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Perinatal care is important in mammals due to its contribution to fetal growth, maternal

health, and lactation. Substantial changes in host hormones, metabolism, and immunity

around the parturition period may be accompanied by alterations in the gut microbiome.

However, to our knowledge, changes in the gut microbiome and their contribution to

the shifts in host metabolism around parturition have not been investigated in pigs.

Furthermore, pigs are an ideal biomedical model for studying the interactions of the gut

microbiota with host metabolism, due to the ease of controlling feeding conditions. Here

we report dramatic remodeling of the gut microbiota and the potential functional capacity

during the late stages of pregnancy (5 days before parturition, LP) to postpartum (within

6 h after delivery, PO) in both experimental and validated populations of sows (n = 107).

The richness of bacteria in the gut of both pregnant and delivery sows significantly

decreased, whilst the β-diversity dramatically expanded. The ratio of Bacteroidetes to

Firmicutes, and the relative abundance of Prevotella significantly decreased, whilst the

relative abundance of the predominant genus Lactobacillus significantly increased from

LP to PO state. The predicted functional capacities of the gut microbiome related

to amino acid metabolism, the metabolism of cofactors and vitamins, and glycan

biosynthesis were significantly decreased from LP to PO state. However, the abundance

of the functional capacities associated with carbohydrate and lipid metabolism were

increased. Consistent with these changes, serum metabolites enriched at the LP

stage were associated with the metabolism of amino acids and vitamins. In contrast,

metabolites enriched at the PO stage were related to lipid metabolism. We further

identified that the richness and β-diversity of the gut microbiota and the abundance

of Lactobacillus accounted for shifts in the levels of bile acid metabolites associated

with lipid metabolism. The results suggest that host-microbiota interactions during the

perinatal period impact host metabolism. These benefit the lactation of sows by providing

energy from lipid metabolism for milk production.
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INTRODUCTION

Perinatal period (from 7 days before delivery to 7 days
postpartum) is a unique and critical time during the reproduction
cycle of sows. Correct feeding and management during this
period have profound effects on the production levels of both
sows and piglets. Approximately 60% of fetal growth or uterine
energy deposition occurs during the final 30 days of pregnancy
in pigs (Noblet et al., 1990). The withdrawal of progesterone
prior to parturition triggers a succession of hormonal changes
that lead to farrowing (Liptrap, 1980). Perinatal care is also
important in women due to its relationship to puerperal health
and infant growth. The physiological state of females during
the perinatal period (including hormone levels, metabolism,
and immunity) undergoes dramatic changes (Newbern and
Freemark, 2011). In the metabolic state as the perinatal period
approaches, insulin sensitivity is reduced, but insulin resistance
gradually increases (Barbour et al., 2007). Furthermore, each
stage of pregnancy and parturition is faced with an array of
immunological challenges (Mor and Cardenas, 2010). Upon
the completion of fetal development, pro-inflammatory nuclear
factor-κB (NF-κB) signaling initiates labor and plays a crucial role
during labor and delivery (Lappas and Rice, 2007).

Neuman and Koren suggested that hormonal levels are
likely to influence the microbial composition of the gut
during pregnancy since hormones influence bacterial growth
(Neuman and Koren, 2017). Previous studies have indicated that
reduced insulin sensitivity and increased insulin resistance are
related to the gut microbiota (Vijay-Kumar et al., 2010). The
immune system also profoundly influences the composition of
gut microbiota (Salzman et al., 2010), whilst gut microbiota
inhibit NF-κB activation (Lim and Kim, 2017). Based on these
observations, substantial changes in host hormones, metabolism,
and immunity around parturition may accompany alterations
of the gut microbiota. Previous studies have indicated that
gut microbiota undergoes a significant shift during pregnancy
(Santacruz et al., 2010; Koren et al., 2012), particularly during
the third trimester. Gut microbiota from the period of non-
pregnancy to pregnancy is characterized with the reduced
richness and the increased between-subject diversity. The relative
abundance of Actinobacteria and Proteobacteria increases on
average from the first to the third trimester of pregnancy (Koren
et al., 2012). Gut microbiota at the third trimester induce greater
adiposity and insulin insensitivity than the microbiota during
the first trimester (Koren et al., 2012). Studies by Santacruz
et al. indicated that gut microbiota composition is associated
with body weight, weight gain and biochemical parameters
in pregnant women (Santacruz et al., 2010). However, to
our knowledge, changes in the phylogenetic composition and
functional capacity of the gut microbiome during the perinatal
period have not been reported, and the contribution of gut
microbiota to changes in host metabolism during the perinatal
period therefore remains undefined in pigs.

Pigs provide an ideal biomedical model for studying the
relationship between the gut microbiome and host metabolism,
due to the ease of control of their feeding conditions. In
this study, we characterized the shifts in the phylogenetic

composition and potential functional capacity of the gut
microbiome occurring from late pregnancy (∼5 days before
parturition, defined as the LP state) to postpartum (within 6 h
after parturition, defined as the PO state). We observed profound
alterations in the gut microbial community structure and the
potential functional capacity, evidenced in two sow populations.
The metabolic profiles of serum metabolites of the experimental
sows were also measured. We identified a significant correlation
between alterations of the gut microbiota and shifts in host serum
metabolites from LP to PO, suggesting that the contribution of
gut microbiota to changes in host metabolism occur during the
perinatal period.

