotation rate is proportional to the number of active stator units
in the motor regardless of the value of the duty ratio: If the duty ratio is large (~1), the rotation rate is
proportional to the sum of the applied torque because multiple stator units work together at the same
time; If the duty ratio is small (<< 1), each stator unit works independently and so the probability
of torque generation by the motor per a certain period of time is increased with an increase in the
number of active stator units in the motor. As a result, the rotational speed of the flagellar motor is
proportional to the number of active stator units in the motor. At low load where kinetic processes
(e.g., proton translocation and conformational change) are rate limiting steps, the relationship between
the rotation rate and the number of active stator units would depend on the duty ratio: If the duty ratio
is close to 1, total torque does not affect the rotation rate, and so the rotation rate of the motor does not
depend on the number of active stator units in the motor; if the duty ratio is small, the probability
of torque generation by stator-rotor interactions is increased with an increment in the stator number.
Ryu et al. have shown that the stator number dependence of the rotational speed of the E. coli flagellar
motor becomes smaller when external load becomes lower [122]. Furthermore, Yuan and Berg have
shown that the maximum speed of the E. coli motor is independent of the number of active stator
units in the motor [128]. Recently, Wang et al. have reported that the maximum speed of the E. coli
motor near zero load is constant although the number of active stator units varies [129]. These three
studies have suggested that the duty ratio of the flagellar motor seems to be large. Assuming that
the flagellar motor has a high duty ratio, theoretical studies can reproduce the output properties of
the flagellar motor such as a torque-speed curve [137–141]. In contrast, a recent study using a hybrid
motor containing both H+-type and Na+-type stator units in E. coli cells has shown that the maximum
speed of the hybrid flagellar motor near zero load varies with the number of active stator units in
the motor [130]. This observation is supported by recent observation that the zero-torque speed
of the Salmonella flagellar motor depends on the number of active stator units in the motor [131].
These suggest that the duty ratio of the flagellar motor operating at low load is smaller than the
previous thought. By removing the high duty ratio constraint from the theoretical model, it is also
possible to reproduce the stator-number-dependent rotational speed close to zero load. This physical
model also predicts that the duty ratio will become larger with increase in the number of active stator
units when the motor operates at low load and that a high duty ratio will be required for the motor to
processivity generate much larger torque at high load [142]. Thus, the duty ratio of the flagellar motor
is currently controversial, and hence further experimental verification over a wide range of external
load will be necessary.

7. Switching of Direction of Flagellar Motor Rotation

7.1. Conformational Changes for Reversal of Motor Rotation

E. coli and Salmonella cells sense temporal changes in chemical concentrations of attractants and
repellents via transmembrane chemoreceptors (methyl-accepting chemotaxis proteins, MCP) localized
near the cell pole [143]. The binding of repellent to MCP induces auto-phosphorylation of CheA via
the adopter protein CheW, and then CheA-P transfers a phosphate to the response regulator CheY.
The binding of the phosphorylated form of CheY (CheY-P) to FliM and FliN induces the structural
remodeling of the C ring responsible for the switching of direction of flagellar motor rotation from
CCW to CW. The relationship between the switching frequency and CheY-P concentration shows
a sigmoid curve with a Hill coefficient of ~10 [144]. This switching Hill coefficient value is larger than
the Hill coefficient estimated from the binding affinity of CheY-P for the motor [145,146]. This suggests
that CheY-P-dependent structural remodeling of the C ring occurs in a highly cooperative manner.
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Since the elementary process of torque generation by stator-rotor interactions is symmetric in CCW
and CW rotation, FliGC, which contains highly conserved Arg-281 and Asp-289 residues involved
in the interaction with MotA, is postulated to rotate 180◦ relative to MotA [136]. FliGC has a highly
flexible MFXF motif between FliGCN and FliGCC subdomains and so the MFXF motif allows FliGCC

to rotate 180◦ relative to FliGCN to reorient Arg-281 and Asp-289 residues in FliGCC to achieve the
symmetric elementary process of torque generation in both CCW and CW rotations (Figure 4) [147,148].

