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Abstract: Oncolytic abilities of vaccinia virus (VACV) served as a basis for the development of
various recombinants for treating cancer; however, “natural” oncolytic properties of the virus are not
examined in detail. Our study was conducted to know how the genetically unmodified L-IVP strain
of VACV produces its antitumor effect. Human A431 carcinoma xenografts in nude mice and murine
Ehrlich carcinoma in C57Bl mice were used as targets for VACV, which was injected intratumorally.
A set of virological methods, immunohistochemistry, light and electron microscopy was used in the
study. We found that in mice bearing A431 carcinoma, the L-IVP strain was observed in visceral
organs within two weeks, but rapidly disappeared from the blood. The L-IVP strain caused decrease
of sizes in both tumors, however, in different ways. Direct cell destruction by replicating virus plays
a main role in regression of A431 carcinoma xenografts, while in Ehrlich carcinoma, which poorly
supported VACV replication, the virus induced decrease of mitoses by pushing tumor cells into
S-phase of cell cycle. Our study showed that genetically unmodified VACV possesses at least two
mechanisms of antitumor effect: direct destruction of tumor cells and suppression of mitoses in
tumor cells.

Keywords: vaccinia virus; genetically unmodified L-IVP strain; human A-431 carcinoma xenografts;
murine Ehrlich carcinoma; VACV-induced arrest of mitoses

1. Introduction

The vaccinia virus (Poxviridae family) is among the most “famous” viruses; it is primarily known
for its successful use in vaccination and its role in smallpox eradication [1]. Vaccinia virus (VACV)
possesses many unique properties that place this virus at a leading position in molecular biology
and genetic engineering. Its ability to kill cancer cells is one of the fundamental biological properties
of VACV, and was first reported by Levaditi C. and Nicolau S. in 1923 in the Annals of the Pasteur
Institute [2]. Subsequent studies confirmed the oncolytic activity of VACV [3]; however, over the next
few decades researchers failed to achieve stable results in treatment of cancer patients using VACV,
and most importantly, to avoid complications caused by introducing the infectious virus into human
organism. The interest to studies of VACV application in oncology seemed to wane. However, progress
in genetic engineering now enables researchers to change the biological properties of VACV over
a wide range, and this has led to a surge of interest to oncolytic abilities of genetically modified VACV.
Modern studies exploit many properties of VACV in order to reach its full oncolytic potential. These
properties include the VACV’s ability to infect a wide range of eukaryotic cells [4], and to actively
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replicate in the cytoplasm and thus spread among neighboring cells to infect and kill them. Most
importantly for genetic engineering are the absence of VACV integration with the host genome and
the possibility to insert up to 25,000 base pairs into the viral genome without loss of infectivity [5–7].
To enhance VACV oncolytic properties, various genes are inserted: cytokines [8–11], inhibitors of
angiogenesis [12,13], enzymes that convert non-toxic precursors within tumors in their cytotoxic
derivatives [14,15], and genes of apoptosis-inducing proteins [16,17]. Detailed reviews and analysis of
studies with genetically modified oncolytic VACV, including some which are in clinical trials, recently
were published in several comprehensive reviews [7,18,19].

Advances in development of genetically modified VACV variants overshadowed the question:
how original parental VACV implements oncolytic (antitumor) effect? We think that it is necessary to
know “native” antitumor properties of the parental VACV in order to understand the mechanisms of
recombinant viruses’ oncolytic activities and to evaluate the real effects of the genetic modifications.
The aim of this work was to study antitumor properties of the VACV strain L-IVP (Lister-Institute of
Vaccine Preparations, Moscow, Russia, GenBank accession number: Bank It1780508 LIVP KP233807).
It is believed that Lister strain of VACV was isolated in Cologne (Germany) at the Institute of Vaccines
in 1870 from a soldier suffering from smallpox, and most probably the strain appeared after the
additional infection of a soldier with the laboratory vaccine strain [1].

The Lister strain was used in the program to fight smallpox in the United Kingdom since 1892 and
in the Lister Institute (France) since 1916. After transfer to other laboratories, this strain was also known
as Liverpool, Merieux 37 and Nigeria. The Lister strain also was transferred to the Institute for Viral
Preparations (Moscow, USSR) and used under the acronym L-IVP for vaccination against smallpox
and for scientific research [17,20,21]. Many studies have shown the advantages of genetically modified
Lister strain as an oncolytic agent in comparison with other VACV strains and other viruses [22].

Our study of apoptin-producing recombinant obtained using L-IVP strain in comparison with
the parental strain revealed rapid destruction of human carcinoma A431 xenografts in nude mice after
intratumoral injection of both viruses [20]. The L-IVP strain clearly demonstrated oncolytic effects
via direct destruction of tumor cells (signs of inflammatory reactions and leukocyte accumulation in
tumor tissue, and viral destruction of blood vessels were not observed). The question arose: what are
other mechanisms may contribute to the antitumor effects of the VACV?