MATERIALS AND METHODS

Experimental Animals and Sample
Collection
All experimental sows were from a heterogeneous cross
population, produced by random hybridization amongst four
Western (Pietrain, Duroc, Landrace, and Large White) and
Chinese pig breeds (Bamaxiang, Erhualian, Laiwu, and Zang).
Feces samples from 45 sows which were used to generate F6 pigs
and hereinafter referred to as F5 sows (as tested samples) and
62 sows used to reproduce F7 pigs and hereinafter referred to
as F6 sows (as validated samples) were collected at 5 days prior
to the predicted parturition date and 6 h following parturition.
Feces samples from the other 150 non-pregnant F6 sows of the
same heterogeneous cross population were used as the study
controls. All sows were raised in independent pens and provided
the same formula feed twice daily containing 16% crude protein,
3,100 kj digestible energy and 0.78% lysine. Water was available
ad libitum from nipple drinkers. All sows were healthy and
received no probiotic or antibiotic therapy within two months
of sample collection. Fecal samples were immediately dipped in
liquid nitrogen for transportation, and stored at−80◦C until use.
Blood was harvested from 22 of the 62 F6 sows at the two time
points. Serum samples were centrifuged and stored at −80◦C
prior to analysis.

Ethics Statement
All animal procedures were conducted according to the
guidelines for the care and use of experimental animals
established by the Ministry of Agriculture of China. The project
was approved by Animal Care and Use Committee (ACUC) in
Jiangxi Agricultural University (No. JXAU2011-006).

Microbial DNA Extraction of Fecal Samples
and 16S rRNA Gene Sequencing
QIAamp Fast DNA Stool Mini Kit (Qiagen, Germany) was
used to extract microbial DNA from the fecal samples
according to the manual protocol. The concentration
and quality of DNA were determined by 0.8% agarose
gel electrophoresis and on a Nanodrop-1000 (Thermo
Scientific, USA). The V3 - V4 hypervariable region of the
16S rRNA gene was amplified with the barcode fusion
primers (338F: 5-ACTCCTACGGGAGGCAGCAG-3, 806R:
5-GGACTACHVGGGTWTCTAAT-3). Following purification,
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PCR products were used for library construction and sequenced
on an Illumina MiSeq platform (Illumina, USA). The 16S rRNA
gene sequencing data were submitted to the SRA database
in NCBI with the accession number PRJNA518709. Barcode
sequences and low-quality reads were filtered to obtain clean
reads. Pair-end clean sequences were then merged into tags
using FLASH software (Magoc and Salzberg, 2011). To obtain
microbial taxonomy and abundance data, tags were clustered
into operational taxonomic unit (OTUs) at 97% similarity after
chimeras were removed using VSEARCH (Rognes et al., 2016).
Representative sequences of each OTU were then matched to
the RDP reference database to obtain the microbial taxonomy
information (Desantis et al., 2006). To avoid the influence of
sequencing depth during statistical analysis, we limited the
library size to 10,000 tags for all samples.

Metabolomic Profiling of Sow Serum
Samples
All serum samples were thawed on ice. A quality control (QC)
sample produced by mixing and blending equal volumes of each
tested serum sample were set for each of the 12 samples to
estimate a mean profile of the analytes assessed during analysis.
For this, 100 µl of serum was mixed with 300 µl of precooled
methanol and incubated at −20◦C for 3 h. Mixed samples were
centrifuged for 15min at a centrifugal speed of 15,000 rpm,
and supernatants were collected and transferred to speedvac
for crystallization. For metabolomic profiling, concentrated
products were resuspended in 150 µL of 15% methanol and
transferred to a UPLC-QTOFMS system (Waters Corp., USA) for
data collection.

Treated samples were injected into 2.1 × 100mm Acquity
UPLCTM BEH C18 columns packed with 1.7µm particles and
held at 40 ◦C under the UPLC system. The solvent system
included 1% acetonitrile and 0.1% formic acid in the gradient
elution mode for both electrospray positive (ES+) and negative
ion mode (ES–) analyses under a constant temperature of 8
◦C. Mass spectrometry data were collected using Waters Q-TOF
Premier equipped with an electrospray source operating in either
ES+ or ES–. Mass scanning was set to range of 50–1,200m/z with
a scan time of 0.3 s and interscan delay of 0.02 s over a 26- and
18-min analysis time, respectively. MassLynx software (Waters
Corp., USA) was used for system control and data acquisition.
Leucine enkephalin was used as the lock mass (m/z 556.2771
in ES+ and 554.2615 in ES–) at a concentration of 100 ng/mL,
under a flow rate of 5 µL/min for all analyses.

Raw data from UPLC–QTOFMS underwent peak selection
and grouping, retention time correction, second peak grouping,
and isotope and adducts annotation using Progenesis QI
(Rusilowicz, 2016). Each retained peak was then normalized to
the QC sample using MetNormalize (Shen et al., 2016). The
relative RSD value of the metabolites in the QC samples was set
at a threshold of 30% to standardize the reproducibility of the
metabolomic data sets.

For the annotation of serum metabolites, the HMDB database
(Wishart et al., 2017) was used to align the molecular mass
data (m/z) to identify relevant metabolites. If the differences

between the observed and theoretical mass were ≤10 ppm, the
metabolite was annotated to the mass. The molecular formula
of the matched metabolites was further validated by isotopic
distribution measurements and fragmentation similarity.

