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Despite many studies on the immune characteristics of Coronavirus disease 2019
(COVID-19) patients in the progression stage, a detailed understanding of pertinent
immune cells in recovered patients is lacking. We performed single-cell RNA
sequencing on samples from recovered COVID-19 patients and healthy controls. We
created a comprehensive immune landscape with more than 260,000 peripheral blood
mononuclear cells (PBMCs) from 41 samples by integrating our dataset with previously
reported datasets, which included samples collected between 27 and 47 days after
symptom onset. According to our large-scale single-cell analysis, recovered patients, who
had severe symptoms (severe/critical recovered), still exhibited peripheral immune
disorders 1–2 months after symptom onset. Specifically, in these severe/critical
recovered patients, human leukocyte antigen (HLA) class II and antigen processing
pathways were downregulated in both CD14 monocytes and dendritic cells compared
to healthy controls, while the proportion of CD14monocytes increased. These may lead to
the downregulation of T-cell differentiation pathways in memory T cells. However, in the
mild/moderate recovered patients, the proportion of plasmacytoid dendritic cells
increased compared to healthy controls, accompanied by the upregulation of HLA-DRA
and HLA-DRB1 in both CD14 monocytes and dendritic cells. In addition, T-cell
differentiation regulation and memory T cell–related genes FOS, JUN, CD69, CXCR4,
and CD83 were upregulated in the mild/moderate recovered patients. Further, the
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immunoglobulin heavy chain V3-21 (IGHV3-21) gene segment was preferred in B-cell
immune repertoires in severe/critical recovered patients. Collectively, we provide a large-
scale single-cell atlas of the peripheral immune response in recovered COVID-19 patients.
Keywords: memory T cells, HLA class II, recovered COVID-19 patients, disease severity, myeloid cells
INTRODUCTION

Coronavirus disease 2019 (COVID-19), caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted
in more than 261 million confirmed cases and more than 5.2
million deaths according to the statistics of the World Health
Organization (WHO) as of November 30, 2021. The impact of
this disease has led to extensive research work to quickly
understand, control, and treat COVID-19. Most previous
single-cell studies (1–13) focused on the COVID-19
progression stage and have provided important immune
cellular and molecular characteristics. The large-scale
integrated analysis of single-cell data by Ren et al. (9) included
single-cell sequencing data of 140 different types of samples from
104 COVID-19 convalescent patients, showed the immune cell
proportions of peripheral blood mononuclear cells (PBMCs) and
T-cell receptor (TCR) clone diversity and other characteristics in
convalescent patients. Zhang et al. (8) profiled adaptive immune
cells of PBMCs from recovered COVID-19 patients with varying
disease severity using single-cell RNA sequencing (scRNA-seq),
single-cell TCR sequencing (scTCR-seq), and single-cell BCR
sequencing (scBCR-seq). However, these studies cannot explain
the phenomenon recently discovered by Amanat et al. (14) that
convalescent patients with high serum anti-spike titers produce a
higher proportion of non-neutralizing antibodies. Data from
several studies suggested that patients with severe COVID-19
had higher serum anti-spike titers (15–18). In addition,
according to a large-scale population survey in Denmark, the
protection rate of individuals under 65 years of age against
SARS-CoV-2 reinfection is higher than 80%, while patients 65
years of age and older have only 47.1% protection (19). There is
currently no clear explanation for this. Hence, there is an urgent
need for a deeper and more comprehensive understanding of the
immune characteristics of COVID-19 patients during the
recovery stage.