HelixMC is a helical linker connecting FliGM and FliGN and plays an important role in directional
switching of the flagellar motor [149]. A deletion of three residues in the N-terminal end of HelixMC

(Pro-Ala-Ala, PAA) locks the flagellar motor in the CW state even in the absence of CheY-P [149].
The PAA deletion causes conformational rearrangements of the FliGM–FliMM interface to induce
a detachment of HelixMC from the interface. Furthermore, this PAA deletion induces a 90◦ rotation
of FliGCC relative to FliGCN through the MFXF motif in solution [75,76,149]. This is supported by
in vivo site-directed crosslinking experiments [150]. Recent cryoEM image analyses have shown that
inter-subunit spacing between C ring proteins are closer in the C ring of the CW motor than in that
of the CCW motor [87], suggesting that the binding of CheY-P to FliM and FliN significantly affects
inter-molecular interactions between the C ring proteins. Therefore, it is possible that the binding
of CheY-P to FliM and FliN changes inter-molecular FliMM–FliMM, FliMC–FliN and FliGM–FliMM

interactions in the C ring to induces the dissociation of HelixMC from the FliGM–FliMM interface,
thereby affecting inter-molecular FliGM–FliGCN interactions to allow FliGCC to rotate 180◦ relative to
FliGCN through a conformational change of the MFXF motif (Figure 4).

In E. coli and Salmonella, the binding of repellent to MCP elevates the cytoplasmic CheY-P level,
thereby increasing the probability that the motor spins in CW direction. In contrast, the chemotaxis
signaling pathway and response are known to diverse among bacterial species. In B. subtilis, CheY-P
acts in the opposite way to induce CCW rotation. The binding of attractant to MCP of B. subtilis
facilitates phosphorylation of CheY, and CheY-P binds to FliM to switch motor rotation from CW
to CCW [151]. Rhodobacter sphaeroides possesses six CheY proteins, CheY1 to CheY6. The decreased
attractant concentration increases the cytoplasmic CheY3-P, CheY4-P, and CheY6-P levels, and the
binding of CheY6-P to FliM stops motor rotation with the support of CheY3-P and CheY4-P [152].
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7.2. Conformational Spread for Cooperative Switching

Cooperative flagellar switching can be reproduced by an Ising-type model assuming allosteric
cooperativity of the conformational change in C ring subunits [153]. The model assumes four states
for each subunit, determined by whether a subunit conformation is placed in either the CCW or
CW state with or without CheY-P bound. Assuming that homogeneous states of adjacent subunits
(e.g., CCW-CCW-CCW or CW-CW-CW) are more stable than heterogeneous ones (e.g., CCW-CW-CCW
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or CW-CCW-CW), the directional switching is mediated by conformational changes in C ring subunits
that extend from subunit to subunit via inter-molecular interactions between nearest adjacent subunits
(Figure 5) [153]. The model prediction was verified by simultaneous measurements of motor rotation
and a turnover of CheY labelled with a green fluorescent protein (GFP) between the motor and the
cytoplasmic pool, showing that, in spite of the switch complex contains ~34 FliM subunits, the binding
of about 13 CheY-P molecules can reverse the motor [154].
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(a) Interaction between adjacent rotor subunits. (b) Conformational spread upon CheY-P binding.

The switching rate increases until the motor speed reaches ~150 Hz, and then decreases with
further increase in the rotation rate [155,156]. The conformational spread model also explains a speed
(load) dependent switching frequency by assuming the effect of mechanical force on the switching
rate, which each stator unit applies force on the FliG subunit in the C ring [140]. The conventional
Ising-type conformational spread model, which is an equilibrium model sufficient for detailed
balance, shows exponentially decayed distributions of the duration time for CCW or CW rotation.
Such exponential duration-time distributions have been observed experimentally, suggesting the
equilibrium switching system. Recently, Wang et al. have measured the CCW and CW durations at
various conditions of load, PMF, and the number of active stators and have shown non-exponential
shaped distributions in a torque-dependent manner. The results suggest that the flagellar switch could
be a non-equilibrium system rather than an equilibrium system under certain conditions, and that
motor torque is a key factor for breaking detailed balance. Furthermore, the directional switching of
the flagellar motors working under non-equilibrium conditions (e.g., at high load) can occur at lower
CheY-P level compared to those placed under equilibrium conditions, suggesting that the binding
affinity of the flagellar motor for CheY-P is enhanced by applied force [157]. Thus, the switching of
direction of flagellar motor rotation is controlled not only by the chemotactic signaling pathway but
also by the mechanical force [140,157].