Statistical Analysis
Comparison of the Microbial Composition and

Potential Function Capacity of the Gut Microbiome

Between Sows at Different Reproduction States
The α-diversity of fecal microbiota was calculated using Mothur
(Schloss et al., 2009). The β-diversity of fecal microbiota was
analyzed by QIIME (Kuczynski et al., 2011). Potential function
capacities were predicted on PICRUSt software using the 16S
rRNA sequencing data (Langille et al., 2013). To evaluate
alterations of sow gut microbiota from LP to PO state, we first
performed a PCoA analysis based on the OTU composition using
the vegan package (Dixon, 2003). Comparisons of the α- and β-
diversity indexes (observed species and within-group weighted
Unifrac distance) between sows at different reproduction states
were performed using T-tests. Because fecal samples were
collected from the experimental sows at two timepoints, a
Wilcoxon rank sum test (paired) was used to identify the bacterial
taxa and predicted functional capacities showing significant
differences in the relative abundance between LP and PO in
both F5 and F6 sow populations (MacFarland and Yates, 2016).
The significant threshold was set at an FDR< 0.05. As the non-
pregnant F6 sows (BS) had fecal samples collected at only a single
timepoint, non-paired Wilcoxon rank sum test were used to
identify the differential microbial taxa and KEGG function terms
amongst LP, PO and BS states in the F6 sows.

Construction of the Serum Metabolite
Modules and Enrichment Analysis of
Differential Metabolite Features
We firstly corrected the effect of sample batches on serum
metabolite profiles obtained from both the positive and negative
ion mode using ComBat methods (Stein et al., 2015). We
then constructed the co-abundant topological network of serum
metabolites using the WGCNA package in R software with a
scale-free topology criterion soft threshold of β = 5 (positive
ion mode) and β = 4 (negative ion mode) (Langfelder
and Horvath, 2008). Metabolic modules were isolated from
topological networks using the dynamic hybrid tree-cutting
algorithm with a minimum cluster size of five. The PC1 value
of the metabolic module was summarized as the profile of
each module. Similar modules were subsequently merged if the
correlation between the eigen vectors of the serum metabolite
clusters exceeded 0.8. Paired Wilcoxon rank sum tests were
performed to identify the metabolic modules that significantly
shifted from LP to PO at a significant threshold of FDR <

0.05. All metabolite features in the modules showing significant
shifts from the LP to PO state were matched to the KEGG
database to perform an enrichment analysis using methods of the
untargeted metabolomic pathway analysis introduced into online
metaboAnalyst 4.0 (Xia et al., 2015).
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FIGURE 1 | Remodeling of gut microbial composition in sows from later pregnancy to postpartum state. (A) PCoA analysis shows the different gut microbial

compositions between sows at later pregnancy (LP) and postpartum (PO) state in both F5 and F6 sows. (B,C) Indicate the changes of gut microbial diversity from LP

to PO state. (B) Observed species; (C) within-group weighted UniFrac distance (β-diversity). The X-axis shows the sample groups, and the Y-axis indicates observed

species or the value of within-group weighted UniFrac distance. ***Represents the significance threshold of P < 0.005.

Correlation Analysis Between the Shifts of the Gut

Microbiome and the Changes in Host Serum

Metabolites
A total of 22 pairs of samples (22 sows were collected the samples
at both LP and PO state) with both serum metabolome and
gut microbiome data were used for evaluating the correlation
between the shifts of the gut microbiome and the changes
in host serum metabolites. We first calculated the abundance
change for bacterial taxa and the PC1 value change for each
metabolic module. A Spearman rank test was performed to
evaluate the correlation between the shifts of bacterial taxa and
serum metabolic modules at an FDR < 0.05. To identify the
hubs of metabolite clusters associated with the shifts in bacterial
abundance or the change of microbial diversity, metabolite
interaction networks were constructed and visualized using
cytoscape (v3.30) (Shannon et al., 2003).

RESULTS

Remodeling of the Gut Microbiota From
Late Pregnancy to Postpartum in Sows
To evaluate alterations in sow gut microbiota from LP to PO,
90 fecal samples from 5 F5 sows were used for microbial
composition analysis by 16 rRNA gene sequencing. We rarified
the library size to 10,000 tags per sample. At a 97% pairwise
sequence identity, an average of 760 operational taxonomic units
(OTUs) per sample was obtained. PCA analysis identified distinct
microbial diversity and composition between the LP and PO
states (Figure 2). We compared the α- and β-diversity of gut
microbial communities and identified significant reductions in
OTU numbers at the PO stage (Figure 1B). Weighted Unifrac

FIGURE 2 | PCoA analysis based on weighted UniFrac shows the different gut

microbial compositions among sows at non-pregnancy, later pregnancy, and

postpartum state.