In this study, we examined antitumor effect of the L-IVP strain using murine Ehrlich carcinoma in
C57Bl mice and compared that with oncolytic effect of this virus in human A431 carcinoma xenografts
in nude mice. In contrast with human cells, murine cells are not naturally susceptible to VACV, so it
was interesting to compare viral antitumor effects in these two models. Our study showed that the
L-IVP strain of VACV possesses antitumor activity towards murine tumor, which is mainly related
with mitotic arrest in murine tumor cells.

2. Materials and Methods

2.1. Virus and Cells

The L-IVP strain of VACV was obtained from the State Collection of Viral and Rickettsial Disease
Agents of the State Research Center of Virology and Biotechnology “Vector” (SRC VB “Vector”,
Koltsovo, Russia). The strain was cloned and has been passed 6 times in CV-1 cells and purified
by centrifugation in sucrose density gradient (25%–45%). The viral preparation was sonicated and
titrated using the plaque formation assay in CV-1 cell monolayers. Virus titers were expressed as
plaque forming units (PFU) per mL. The viral stock represented 109 PFU/mL in sterile saline and
aliquots were stored at ´80 ˝C. Human cancer cell lines (A549, A431, C33A, U87MG, RD, DU145,
MCF7, Mel8, SW480, HeLa) of different origin were grown in DMEM (Invitrogen, Waltham, MA, USA)
supplemented with 10% fetal calf serum (FCS, HyClone, Logan, UT, USA). Diploid human embryonic
LECH-240 cells were grown in F-12 medium (Invitrogen) supplemented with 10% fetal calf serum
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(FCS, HyClone). MCF10A cells were grown in a specialized culture medium for mammary epithelial
cells MEGM Bullet Kit (Lonza, Allendale, NJ, USA).

2.2. Cytotoxic Activity of VACV Strain L-IVP toward Human Tumor Cell Lines

Cytotoxic activity of VACV strain L-IVP toward human tumor cell lines was evaluated by
XTT microassay (using 2,3_bis_(2-methoxy-4_nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide,
Sigma-Aldrich, St. Louis, MO, USA) in 96-well plates (Greiner, Pleidelsheim, Germany) [8]. This
method employs the fact that mitochondrial dehydrogenases can convert soluble XTT into formazan,
which crystallizes within the cell. Formazan can be solubilized by phenazine methosulfate (PMS)
treatment, and the optical density of the solution determined by spectrophotometry accurately reflects
the changes of formazan quantities in viable cells. The specific rate of cell death in infected cultures was
assessed in relation to uninfected control cells (100% viabilityπ). Cytolytic activity was evaluated as the
50% cytotoxic dose (CD50), that is, the virus concentration causing death of 50% of cells. To determine
CD50, cells growing in a 50% monolayer were infected with sequential tenfold dilutions of viral
suspension in 100 µL of 199 medium supplemented with 2% FCS (0.001 to 10 PFU/cell). Following 72 h
incubation at 37 ˝C, in an atmosphere of 5% CO2 and 85% humidity, 50 µL of XTT/PMS mixture were
added to each well (the mixture was prepared with 20 µL of 1.25 mM PMS (Fluka, St. Louis, MO, USA)
per 1 mL of 1 mg/mL XTT working solution). Plates were incubated for additional 4 h, and optical
densities (OD490/620) were determined using the SpectraCount Plate Reader photometer (Packard,
Missouri, TX, USA). To obtain a curve that represents the dependence between OD and multiplicity
of infection, data obtained from five replicates were used to calculate the mean and SD values for
each point corresponding to different virus concentrations. This curve was used to determine CD50

as the virus concentration at which the OD490/620 value of infected wells was 50% of OD490/620
measured in wells with uninfected culture. CD50 values were compared across cell cultures; higher
CD50 indicated the lower oncolytic activity of the given virus strain in a particular cell culture. All
computations were performed using LabView software.

2.3. Animal Studies

Studies with mice were performed under protocols approved by the SRC VB VECTOR Institutional
Animal Care and Use Committee (NIH Office 85 of Laboratory Animal Welfare, Number A5505-02).

A431 human carcinoma model. Female Nu/Nu mice (Nursery for Laboratory Animals, Institute
of Bioorganic Chemistry, Moscow, Russia) were used for the xenograft model of human A431 carcinoma.
Tumors were generated in 8–10 week old Nu/Nu mice (20–26 g) by subcutaneous injections of 5 ˆ 106

A431 cells (in 100 mL PBS) in the left hind region. Tumors were measured in two dimensions using
a digital caliper, and their volume was calculated by the following formula: [length ˆ width2 ˆ 0.5] [20].
When tumors reached 200–250 mm3 in volume (10 days after tumor cells injection), the mice received
a single injection of the LIVP strain (1 ˆ 107 PFU/mouse in 100 mL of saline) into tumor. The control
group of mice received 100 mL of saline.