8. Stator Assembly

The PGB domains of MotB (MotBPGB) and PomB (PomBPGB) bind to the PG layer to allow
the MotAB and PomAB complexes to become an active stator unit around a rotor [93,158,159].
The N-terminal portions of MotBPGB and PomBPGB adopt a compact conformation in their crystal
structure, but are structurally flexible to allow them to adopt an extended conformation as well
(Figure 6). Structure-based mutational analyses of MotBPGB and PomBPGB have suggested that a 5 nm
extension of the PGB domain from the transmembrane ion channel is required for the binding of
MotBPGB and PomBPGB to the PG layer (Figure 6) [158,160]. Recently, such a 5 nm extension process of
the PGB domain of MotS (MotSPGB) of B. subtilis has been directly visualized by high-speed atomic force
microscopy [93]. The 5 nm extension of MotSPGB is divided into at least two steps [93]. The first 2.5 nm
extension step is caused by a detachment of a flexible linker connecting MotSPGB with MotS-TM from the
transmembrane Na+ channel of the MotPS complex, and the second 2.5 nm extension step results from
an order-to-disorder transition of the N-terminal portion of MotSPGB. Consistently, the motB(L119P)
mutation in MotBPGB induces an extended conformation of the N-terminal portion of MotBPGB [159].
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Interestingly, the motB(L119P) mutation increases not only the PGB binding activity of MotBPGB [159]
but also the proton channel activity of the MotAB complex [107]. Therefore, it seems likely that proper
positioning of an inactive MotAB complex around the rotor via stator–rotor interactions triggers
a detachment of the flexible linker from the H+ channel, followed by a structural transition of the
N-terminal portion of MotBPGB from the compact to extended forms to become an active stator unit in
the motor [159] (Figure 6).
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Figure 6. Activation mechanism of the H+-type MotAB complex. The MotAB complex consists of at least
three structural parts: a cytoplasmic domain, a transmembrane ion channel and a peptidoglycan-binding
domain [MotBPGB, PDB codes: 2ZVY (left panel) and 5Y40 (right panel). When the MotAB complex
adopts a compact conformation, a plug segment of MotB binds to a transmembrane H+ channel to
suppress massive H+ flow (left). When the MotAB complex encounters a rotor, electrostatic interactions
between the cytoplasmic domain of MotA and FliG trigger the dissociation of the plug segment from
the channel, followed by partial unfolding of the N-terminal portion of MotBPGB to allow MotBPGB

to bind to the peptidoglycan (PG) layer. As a result, the MotAB complex becomes an active H+-type
stator unit to drive flagellar motor rotation (right).

The flagellar motor can accommodate about 10 stator units around a rotor in E. coli and Salmonella
when the motor operates at high load [161]. High-resolution single molecule imaging techniques
have revealed exchanges of the MotAB complex labelled with GFP between the basal body and the
membrane pool during rotation at a rate constant of 0.04 s−1, indicating that the dual time of a given
stator unit is about 0.5 min. This suggests that the interaction of MotBPGB with the PG layer is highly
dynamic, thereby allowing the MotAB complex to alternate in attachment to and detachment from the
motor during motor rotation [162]. Interestingly, when external load becomes low enough, only a few
stator units work around the rotor to drive motor rotation [163–165]. This suggests that such a dynamic
assembly–disassembly process of the stator complex occurs in a load-dependent manner.