analysis revealed a dramatic expansion of β-diversity after
parturition (Figure 1C). At the taxonomy level, we identified
10 phyla with distinct differences in their relative abundance
between LP and PO. The relative abundance of Firmicutes (LP:
43.20 ± 6.35% vs. PO: 61.89 ± 9.03%, P = 7.62 × 10−8) and
Fusobacteria (LP: 0.01 ± 0.04% vs. PO: 0.14 ± 0.39%, P = 3.90
× 10−4) increased on average from the LP to the PO state, whilst
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the relative abundance of the other eight phyla decreased from
the LP to the PO state (Table S1), including Bacteroidetes which
showed the most significant change in relative abundance (LP:
35.09 ± 5.28% vs. PO: 21.54 ± 5.04%, P = 3.41 × 10−11). At the
genus level, we identified 43 genera with significant differences
in their relative abundance from LP to PO, including 26 genera
with a higher abundance at LP, and 17 genera with an increased
abundance at PO. The relative abundance of Lactobacillusmostly
increased (LP: 2.5 ± 2.15% vs. PO: 13.79 ± 8.86%, P = 3.50
× 10−11) from LP to PO, whilst the abundance of SMB53
significantly decreased (LP: 0.4 ± 0.23% vs. PO: 0.15 ± 0.18%, P
= 3.68× 10−7). The abundance of the other predominant genus
Prevotella decreased from 0.34 ± 4.55% (LP) to 4.59 ± 2.88%
(PO, P = 1.96× 10−5) (Table S1).

To confirm the distinct changes in the microbial community

structure of sow feces from LP to PO, we determined the

phylogenetic composition of fecal microbiota in a further 124

samples from 2 F6 sows of the same heterozygote population
using the methods described above. An average of 747 OTUs
were obtained per sample. The α- and β-diversity analyses of

the F5 fecal microbial communities were reproduced in the F6
sows (Figure 1). At the taxonomy level, we identified 11 phyla
and 40 genera showing significant differences in the relative
abundance from LP to PO in F6 sows (Table S2). Six of the 11
phyla displayed similar changes to those of F5 sows, including
two predominant phyla Bacteroidetes and Firmicutes (Table 1).
At the genus level, the relative abundance of the 21 genera showed
similarly significant changes to those of F5 sows, including 10
genera with a decreased abundance from LP to PO and 11 genera
with an increased average abundance. The abundancy shifts in
predominant bacterial genera from the LP to the PO state in F6
sows were highly comparable to those of F5 sows (Table 1).

Comparison of the Diversity and
Composition of Fecal Microbiota in LP, PO,
and Barren States
To further assess the gut microbiome shift caused by pregnancy
and parturition, we compared the microbial diversity and
composition in feces among LP, PO, and barren sows (BS)

TABLE 1 | The bacterial taxa showing significant alteration of relative abundances from late pregnancy to postpartum in both F5 and F6 sows.