To assess the dynamics of virus accumulation in tissues and organs, mice were sacrificed every
48 h in the period from 2 to 20 days after injection; and every 96 h in the period from 20th to 55th
days (two mice at each time-point from each experimental group). Specimens of xenografts, spleen,
liver, lungs, kidneys and blood were collected from two mice from experimental and control groups
at each time point. To evaluate viral content, homogenates of organs and tissues (10%, v/v) were
prepared in saline, sonicated, centrifuged and then titrated by plaque formation assay on a monolayer
of CV-1 cells. For microscopic studies xenografts were collected from mice of each control and infected
groups at 2, 4 and 8 days after VACV injection. Xenografts of infected mice also were sampled on 36th
and 55th days after virus injection. The tumors and adjacent tissues were dissected and fixed in 4%
paraformaldehyde solution.

Murine Ehrlich carcinoma model. Male mice C57Bl were inoculated subcutaneously with murine
Ehrlich ascites carcinoma cells (13 ˆ 106 in 0.4 mL of sterile saline) in the thigh right hind paw. After
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7 days, when tumors reached 200–220 mm3 in volume, mice received a single injection of the L-IVP
stain (1 ˆ 107 PFU/mouse in 100 mL of sterile saline) into tumor. Mice of the control group received
100 mL of saline. Mice were sacrificed on days 2, 4, 6, 8, 12 and 14 after virus injection (three mice at
each time-point from each group); volume of their tumors was measured as described above. Tumors
were dissected and fixed in 4% paraformaldehyde solution.

Female C57/B1 mice were injected intraperitoneally with 3–3.5 ˆ 106 cells of Ehrlich carcinoma
cells in 0.2 mL of saline. Four days after cell injection 15 mice received intraperitoneally 1.3 ˆ 107 PFU
of L-IVP strain in 100 mL of saline, and 10 mice were injected with 100 mL of saline (control). Mice
were sacrificed on days 3, 6, 9 and 10 after VACV injection (three mice from at each time-point from
each group), abdominal cavity was opened and ascitic fluid was collected. Some fluid (0.3–0.4 mL)
was used for VACV titration by plaque formation assay on a monolayer of CV-1 cells. The remaining
ascitic fluid was cleaned by three repeats of dilution with saline and centrifugation at 2000 RPM for
5 min. Final pellets were fixed in 4% paraformaldehyde solution.

We attempted to propagate cells of Ehrlich carcinoma in vitro without success; in agreement with
published studies, the tumor was only able to be grown in vivo.

2.4. Microscopic Studies

For histologic studies, specimens of tumors and ascitic cells were routinely processed using
Sakura Tissue-TEK II device (Sakura Finetek, Tokyo, Japan) and embedded in Histomix. Paraffin
sections were stained with hematoxylin and eosin. The sections for immunohistochemistry were
mounted on polylysine-coated slides (Thermo Scientific, Waltham, MA, USA). Rabbit polyclonal
antibodies (Abcam, Cambridge, UK) in concentrations 2.5 and 5 mg/mL were applied to detect
proteins Apaf-1 (a marker of apoptosis) and Ki-67 (proliferation marker). The cell cycle S-phase marker,
PCNA, was detected using corresponding mouse antibodies in concentration 5 mg/mL (BioLegend,
San Diego, CA, USA). Rabbit polyclonal antibodies against CD3 and CD11b (Abcam) were used to
detect T-lymphocytes or monocytes and granulocytes on paraffin sections of solid Ehrlich carcinoma
correspondingly. The antibodies were diluted in accordance with manufacturer’s recommendations.
The antigens were visualized using AEC Single Solution detection kit (Abcam) in accordance with
the manufacturer's recommendations. Paraffin sections were examined using Leica DM 2500 (Leica,
Wetzlar, Germany) microscope supplied with digital camera Leica DFC420 C (Leica).

For electron microscopy, fixed in 4% paraform samples of xenografts and ascitic cells were
postfixed in 1% osmium tetroxide solution, then routinely processed and embedded into a mixture of
epon-araldite (EMS, Hatfield, PA, USA). Semithin sections were prepared from hard blocks, stained
with Azur II and examined in light microscope for selection of the areas for ultrathin sectioning
and counting mitotic cells. Ultrathin sections were cut using Leica EM UC7 ultramicrotome (Leica),
routinely contrasted by uranylacetate and lead citrate (SPI, West Chester, PA, USA) and examined
in transmission electron microscope JEM 1400 (Jeol, Tokyo, Japan). Images were collected using the
side-mounted digital camera Veleta (Olympus Corporation, Tokyo, Japan).

Tumor structures on paraffin sections were measured using Axio Vision SE64 Rel. 4.9.1 software.
The number of mitotic cells was calculated at ˆ400 magnification in 10 randomly selected fields in
peripheral zone of A431 carcinoma. In paraffin sections of Ehrlich ascitic carcinoma the amount of
mitotic and immunohistochemically positive cells were counted in randomly selected fields, not less
than 2000 cells were used for each calculation.