Here we analyzed the scRNA-seq data of 41 individuals of
more than 260,000 cells, including 16 mild/moderate recovered
patients, 6 severe/critical recovered patients, and 19 healthy
controls. CD14 monocytes (CD14 mono), CD4 T cells, and
CD8 T cells in severe/critical recovered patients were still in a
disordered state 27–47 days after symptom onset, accompanied
by a high expression of cytokines and interferon-stimulated
genes (ISGs). The percentages of CD4 T cells and CD8 T cells
in mild/moderate recovered patients were comparable to healthy
controls, but showed significant transcriptome changes. Our data
and findings may have important implications for revealing the
relationship between the immune response of patients recovering
from COVID-19 and the immune protection against SARS-
CoV-2 reinfection.
org 2
MATERIALS AND METHODS

PBMCs From Blood
The dataset generated in this study was termed as the “Li
dataset”. To generate this dataset, human blood samples were
collected by Shenzhen Center for Disease Control and
Prevention, Shenzhen, China. We collected PBMC samples at
27–47 days after onset of symptoms or tested with SARS-CoV-2
nucleic acid positive. All patients were in recovery stage or had
no clinical symptoms at sample collection (Table S1A). PBMCs
were isolated immediately, using lymphocyte separation fluid
under the enhanced biosafety level 2 facility. Then, we used a
freshly prepared freezing solution [fetal bovine serum (FBS)
containing 10% dimethyl sulfoxide (DMSO)] to freeze the
PBMCs. In addition, we collected two fresh PBMC samples
from two healthy individuals for sequencing as healthy control
(Table S1A).

Single-Cell 5′ mRNA and VDJ Sequencing
For the Li dataset, after sample collection, the PBMCs were
stored in liquid nitrogen. Cell suspensions were barcoded
through the 10x Chromium Single Cell platform using the
Chromium Single Cell 5′ Library, Gel Bead and Multiplex, and
Chip kits (10x Genomics). Twenty thousand PBMCs were loaded
on each 10X Chromium A Chip. Single-cell lysis and RNA first-
strand synthesis were performed using the 10X Chromium
Single Cell 5′ Library and Gel Bead Kit according to the
manufacturer’s protocol. RNA and VDJ library preparation
were performed according to the manufacturer’s instructions,
using the Chromium Single Cell 5′ v3 Reagent (10x Genomics)
and Chromium Single Cell V(D)J Reagent kits (10x Genomics).
Each sequencing library was generated with a unique sample
index. All libraries were quantified by Qubit 3.0 (Thermo Fisher),
Agilent 2100, and Qsep 100. Sequencing was performed on a
Hiseq4000 platform with a paired-end 150 sequencing strategy.

Single-Cell RNA-Seq Data Preprocessing
For the Li dataset, we used the Cell Ranger single-cell software
suite (version 3.0.0, 10x Genomics) to compare and quantify the
single-cell sequencing data against the GRCh38 human reference
genome. Firstly, the cells in each sample were screened, and cells
expressing at least 200 genes were kept. Next, cells were filtered
according to three criteria: (1) cells must have a proportion of
mitochondrial gene counts (UMIs from mitochondrial genes/
total UMIs) of less than 15%; (2) cells must have a total number
of unique molecular identifiers (UMI) counts per cell (library
size) of more than 500; (3) genes must be expressed in more than
two cells. Doublets were identified using Scrublet (20) and were
removed from the analysis. After quality control filtering, a total
January 2022 | Volume 12 | Article 781432
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number of 86,650 cells were retained for downstream analysis
(details are shown in Table S2A, B).

For the preprocessing of the Ren dataset (9), we downloaded
the scRNA-seq expression profile from NCBI Gene Expression
Omnibus (GEO) database: GSE158055 (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE158055). Only healthy
control samples and samples of 27 and 47 days after recovery
(hospital discharge) were included in our analysis. As the
downloaded data had already been analyzed and annotated, all
the cells in the dataset were used in our analysis without quality
control. The two datasets were merged together based on the raw
counts using the concatenate function in Scanpy (21). An overlap
of 22,094 genes was found in the merged data. To integrate the Li
dataset and the Ren dataset, we selected the top 2,000 highly
variable genes for the integrated dataset using the “seurat_v3”
flavor in the scanpy.pp.highly_variable_genes() function in
Scanpy (21).