Group F5_LP F5_PO F6_LP F6_PO Shift direction

PHYLUM

Bacteroidetes 35.63 ± 7.03 22.09 ± 5.63 27.97 ± 7.43 19.13 ± 8.45 ↓

Firmicutes 42.79 ± 6.98 61.49 ± 9.01 59.01 ± 8.73 69.67 ± 9.81 ↑

Verrucomicrobia 3.42 ± 1.59 0.77 ± 0.91 0.66 ± 0.71 0.15 ± 0.23 ↓

Cyanobacteria 0.66 ± 0.62 0.15 ± 0.14 0.46 ± 0.36 0.21 ± 0.24 ↓

Fusobacteria 0.01 ± 0.03 0.13 ± 0.39 0.04 ± 0.23 0.23 ± 0.47 ↑

Fibrobacteres 0.52 ± 0.49 0.41 ± 0.69 0.37 ± 0.67 0.14 ± 0.59 ↓

GENUS

Lactobacillus 2.23 ± 0.69 13.81 ± 8.95 6.67 ± 5.91 17.20 ± 14.41 ↑

Eubacterium 0.05 ± 0.06 0.31 ± 0.43 0.04 ± 0.06 0.42 ± 0.39 ↑

Bulleidia 0.04 ± 0.06 0.20 ± 0.37 0.07 ± 0.08 0.23 ± 0.28 ↑

Blautia 0.34 ± 0.19 0.59 ± 0.44 0.20 ± 0.17 0.47 ± 0.36 ↑

Dorea 0.21 ± 0.13 0.37 ± 0.21 0.14 ± 0.12 0.29 ± 0.17 ↑

Coprobacillus 0.01 ± 0.01 0.12 ± 0.36 0.01 ± 0.02 0.10 ± 0.29 ↑

L7A_E11 0.04 ± 0.04 0.10 ± 0.08 0.15 ± 0.16 0.44 ± 0.76 ↑

Enterococcus 0.01 ± 0.01 0.05 ± 0.14 0.06 ± 0.32 0.43 ± 0.68 ↑

Escherichia 0.29 ± 0.26 1.10 ± 2.24 0.24 ± 0.39 2.13 ± 1.41 ↑

Faecalibacterium 0.06 ± 0.06 0.11 ± 0.13 0.09 ± 0.11 0.14 ± 0.17 ↑

Coprococcus 1.19 ± 0.61 1.65 ± 1.20 0.90 ± 0.60 1.43 ± 0.78 ↑

Ruminococcus 1.26 ± 0.43 0.99 ± 0.44 2.06 ± 0.77 1.36 ± 0.82 ↓

Corynebacterium 0.13 ± 0.1 0.01 ± 0.02 0.18 ± 0.24 0.02 ± 0.02 ↓

Anaerovibrio 0.25 ± 0.19 0.05 ± 0.08 0.06 ± 0.05 0.02 ± 0.01 ↓

Epulopiscium 0.43 ± 0.39 0.06 ± 0.09 0.13 ± 0.16 0.05 ± 0.10 ↓

Phascolarctobacterium 1.45 ± 0.38 0.75 ± 0.46 0.26 ± 0.26 0.17 ± 0.20 ↓

YRC22 1.31 ± 1.08 0.59 ± 0.85 0.84 ± 0.92 0.23 ± 0.58 ↓

Bifidobacterium 0.24 ± 0.42 0.08 ± 0.24 0.96 ± 3.09 0.07 ± 0.11 ↓

Akkermansia 0.11 ± 0.34 0.02 ± 0.06 0.07 ± 0.11 0.01 ± 0.01 ↓

Fibrobacter 0.52 ± 0.50 0.41 ± 0.70 0.30± 0.62 0.02 ± 0.02 ↓

Prevotella 10.27 ± 4.56 4.57 ± 2.89 1.57 ± 1.83 0.94 ± 0.66 ↓
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in the F6 population, in which fecal samples from 150 non-
pregnant F6 sows of the heterozygote population were collected
and assessed formicrobial community structures using 16S rRNA
sequencing. Principal Coordinate analysis (PCoA) of the UniFrac
Matrix revealed a complete separation amongst the sample sets
at the LP, PO, and BS states (Figure 2), suggesting distinct

gut microbial community structures between barren sows and
sows at the LP and PO state. We further compared the relative
abundance of bacterial taxa at the phylum and genus level
amongst BS, LP, and PO stages. At the phylum level, we identified
four phyla of significantly different abundances at the three
reproduction stages (corrected P < 0.05). The relative abundance

FIGURE 3 | Heatmap of the significant shifts of gut microbial taxa and predicted KEGG pathways from non-pregnancy, later pregnancy to postpartum state. (A) The

bacterial taxa significantly shifted from non-pregnancy (BS), later pregnancy (LP) to postpartum (PO) state. (B) The KEGG pathways showing different abundances

from BS, LP to PO state.

FIGURE 4 | Changes of host serum metabolome, and functional enrichment of differential serum metabolite features. (A) PCA analysis indicates the significant

changes of host serum metabolome from later pregnancy (LP) to postpartum (PO) state. KEGG pathways enriched by differential metabolite features at LP (B) and PO

state (C). The X-axis and the size of dots indicate the pathway impact of differential metabolite features (the sum of the importance measures of the matched

metabolites normalized by the sum of the importance measures of all metabolites in each pathway), and the Y-axis shows the significant P-value obtained in

enrichment analysis. The size and color of dots indicate the value of pathway impact.
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of Firmicutes increased from BS, LP to PO, whilst the relative
abundance of Bacteroidetes, Cyanobacteria, and Fibrobacteres
significantly decreased (Figure 3A). At the genus level, 16 genera
had significantly different abundance levels amongst BS, LP, and
PO states. The relative abundance of Lactobacillus (one of the
predominant genera) significantly increased from 3.38 ± 3.27%
(BS), 6.69 ± 5.96% (LP) to 17.99 ± 11.99% (PO). However, the
relative abundance of Prevotella (another predominant genus)
decreased from 12.82 ± 7.58% (BS), 1.59 ± 1.8% (LP) to 1.53 ±
0.98% (PO). The predominant genus Ruminococcus showed the
highest abundance at LP (BS: 1.65 ± 0.63%; LP: 2.31 ± 0.89%;
PO: 1.55± 1.16%) (Figure 3A).

Potential Function Capacity Shifts of the
Gut Microbiome From Late Pregnancy to
Postpartum
To characterize the potential functional capacity of the gut
microbiome and reveal functional shifts from LP to PO, we used
PICRUSt to infer the function capacity of the 16S rRNA data.
Membrane transport, carbohydrate metabolism and amino acid
metabolism were the three most abundant function terms, which
occupied about more than 32.0% (32.3 and 32.4%) of the total
relative abundance in both F5 and F6 sows. We next compared
the relative abundances of KEGG pathways between sows at
LP and PO states, identifying a total of 83 and 74 differential
KEGG pathways in the F5 and F6 sows, respectively. Of these
pathways, 68 differential KEGG pathways were present in both
F5 and F6 sows (Table S3). Among these 68 pathways, the relative
abundances of 19 pathways were significantly enriched in the gut
microbiome at the PO state, including functional terms related
to carbohydrate metabolism (fructose and mannose metabolism,
amino sugar and nucleotide sugar metabolism, galactose
and propanoate metabolism, and the pentose phosphate
pathway), lipid metabolism (synthesis and degradation of ketone
bodies, primary bile acid and second bile acid synthesis,
glycerolipid, and glycerophospholipid metabolism) as well as
xenobiotic biodegradation andmetabolism. However, the relative
abundance of the other 49 pathways were enriched at the LP
state, including amino acid metabolism (metabolism of cysteine,
methionine, histidine, tryptophan, arginine, and proline),
the biosynthesis of other secondary metabolites (butirosin,
neomycin, and isoflavonoid biosynthesis), the metabolism of
cofactors and vitamins (folate biosynthesis, nicotinate, and
nicotinamide metabolism, one carbon pool by folate and
vitamin B6 metabolism) in addition to glycan biosynthesis and
metabolism. The citrate cycle (TCA cycle) was also enriched at
the LP stage (P < 4.02× 10−7).