Statistical analysis was performed using STATISTICA 8.0.360.0 [23]. The significance of differences
was assessed by Mann-Whitney-Wilcoxon method (U-Mann-Whitney test).
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3. Results

3.1. Cytolytic Activity of VACV L-IVP Strain for Human Tumor Cell Lines in Vitro

For better understanding of the L-IVP strain’s oncolytic abilities, we examined the selectivity
of viral lytic effect in normal, diploid and cancer cell lines (Figure 1). We used normal breast epithelium
cells MCF10A, diploid human embryonic lung cells LECH-240, and ten cell lines that represent human
tumors of different origin: epidermoid carcinoma A431, lung carcinoma A549, cervical cancer cells
C33A and HeLa, breast adenocarcinoma MCF7, melanoma Mel 8, rhabdomyosarcoma RD, prostate
cancer DU145, epithelial glioblastoma/astrocytoma U87MG and colon adenocarcinoma SW480. As is
evident from Figure 1, the L-IVP strain exhibited significantly higher lytic effect on tumor cell lines
than on normal or diploid human cells (p < 0.05). The data confirm a natural VACV tropism for tumor
cells that was noticed earlier [9]. Human cancer cells A431, A549 and DU145 were highly sensitive
to the L-IVP strain and demonstrated CD50 values 0.004, 0.008 and 0.002 PFU/cell, correspondingly
(Figure 1). The selectivity index calculated as the ratio of CD50 value for normal MCF10A (>10 PFU/cell)
and tumor cells (0.002–0.07 PFU/cell), was more than 100 times higher for all types of cancer cells
independently from their origin.
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Figure 1. Cytotoxic activity of vaccinia virus (VACV) strain L-IVP in human cells. Ten tumor cell lines
were used: A549, A431, C33A, U87MG, RD, DU145, MCF7, Mel8, SW480 and HeLa. Diploid human
embryonic LECH-240 and normal breast epithelium MCF10A cells were tested to make a comparison.
Cells were grown in 96-well plates, infected with virus doses ranging from 0.001 to 10.0 PFU/cell
(sequential tenfold dilutions); 50% cytotoxic dose (CD50) was calculated using the XTT test (see
Materials and methods). Statistical analysis included results of three independent experiments. Data
are presented as the mean ˘ SD.

3.2. Virus Dissemination in Tissues and Organs of Mice Bearing Carcinoma A431

Our previous study [20] revealed high titers of the L-IVP strain in carcinoma A431 xenografts
on days 2 and 4 after virus injection: 2.3 ˆ 108 PFU/mL and 1.2 ˆ 109 PFU/mL. The maximum
viral concentration in the tumor was reached on day 8 post injection (2.6 ˆ 109 PFU/mL). In order
to examine the possibility of VACV’s spread throughout the organism, and thereby to infect cells
distant from the primary tumor or metastases, we determined the presence of the L-IVP strain in blood
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and visceral organs. This ability of VACV is noted in few publications [7], but was not examined
directly. We found the virus in small concentration (102 PFU/mL) in blood 2 days after injection
and noted the accumulation of the virus in visceral organs of mice within 14 days after intratumoral
injection (Figure 2). We suppose that the virus enters the blood in the moment of injection and spreads
inside the organism. However, secondary viremia was not registered within 55 days of observation
obviously due to the low level of VAVC replication in non-tumor cells and rapid clearance of the virus
from mouse organs. Comparison of virus titers in xenografts and visceral organs clearly shows high
selectivity of VACV toward tumor cells in vivo. The presence of the virus in blood and visceral organs
indicates that it is possible for the virus to infect tumor cells from a location somewhere outside of the
primary tumor.
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Figure 2. Kinetics of VACV strain L-IVP accumulation in human A431 carcinoma xenografts, blood
and visceral organs of nude mice after intratumoral virus injection. The bottom line indicates detection
limit of the method (about 10 PFU/mL). Data are presented as mean ˘ SD.

3.3. Ultrastructural Characteristics of the L-IVP Strain Replication in Cells of A431 and Ehrlich Carcinomas

Electron microscopy easily found VACV replication in cells of carcinoma A431 xenografts after
2 days post virus injection. Infected cells contained granular viroplasm, immature and mature viral
particles (Figure 3). Roundish immature virions (250–300 nm) accumulated in the cytoplasm as loose
aggregates about 3 µm in size; 10%–15% of them showed signs of alteration (Figure 3A). Mature
oval- or brick-shaped viral particles (250–300 nm) (Figure 3C) formed 2–3 aggregations per section of
infected cell. Many “enveloped” virions were observed in cells and extracellular spaces of carcinoma
A431 two days after virus injection. The envelope of VACV particles was formed by fused vesicles,
which derived from Golgi trans-region (Figure 3E–G). Thus, the viruses of the L-IVP strain actively
replicates cells in human carcinoma A431and large number of mature virions accumulate inside them.