The number of active stator units can be estimated by resurrection experiments, in which time
traces of the rotational speed of a single flagellar motor usually show stepwise speed increments and
decrements. Each increment reflects the incorporation of a single MotAB complex around the rotor to
become an active stator unit in the motor whereas each decrement unit reflects the disassembly of the
MotAB stator complex from the rotor [163–165]. A deletion of a flexible linker connecting MotB-TM
and MotBPGB results in a rapid decrease in the number of active stator units in the motor compared
to the wild-type motor, suggesting that this flexible linker of MotB modulates the binding affinity of
MotBPGB for the PG layer in a load-dependent manner [166]. Certain mutations in the cytoplasmic
loop of MotA, which interacts with FliG, significantly affect the mechano-sensitivity of the MotAB
complex, thereby causing distinct load-dependent assembly and disassembly dynamics compared to
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the wild-type. This suggests that the cytoplasmic loop of MotA may sense a change in external load
through the interaction with FliG to control the number of active stator units around the rotor [86].

How does the cytoplasmic loop of MotA transmit the mechanical signal to MotBPGB associated
with the PG layer to coordinate the number of active stator units in the motor in response to changes
in external load? Nord et al. have reported that the dissociation rate of the MotAB stator complex
becomes slower with an increase in applied force, thereby increasing the bound lifetime of each active
stator unit incorporated into the motor, and that an abrupt relief from the stall makes the dissociation
rate much faster, thereby decreasing the bound lifetime [130]. As a result, the average number of active
stator units in the motor is maintained about 10 in the high-load, low speed regime whereas the stator
number is decreased from 10 to a few when external load becomes quite low. Recently, it has been
shown that a turnover process of the stator unit is divided into two distinct, slow (the rate constant
of ~0.008 s−1) and fast (~0.2 s−1) steps [167]. Although the slow step called “hidden state” is not yet
clarified, the fast step is assumed to reflect a rapid conformational change of MotBPGB to become
an active stator unit.

The assembly and disassembly dynamics of the stator complex are also affected by changes in the
extracellular ion concentration [93,101,118,168,169]. The Na+-coupled PomAB and MotPS complexes
can be assembled into a motor when the external Na+ concentration is high enough [93,101,168].
How do the PomAB and MotPS complex sense external Na+? High-speed atomic force microscopy
with high special and temporal resolutions has revealed that MotSPGB adopts a folded conformation in
the presence of 150 mM NaCl, but becomes denatured when the external Na+ concentration is less than
150 mM NaCl. These direct observations suggest that MotSPGB functions as a Na+ sensor to efficiently
promote the assembly and disassembly of the MotPS complex with the motor in response to changes
in external Na+ concentration [93].

9. Conclusions and Perspectives

The flagellum of E. coli and Salmonella is a supramolecular rotary motor powered by an inward-directed
H+ translocation through a transmembrane H+ channel of the MotAB stator complex and can spin
in both CCW and CW directions without changing the direction of H+ flow. The flagellar motor is
conserved among bacterial species, but the flagellar structure has adopted to function in various
environments of the habitant of bacteria [9,10]. The structure of the rod, hook and filament and their
mechanical properties are understood at near atomic resolution. Because structural information on the
rotor and stator is still limited, it remains unknown how the transmembrane stator complex conducts
ions and exerts force on the rotor, how the rotor switches between the CCW and CW states in a highly
cooperative manner, and how the stator complex senses external ion concentration to become an active
stator unit around the rotor. To clarify these remaining questions, high-resolution structural analyses
of the rotor and stator would be required.

The elementary process of the flagellar motor is visualized to be composed of a step and
a dwell [135,136]. Since the dissociation rate of the stator unit becomes much faster at low load than at
high load, the number of active stator units in the motor is decreased from 10 to a few when external
loads become low enough [130]. Although the duty ratio of the flagellar motor seems to be small,
the flagellar motor containing only a few stator units can processively generate torque for high-speed
rotation near zero load. However, it remains unknown how the H+ translocation process is linked
to a torque generation step by stator-rotor interactions and how cyclic association–dissociation of
MotA with every FliG subunit along the circumference of the rotor allow the motor to spin at about
300 revolutions per second in a highly processive manner. Much more precise measurements of the
rotational speed of the flagellar motor near zero load would be essential to advance our mechanistic
understanding of the energy coupling mechanism of the flagellar motor.
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