We further compared the potential functional capacities of
the gut microbiome amongst BS, LP, and PO in F6 sows, and
identified a total of 53 KEGG pathways of significantly altered
abundance amongst the three states. Of these, 12 KEGGpathways
including five and four pathways belonging to carbohydrate
and lipid metabolism, respectively, successively increased their
relative abundance from barren, LP to PO. A total of 11
KEGG pathways were enriched at the LP stage, including five
pathways related to amino acid metabolism (branch amino acid

biosynthesis, amino acid related enzymes) and four pathways
associated with glycan biosynthesis and metabolism. The relative
abundance of the other 30 pathways were successively decreased
from barren, pregnancy to parturition (Figure 3B).

Distinct Serum Metabolome Between
Sows at Late Pregnancy and Postpartum
State
Serum samples were harvested at both LP and PO stages from
each of the 22 F6 sows with 16S rRNA gene sequencing data (44
serum samples). Untargeted metabolite profiles were measured
to determine the serum metabolome shifts from LP to PO.
After quality control, we identified 3,378 quantifiable serum
metabolites for further analysis, including 2,110 metabolites
from the positive ion mode and 1,268 from the negative ion
mode. We initially performed a PCA analysis to evaluate global
shifts in the serum metabolome from LP to PO. A separation
between the metabolic samples in the LP and PO groups
was observed (Figure 4A), suggesting changes in host serum
metabolite profiles from LP to PO. Based on the frequent
intercorrelation between serum metabolite features (Krumsiek
et al., 2011), quantified serum metabolites were clustered into
112 metabolite modules across all individuals using WGCNA
methods (Langfelder and Horvath, 2008). We identified 37 of
the 112 metabolite modules with significant shifts (the first
principal component) from LP to PO (Table S4). Amongst the
37 metabolite modules, 20 were comprised of 639 metabolite
features with significantly higher abundances at the LP stage.
The other 17 modules consisted of 611 metabolite features with
significantly higher abundances at the PO stage (Figure 5). All
metabolite features in the modules enriched at the LP stage were
performed using KEGG pathway analysis. The same analysis
was performed for the metabolites in the modules enriched at
the PO state. We found that the metabolites were of higher
abundance at the LP stage and enriched in the KEGG pathways
of amino acid metabolism (including the metabolism of cysteine,
methionine, glutathione, phenylalanine, alanine, and proline),
sulfur metabolism, the TCA cycle, and vitamin metabolism
(metabolism of riboflavin, vitamin B6, biotin, and retinal).
However, the metabolites of higher abundance at the PO stage

were enriched in pathways related to lipid metabolism, including

primary bile acid biosynthesis, and the metabolism of linoleic

acid, arachidonic and sphingolipids (Figures 4B,C). These data

were in agreement with the differential KEGG pathways of the

gut microbiome between the LP and PO stages.

Correlation Between the Shift of Gut
Microbiota and the Change of Host Serum
Metabolites From the LP to the PO State
As described, we identified the distinct α- and β-diversity of
the gut microbiota from LP to PO, and 21 bacterial genera and
37 metabolic modules showed significant changes in relative
abundance between the two reproduction states. To examine

the contribution of the shift of gut microbiota to the changes

in host serum metabolites, we performed a correlation analysis
in 22 F6 sows described above, which had both 16S rRNA
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FIGURE 5 | Association between the shifts of gut microbiome and the changes of serum metabolite modules from later pregnancy (LP) to postpartum (PO) state. The

bar plot above the heatmap shows the fold change of the relative abundances of microbial taxa. The bar plot on the right side of the heatmap shows the PC1 shifts of

metabolic modules. The blue bars represent the enrichment at the LP state, and the pink bars indicate the enrichment at the PO state. The star number indicates the

significant threshold *FDR < 0.05, **FDR < 0.01, and ***FDR<0.001. The different colors of grids show the spearman correlation coefficiency between the changes of

microbial taxa and the shifts of host serum metabolome. The stars in the grids indicate the significance.

gene sequencing and serum metabolome data. As shown in
Figure 5, at an FDR < 0.05, we identified three significant
correlations between the shift in gut microbiota and changes
in the host serum metabolome. The increased abundance of
Lactobacillus accounted for the observed shift in metabolic
module 29 (M29) reflected in the PC1 from the LP to the PO
state (Figure 6A). M29 was comprised of 17 serum metabolite
features, seven of which were related to cholic acid and
conjugated-cholic acid metabolism (Table S5). We further
constructed the interaction network for all metabolite features
in the M29 and found that cholic acid (8.69_407.2801 m/z) had
the biggest hub in the network, suggesting a significant effect of