In contrast, cells of murine Ehrlich carcinoma are unable to support active replication of the
VACV L-IVP strain. Using electron microscopy, we failed to find signs of virus replication in any of
the samples of solid Ehrlich carcinoma, including those collected after 9 days post virus injection.
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Presumably, this reflects a specificity of virus-cell interaction: the mouse is not a natural host for VACV,
so murine cells cannot efficiently support the reproduction of this virus.
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Figure 3. Replication of the L-IVP strain of VACV in cells of human A431 carcinoma (A,C,E–G) and
murine Ehrlich ascitic carcinoma (B,D) cells. Photos A,B show the formation of immature virus
particles, the insert in A shows a virion at high magnification, the asterisks show a viroplasm. Photo C
shows infected cell containing viroplasm (*) and accumulations of mature virions (shown by arrows),
the insert for C shows a mature virion at large magnification. Photos D–G show sequential steps of
formation of “enveloped” virions. The arrows show Golgi-derived vesicles, which fuse and thereby
form double-membrane envelope (shown by dotted arrow). The asterisk on photo D shows immature
virion, the double asterisks show mitochondria.

However, there was distinctive evidence of an antitumor effect (see below) indicating that virus
replication could occur in a small number of cells, below the sensitivity of electron microscopy. Electron
microscopic examination of Ehrlich carcinoma’s ascitic form revealed small numbers of infected cells
(about 1 cell in 10 thousands), corresponding to low titers of the L-IVP strain in ascitic fluid, which
varied from 102 to 105 PFU/mL in CV-1 cells. Relatively active virus replication was observed on
9th day after virus injection. Morphological characteristics of the L-IVP strain replication in ascitic
Ehrlich carcinoma cells were identical to those in carcinoma A-431 cells, but much fewer viral factories
were noted. Thus, viral inclusions were small (1–1.5 mm) and contained few immature viral particles
(Figure 3B). The total quantities of viral progeny were incomparably less than in cells of carcinoma
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A431; few mature virions were scattered in cytoplasm. Although there was a low level of replication,
the L-IVP strain has produced “enveloped” virus particles (Figure 3D), which comprised about 30% of
total mature virions. About a half of the mature virus particles showed altered morphology: nucleoid
and lateral bodies were not seen on ultrathin sections. Thus, the VACV L-IVP strain replicated poorly
in cells of murine Ehrlich carcinoma, in contrast to human cells of carcinoma A431.

3.4. Antitumor Effect of the L-IVP Strain on Two Carcinomas

Our previous study showed that injection of the L-IVP strain into human carcinoma A431
xenografts led to the delay and subsequent stopping of their growth, while xenografts injected with
saline continued to grow in size. Indeed, on day 55 the tumor volume in virus and saline injected
mice differed by more than 6 times. These results led to the conclusion that active replication of the
virus provides rapid destruction of the A431 carcinoma [20]. The Ehrlich solid carcinoma tumors
injected with the L-IVP strain also decreased in size in comparison with saline-injected control mice
(Figure 4). However, when we examined sections of solid Ehrlich carcinoma in the electron microscope,
we could not find signs of virus replication. Ehrlich solid carcinoma tumor had distinct outlines
and had no capsule, and aggressively invaded into muscles. In contrast, the carcinoma A431 was
compact and surrounded by distinct capsule (Figure 4). The structure of Ehrlich solid carcinoma
greatly complicated the study and made accurate measurements and calculations of tumor parameters
impossible. Nevertheless, comparison of histological sections of virus-injected and saline-injected
tumors found no differences in areas of necrotic zones and no signs of tumor destruction caused by
VACV replication. We also did not find signs of increased apoptosis of tumor cells.
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Figure 4. Changes of murine Ehrlich solid carcinoma volume after injection of the L-IVP strain and
saline (A); period after virus injection is shown on X-axis, tumor volume—on Y-axis. Paraffin section
of A431 carcinoma showing capsule (shown by arrows) and smooth outline (B); and Ehrlich solid
carcinoma (C,D). Arrows show fragments of muscle tissue, asterisks show necrotic zone, dotted arrows
show mitoses. Hematoxyline and eosin staining.

Obviously, the immune system could contribute to the delay of tumor growth, however, in both
carcinomas, there were no accumulations of leukocytes noted in routinely stained paraffin sections and
in ultrathin sections. We applied immunohistochemistry to recognize T-lymphocytes (CD3 marker),
monocytes and granulocytes (CD11b marker) in carcinoma sections. Examination of carcinoma A431
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injected with VACV or saline revealed some CD11b-positive cells in the capsule surrounding the tumor,
and single CD11b-positive cells scattered in tumor tissue. The amounts and distribution of monocytes
and granulocytes in A431 carcinoma did not differ in saline- and VACV-injected tumors. Cells, positive
for CD3 antigen were absent at all in sections of A431 carcinoma, because nude mice are deficient in
T-lymphocytes.