the increased abundance of Lactobacillus at the PO state on bile
acid biosynthesis (Figure 6B). The second significant correlation
was identified between the observed OTU number and the shift
of M33 reflected in PC1 from the LP to PO state (Figure 6C).
In total, 17 out of the 30 metabolites in M33 were matched
to metabolites related to bile acid metabolism (Table S5).
The interaction network for the metabolites in the M33
indicated four nodes including Trihydroxycoprostanoic acid
(14.29_464.3496 m/z), 2-Deoxycastasterone (14.71_447.3464
m/z), Germanicol cinnamate (14.46_537.4150 m/z), and
3a,7a-Dihydroxycoprostanic acid (14.34_433.3316 m/z), which
maintained the strongest lineage with other nodes (Figure 6D).
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These results suggested that a significant correlation exists
between gut microbial richness and bile acid metabolism. We
further identified a negative correlation between the β-diversity
of gut microbiota (Weighted UniFrac) and the shift of M2M5
(PC1) from LP to PO (P = 9.6 × 10−4) (Figure 6E). As
M25 contained 347 metabolite features constructed through
a complex network, we extracted only those nodes ranked
in the top 30 of the M25 connectivity network to construct a
sub-network.We found that heptadecanoic acid (22.85_271.2614
m/z) and 4,4-Dimethyl-14alpha-formyl-5alpha-cholesta-8-en-
3beta-ol (23.88_465.3722 m/z) were the hubs in the sub-network.
Heptadecanoic acid (22.85_271.2614m/z) was connected to an
array of long-chain fatty acids and their ramifications, including
(±)-3-hydroxynonanoic acid, heptadecanoic acid and hexadecyl
ferulate. Furthermore, 4,4-Dimethyl-14alpha-formyl-5alpha-
cholesta-8-en-3beta-ol (23.88_465.3722m/z) was connected to
several metabolites involved in steroid biosynthesis (Figure 6F),
suggesting a significant effect of the β-diversity of gut microbiota
on host lipid metabolism at the PO state. These results were
consistent with shifts in the potential functional capacity of the
gut microbiome from LP to PO states, in which the functional
terms related to carbohydrate metabolism and lipid metabolism
were significantly enriched at the PO stage.

DISCUSSION

Host metabolism, hormones, and immunity significantly vary
during the perinatal period. Whether these changes influence
gut microbial composition, and if host-microbe interactions
occur that influence host metabolism during this period are
largely unknown. Here, we report the dramatic remodeling of
gut microbiota and its potential functional capacity from late
pregnancy (5 days before parturition) to postpartum (within
6 h after delivery). We observed significant shifts in the host
serum metabolome from pregnancy to the postpartum state.
These contributed to changes in the host serum metabolites
related to lipid and carbohydrate metabolism. Although changes
in the gut microbiome in women during pregnancy have been
reported (Santacruz et al., 2010; Koren et al., 2012), to our
knowledge, this was the first study in pigs reporting alterations
of the gut microbiome and host serum metabolic profiles from
the last week of pregnancy to the time after delivery, using
samples harvested from the same sows. Remodeling of the gut
microbiome during the perinatal period was confirmed in two
sow populations (F5 and F6 sows from the same heterogeneous
pig cross).

The richness of bacteria in the gut of both pregnant and
delivery sows was significantly reduced, whilst the β-diversity
dramatically expanded. This contrasted previous studies that
reported no significant changes in the relative abundance
of Bacteroidetes and Firmicutes during pregnancy in women
(Koren et al., 2012). Similar to the findings in the gut
microbial composition reported in obesity (Ley et al., 2006;
Turnbaugh et al., 2006), we observed a significant increase
in the relative abundance of Firmicutes, but reduced levels of
Bacteroidetes in sows from LP to PO. In women, the relative

abundances of Proteobacteria and Actinobacteria increased on
average from the first to the third trimester of pregnancy
(Koren et al., 2012). In this study, the increased abundance
of Proteobacteria was only observed at the postpartum state
of F6 sows. However, the relative abundance of Actinobacteria
decreased from LP to PO in F5 sows. The relative abundance
of Lactobacillus significantly increased from LP to PO. Many
species of Lactobacillus are probiotics used to promote human
health, including Lactobacillus reuteri, which was shown to
upregulate hormone oxytocin and systemic immune responses
to achieve a wide array of health benefits, including mental
health, metabolism, and myoskeletal maintenance (Erdman and
Poutahidis, 2016). It is known that oxytocin induces uterine
contraction to facilitate labor in mammals. Oxytocin also plays
an important role in the regulation of energy intake during
pregnancy (Douglas et al., 2007) and has anti-obesity effects
in diet-induced obese rats (Deblon et al., 2011). Furthermore,
Lactobacillus is related to lipid metabolism through its roles in
bile salt biotransformation (Ridlon et al., 2006). The abundance
of Prevotella significantly decreased from LP to PO. Prevotella
is a predominant bacterial genus in the gut microbiota, some
species of which regulate the uptake and metabolism of peptides
and amino acids (Ling and Armstead, 1995; Dai et al., 2011).
Consistent with the findings in pregnant women (Koren et al.,
2012), the relative abundances of the SCFA-produced bacteria,
including Eubacterium, Coprococcus, and Faecalibacterium were
significantly reduced from the barren to LP state (Figure 3A).
SCFAs play an important role in anti-inflammatory and restrain
obesity (Schwiertz et al., 2010). Low-grade inflammation has
been suggested to occur during pregnancy at the intestinal
mucosal epithelium (Koren et al., 2012). However, the relative
abundance of these bacteria significantly increased from the
LP to PO stage, suggesting a change of immune environment
after delivery. Studies in humans suggest that a switch from
an anti-inflammatory to a pro-inflammatory environment is
indispensable for labor once the fetus has completed its
development (Mor et al., 2017).