We expected to see evidence of cell immune response in Ehrlich carcinoma because it is murine
tumor implanted to immunocompetent C57B1 mice. The same patterns of accumulations of the
monocytes and granulocytes at the border of tumor and in necroses (Figure 5C) were found in sections
of Ehrlich carcinoma injected with saline (Figure 5A), and in sections of carcinoma, injected with VACV
(Figure 5C,E). The T-cells were scarce and mostly were located in connective tissue at the border of the
tumor; very few single T-cells were observed in tissue of saline-injected tumors (Figure 5B) and in the
VACV-injected tumors (Figure 5D,F). It should be noted, that signs of tumor tissue damage were not
found in vicinity of both CD3- and CD11b-positive cells.
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Figure 5. Immunohistochemical detection of monocytes and granulocytes (CD11b antibodies) and
T-lymphocytes (CD3 antibodies) in paraffin sections of Ehrlich carcinoma. Upper arrow shows reaction
in sections of saline-treated tumors (A) CD11b-positive cells; and (B) CD3-positive cells, both 14 days
after injection. Inserts show positively stained cells at high magnification. CD11b-positive cells in the
tumors injected with VACV; (C) 6 days and (E) 14 days after the injection. Rare T-lymphocytes are seen
in in Ehrlich carcinoma (D) 6 days and (F) 14 days after VACV injection. Positively stained cells are
shown by arrows. Asterisks show muscle fibers in Ehrlich carcinoma. Chromogen AEC, counterstained
with hematoxyline.
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The patterns of immunohistochemical staining of saline- and VACV-injected tumors over the
whole period of the experiment (14 days) were indistinguishable, indicating that the decrease in tumor
size after virus injection is not related to development of virus-induced cell immune response.

3.5. Examination of Cell Cycle in Ehrlich Ascitic and A431 Carcinomas

Tumor cells divide extensively, and we examined the possible alterations in this process caused
by VACV. A decrease in the amount of mitoses was noted in paraffin and semi-thin sections of Ehrlich
solid carcinoma, but the carcinoma’s irregular shape and the presence of muscles made accurate
counting of mitoses impossible. To resolve this task and evaluate the cell cycle characteristics, we
examined paraffin sections of ascitic Ehrlich carcinoma cells and found a decrease in number of mitotic
cells after the injection of L-IVP strain compared with saline-injected tumors (Figure 6A). After this,
we examined paraffin sections of human carcinoma A431 on days 2 and 4 after injection of the L-IVP
strain and found a decrease in the number of mitotic cells in comparison with saline-injected tumors
(Figure 6B). The calculation of the number of mitotic cells in A431 carcinoma at later stages after
virus injection was impossible, because the replicating virus destroyed all the tumor cells. The results
clearly indicated that L-IVP strain inhibits mitotic division in both mouse Ehrlich and human A431
carcinomas. Details of the changes in mitosis were even more evident in Ehrlich carcinoma because
the L-IVP strain did not destroy the tumor tissue.
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Figure 6. Decrease in number of mitoses in murine Ehrlich ascitic carcinoma (A) and human A431
carcinoma xenografts (B) after injection of the L-IVP strain. The period after virus injection is shown
on the X-axis; the percent of mitotic cells in shown on the Y-axis. The white columns correspond to
the L-IVP treated mice, the grey columns correspond to saline treated. Counting was performed on
paraffin sections at 400-fold magnification. Photos (C) and (D) show mitotic cells in paraffin section of
Ehrlich ascitic and A431 carcinomas, respectively.
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For further understanding of how the L-IVP strain affects the cell cycle, we performed an
immunohistochemical study of expression of Ki-67 protein, which is widely used in cancer diagnostics
as a marker of proliferating cells [24]. We found increase in the quantity of Ki-67-positive cells in
sections of Ehrlich ascitic carcinoma (Figure 6A,C), indicating that there is an increase in the amount of
proliferating cells. These results led to a proposal that the L-IVP strain causes an imbalance in the cell
cycle. Counting of cells positively stained for PCNA (marker of S-phase) [25] revealed an increase in
the number of such cells in L-IVP injected Ehrlich ascitic carcinoma (Figure 7B,D). These findings led
to conclusion that the L-IVP strain compels the cells to stay in S-phase and thereby reduces number of
mitotic cells, which leads to a delay in tumor growth.
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Figure 7. Increase in number of Ki-67 (A) and PCNA-positive (B) cells in murine Ehrlich ascitic
carcinoma in mice treated with the L-IVP strain (white columns) and saline (grey columns). Horizontal
line indicates the time after virus injection. Counting was done on paraffin sections, which were stained
immunohistochemically at 400-fold magnification. Photos C and D illustrate immunochistochemical
staining for Ki-67 (C) and PCNA (D) in Ehrlich ascitic carcinoma cells, 3 days after injection of the
L-IVP strain and saline, respectively. Chromogen AEC, counterstained with hematoxyline.