Changes in the potential functional capacity of the gut
microbiome were concordance with significant shifts in
microbial taxa (Table S3). As described, bacteria related to
amino acid metabolism, including Bacteroidetes, Prevotella,
and Anaerovibrio, decreased in abundance from the LP to PO
state (Dai et al., 2010). Compared to the sows at BS and PO,
sows at the LP stage had a significantly higher abundance of
biosynthesis/degradation of valine, leucine, and isoleucine in
the gut microbiome. Branched chain amino acids are associated
with insulin resistance (Pedersen et al., 2016). In humans, insulin
resistance is observed during pregnancy (Barbour et al., 2007).
Prevotella copri and Bacteroides vulgatus are the major species
driving the association between the biosynthesis of BCAAs and
insulin resistance (Pedersen et al., 2016). Bifidobacterium can
de novo synthesize and supply vitamins. Lactic acid bacteria
and Bifidobacterium can promote the biosynthesis of B group
vitamins (such as folate and riboflavin), and even the complex
vitamin B12 (LeBlanc et al., 2013). In this study, the lower
abundance of Bifidobacterium would be anticipated to decrease
the metabolism of cofactors and vitamins from the LP to
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FIGURE 6 | The significant associations between the shifts of Lactobacillus abundances and bacterial diversity, and the changes of metabolic modules. (A) The shift

of the abundance of Lactobacillus (the number of read sequences) was positively associated with the change of metabolic module 29 (M29) which was related to bile

acid biosynthesis (B). (C) The shift of the observed OTU number was negatively associated with the change of metabolic module 33 (M33) which was related to bile

acid metabolism (D). (E) The shift of the β-diversity of gut microbiota (weighted UniFrac distance) was negatively associated with the change of metabolic module 25

(M25) which was related to lipid metabolism (F). The X-axis shows the changed values of host metabolic modules, and the Y-axis indicates the changed values of gut

microbiota. The size and color of dots indicate the degree of connectivity of hubs, and the thickness of lines shows the strength of correlations. The annotations of

metabolite features (m/z) are listed in Table S5.

the PO state. Carbohydrate and lipid metabolism pathways
were significantly enriched in sows at the PO state. Drastic
metabolic adjustments take place in sows from late pregnancy to
lactation to support fetal growth and milk synthesis (Robinson,
1986; Noblet et al., 1990; Butte et al., 1999). The utilization
of carbohydrate and lipids continuously increases from late
pregnancy to postpartum to support milk synthesis (Butte et al.,
1999). Consistent with this, we observed a significant increase in
the relative abundance of Firmicutes and the ratio of Firmicutes
to Bacteroidetes, which facilitates carbohydrate metabolism.
Furthermore, the relative abundance of Lactobacillus and
SCFA-produced bacteria significantly increased at the PO state.
Lactobacillus promotes lipid metabolism through its role in bile
salt biotransformation (Ridlon et al., 2006).

Host serum metabolome analysis identified differential
metabolites from LP to the PO state. Interestingly, these
metabolites were enriched in pathways matched to the
functional capacity of the gut microbiome, including amino
acid metabolism, lipid metabolism and vitamin metabolism,
suggesting a relationship between shifts in the gut microbiome,
and the host serum metabolome. This relationship was

confirmed by correlation analysis from LP to PO. Both the
potential functional capacity of the gut microbiome and the
metabolites related to amino acid and vitamin metabolism were
enriched at the LP stage. As the fetus grows quickly during the LP
stage, these changes are likely to support fetal growth. Similarly,
the enrichment of the gut microbiome and metabolites related
to lipid metabolism at the PO stage should be advantageous
to host milk synthesis and lactation, due to the large energy
consumption associated with milk production. We identified
a significant association of Lactobacillus and OTU number for
bile acid metabolites. Bile acids increase in abundance during
pregnancy (Lunzer et al., 1986) and have been reported to inhibit
intestinal anaerobic organisms through direct antimicrobial
effects and/or via the induction of antimicrobial peptides. For
example, the inhibition of Bacteroides and Clostridia growth
are known to be susceptible to unconjugated bile acids (Binder
et al., 1975). This can explain the decreased OTU number
of gut microbiota from the LP to PO state, and the negative
correlation between OTU number and bile acid metabolites.
Lactobacillus possesses bile salt hydrolase (BSH) activity
(Kumar et al., 2012) which mediates a conserved microbial
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adaptation to the gut environment and bile tolerance in vitro,
and enhances bacterial survival in the murine gut in vivo
(Jones et al., 2008). This may explain the positive association
of Lactobacillus with bile acid metabolites. These results also
provide evidence that bile acids play an important role in
mediating host-gut microbiome interactions and shape the
gut microbiome and host metabolism during the perinatal
period. A significant correlation between the β-diversity of
the gut microbiota and metabolites related to fatty acid and
cholesterol synthesis was also evident in this study. Cholesterol is
a known precursor of bile acids, vitamin D and steroid hormone
biosynthesis, all of which are established factors that shape the
gut microbiome (Islam et al., 2011; Markle et al., 2013).

In summary, we found a significant alteration of sow gut
microbiota and bacterial functional capacities from the final
week of pregnancy to postpartum. Amino acid metabolism,
glycan biosynthesis and metabolism, and the metabolism of
cofactors and vitamins decreased from LP to PO, but bacteria
associated with carbohydrate and lipidmetabolismwithin the gut
microbiome significantly increased. The host serummetabolome
also significantly changed. We identified a significant correlation
between the alterations of in the gut microbiome and changes
in host serum metabolite features. The results from this study
indicate that host-microbial interactions during the perinatal
period impact hostmetabolism, leading to beneficial host changes
from pregnancy to delivery and lactation. However, as the
limitations, the correlation between the shifts of gut microbiome
and the changes of host serum metabolites from LP to PO
state was only established based on the association study.
The causality and the underlying mechanisms have not been
elucidated. These questions will need to be answered in the
future study.
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