There were no changes in number of Ki-67-positive and PCNA-positive cells between saline- and
VACV-injected A431 carcinoma xenografts on days 2 and 4 post-injection, obviously, due to dominating
role of the virus replication. Thus, the L-IVP strain causes a decrease in the number of mitoses in A431
carcinoma, however, it does not influence number of cells expressing Ki-67 and PCNA proteins.

4. Discussion

The antitumor effect of various recombinants of VACV is a subject for hundreds of studies and
tens of reviews, but information about antitumor properties of initial, genetically unmodified VACV or
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“natural” is scarce. We became interested in the features of antitumor effect of genetically unmodified
VACV when we studied the antitumor effects of apoptin-expressing recombinant toward A431 human
adenocarcinoma xenografts in comparison with parental the L-IVP strain. We found that extensive
replication of the L-IVP strain in tumor cells was main factor providing antitumor effect [20]. The
present study was conducted to understand better what kind of mechanisms could exploit properties
of genetically unmodified VACV in the destruction of the tumors.

Firstly, we examined the lytic effect of the L-IVP strain replication in the cells originating from
various types of human tumors in comparison with diploid human cells (Figure 1), and we found high
selectivity of the virus strain toward cancer cells in vitro. This phenomenon was described earlier [26],
and our data fully confirmed this. Localization of the VACV in tumor nodes of experimental animals
was shown using GFP-expressing recombinants [13,27,28], and we directly showed selective infection
of the tumor cells with the L-IVP strain by electron microscopy: the virus did not replicate in cells
of blood vessels and connective tissue [20].

In this work, we also elucidated another important characteristic of the VACV with respect
to tumors: the ability of the virus to spread in organism and to be present in visceral organs. Titration
of the L-IVP virus using the PFU method revealed the presence of the infectious (living) virus in liver,
spleen, lungs and kidneys for two weeks, while the virus rapidly disappeared from blood (Figure 3).

We suppose that virus entered the blood flow in the moment of injection, because the data do not
give support or describe the migration of the virus outside the tumor. The titers in the visceral organs
increase for some time and their values are higher than maximal value in blood, evidencing for the
replication of the L-IVP strain in cells of the examined organs. Release of viral progeny from infected
cells and infection of distant cells was considered as advantageous feature for the realization of the
VACV oncolytic effect [7,18,29]. Replication of the L-IVP strain in mouse visceral organs illustrates
ability of virus to reach distant targets and demonstrates the possibility of the virus to infect tumor
cells distant from primary virus injection site, for example in metastases.

The main goal of this work was to study the VACV antitumor effect in mice with non-compromised
immune system using a murine tumor, because the human carcinoma A431 xenografts in nude mice
represents an artificial experimental system. We used murine Ehrlich carcinoma, which can grow
in solid and ascitic forms in different lines of mice [30,31]. The protocol of this study was similar to
those of A431 carcinoma, and similar to those, we observed a decrease in volume of the solid tumor in
comparison to saline-treated control (Figure 4). However, in contrast to A431 carcinoma, we failed
to find signs of virus replication in the tumor using electron microscopy, although we examined
numerous sections in all virus-injected animals. This could be explained by a small amount of infected
cells, which is below the detection capabilities of the method. Examination of paraffin sections of
Ehrlich solid carcinoma revealed no signs of selective destruction and apoptosis in VACV-injected
tumors compared with saline-injected during the whole period of observations.

Solid tumors, growing in living organism, reach the stage when their supply with oxygen and
nutrients does not keep pace with the growth of a tumor, leading to formation of necroses. This process
promotes entry of tumor tissue antigens in blood and development of immune response to tumor [32].
Obviously, CD11b- and CD3-positive cells in solid Ehrlich carcinoma found after 9 days post tumor
transplantation (2 days after injection of saline), represent development of mouse immune response
to the carcinoma. However, the differences in localization and numbers of CD11b- and CD3-positive
cells between saline- and VACV-injected mice were not detected within 14 days of the experiment.
We suppose that the duration of the experiment (14 days, time of the death of mice in control group)
was too short for the development of detectable signs of cell immune response to the VACV in the
Ehrlich carcinoma. The immune response to oncolytic viruses is a complicated event, unfolding at the
background of tumor evading the immune system using various mechanisms including damage of
antigen presentation and induction of immune tolerance [33,34]. In addition, the environment in the
tissue of a tumor is immunosuppressive [35]. All these circumstances could contribute to a delay in
the development of virus-induced cell immune response in the Ehrlich carcinoma.
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Therefore, we could not understand how the L-IVP strain causes the decrease in volume of Ehrlich
solid carcinoma. We proposed that the virus replicates in small number of tumor cells and releases
some substances altering the tumor growth. To test this, we examined the effect of L-IVP strain on
ascitic form of Ehrlich carcinoma, which allows one to obtain homogeneous preparations of tumor
cells. As we expected, replication of the L-IVP strain in carcinoma cells was weak (the titers did not
exceed 105 PFU/mL), and electron microscopy revealed few infected cells.

The results of our study excluded direct destruction of tumor cells by VACV replication and
immune response as possible factors for the decreasing sizes of Ehrlich carcinoma. The ability of
the VACV to reduce amount of mitotic cells in a tumor was noted more than 60 years ago [36], and
we supposed that this could play a role in decrease of tumor size after injection of VACV in our
experiments. Indeed, a comparison of number of mitoses counted in the L-IVP- and saline-treated
carcinomas revealed that the decrease occurs after treatment with the virus (Figure 6). The same effect
of the L-IVP strain was observed in A431 carcinoma xenografts on days 2 and 4 after the L-IVP strain
injection, however their rapid destruction by VACV do not permit to observe this effect longer than
4 days (Figure 6A).

It would have been interesting to follow this antimitotic effect of VACV on the same tumor cells
in vitro, however, Ehrlich carcinoma is unable grow in vitro. The cells of A431 carcinoma are highly
sensitive to VACV and are destroyed too quickly to observe this effect. The effect of VACV on mitoses
of tumor cells was observed about 50 years ago; authors used different viral strains and cell cultures,
and various experimental designs and methods, these showed that antimitotic effect of the virus could
present in both tumor and non-tumor cells [37–40]. Recent studies of VACV influence on cell cycle are
devoted to molecular mechanisms of VACV interaction with a cell, and showed that the virus shifts the
cell to S-phase and thereby provides more efficient viral replication. This phenomenon was shown to
be related with hyperphosphorylation of p53 by viral early B1R kinase, leading to p53 downregulation,
which, in turn, could promote synthesis of DNA [40,41].

Na-Kyung Yoo and co-workers, 2008 [42] examined the shifting of VACV infected cells to S-phase
using recombinant vTF7-3 VACV and rapidly proliferating human osteosarcoma 143B and HeLa cells.
The results showed that VACV possesses a unique cell-cycle control mechanism, involving inactivation
of p53 and Rb, which are associated with the RNA polymerase III transcription factor B (TFIIIB)
subunits, TBP and Brf1, respectively. All the examined events unfold inside infected cells in vitro. Our
study was performed in animal models, and immunohistochemical reaction for the PCNA-antigen
(marker of S-phase) showed that the amount of the cells in the S-phase is incomparably larger, than the
amount of infected cells in Ehrlich ascitic carcinoma. One of the possible explanations of damage of
cell cycle is blockage of VACV replication in the early stages, when viral early B1R kinase is expressed,
but visual signs of the virus replication are not seen. In such case, we will not see infected cells, and
viral yield will be low, just as we observed. It is interesting that the ability of the virus to promote
entry of infected cells into S-phase is considered as advantageous mechanism, providing more efficient
replication of VACV and many other DNA- and RNA-viruses [43]. Our study showed another facet of
this ability—the stopping of mitotic division of tumor cells resulting in delays of tumor growth. Usage
of mouse Ehrlich carcinoma in mice demonstrated this effect clearly, but pointed new questions about
its mechanisms. One of these questions is what is possible influence of immune system mediators
induced by VACV on mitotic division of tumor cells. However, decrease in amount of mitoses was
evident from day 2, while specific immune response to a virus develops later.

Our study showed that VACV achieves its antitumor abilities in both A431 and Ehrlich carcinomas;
however, this antitumor activity is achieved in different ways, presumably depending on the tumor
origination. Humans are a natural host for VACV, and cells of human A431 carcinoma support
active replication of the virus, which rapidly destroys tumor cells. In this case, the influence of
the VACV infection on cell cycle recedes into the background, and is overwhelmed by the complete
destruction of the tumor. A mouse is not naturally susceptible to VACV, so it was difficult to expect high
destructive action of the virus on the tumor, and our research showed this. Despite of poor replication,
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VACV demonstrated an antitumor effect, and our study revealed that this effect is associated with
accumulation of tumor cells in S-phase, which reduces number of dividing cells and, correspondingly,
delays tumor growth. The susceptibility of the tumor cells to the virus determines predominance of
first or second mechanism. The VACV is “a perfect parasite” utilizing all cellular mechanisms for
successful survival, and a clear understanding of how the virus can alter undesired cells could be
useful for development of effective anticancer therapeutics.

5. Conclusions

In this study, we showed that genetically unmodified, “natural” VACV achieves its antitumor
effect not only by direct destruction of infected tumor cells, but also by arresting mitotic division of
tumor cells in the S-phase. The latter provides an antitumor effect in murine model, which is not
naturally susceptible to VACV, and thereby confirms high oncolytic potential of the VACV.
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