Single-Cell RNA-Seq Cell Type Annotation
Scanpy (21) was used to analyze the data, including
normalization, transformation, highly variable gene selection,
and dimension reduction. The expression profile was first
normalized to counts per ten thousand (CPTT) by
scanpy.pp.normalize_total() function and then log-transformed
by scanpy.pp.log1p(). Highly variable genes were selected with
scanpy.pp.highly_variable_genes() according to the mean
expression and dispersion of the genes. Principal Component
Analysis (PCA) was performed on the expression profile of the
highly variable genes. Harmony (version 0.0.5) (22) was used to
integrate data on the latent space from different samples on the
PCA space. Dimension reduction was performed with Uniform
Manifold Approximation and Projection (UMAP) (23). To
present cell clustering using Louvain method (24) on the
Harmony corrected latent space. The cluster stabilities were
assessed by self-projection (25). A machine learning-based
method (25) was used to infer cell types according to two
annotated reference datasets (3, 6).

Immune Cell Proportion Analysis
We calculated immune cell proportions for each major cell type
and cell subtype. For each sample, cell type proportion was
calculated by the number of cells in a certain cell type divided by
total number of cells. To identify changes in cell proportions
between samples in different disease severity states and sex, we
performed T tests and non-parametric tests on the proportions
of each major cell type and cell subtype across different groups.
We performed Spearman’s correlation analysis to assess the
association between cell type proportion and patient age. A
value of p less than 0.05 is regarded as significant.

ANOVA and Linear Regression Analysis
To further evaluate the influence of different sample technical
factors, patient phenotypes, and their potential interactions to
cell type proportions, we performed One-way ANOVA on cell
type proportions based on different phenotypes (Figures S2A),
including disease severity, sex, and sample type (fresh or frozen).
In Figure S2A, we included the sample data from the Ren dataset
Frontiers in Immunology | www.frontiersin.org 3
with 21–90 days sampling time (days after symptom onset) for
One-way ANOVA and linear regression analysis. Cell type
proportions were used as the outcome in a regression analysis
with age and sampling time (days after symptom onset) as
predictors, respectively. Following a multiple testing correction,
phenotypes were regarded as significantly associated with cell
type proportions when q value is less than 0.05. Statistical
analyses were performed using R software (v 4.1.1; The
R Foundation).

Differential Expression and
Kyoto Encyclopedia of Genes
and Genomes Analysis
Tomodel the differential expression of genes between cells together
with technical effects, we used the hurdle model in MAST (26),
while accounting for the covariates of sex and age. In themodel, the
effects of covariates are regressed out such that the differential
expression represents the effect of the disease condition.
Differentially expressed genes with a false detection rate (FDR)
lower than 0.01 were used for volcano plots and pathway/gene
ontology analysis. Upregulated genes were defined as the ones with
a positive log fold change value. GProfiler (27) was used to analyze
and visualize the regulated pathways based on the Gene Set
Enrichment Analysis (GSEA) database of hallmark genes (28),
while the Kyoto Encyclopedia of Genes and Genomes (KEGG)
hallmark gene set was used in the analysis.

Gene Module Score Calculation
The gene module score was calculated as the average expression
of a set of genes in a given gene module subtracted with the
average expression of a reference set of genes. The latter were
randomly sampled from the gene_pool for each binned
expression value. For a given set of genes belonging to each
module (such as HLA class II, cytokine module), the scores were
generated using scanpy.tl.score_genes() function of Scanpy
(v1.8.1) (21) with the parameter ctrl_size=100.

Single-Cell TCR/BCR Analysis
The Ren TCR/BCR data (9) were first downloaded from NCBI
Gene Expression Omnibus (GEO) database: GSE158055 (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158055).
These data have been preprocessed by Ren et al. (9), and only
those T cells with at least one TCR a-chain (TRA) and one TCR
b-chain (TRB) were provided in this dataset. Similar
preprocessing was done for BCR data where cells with at least
one heavy chain (IGH) and one light chain (IGK/IGL) were
provided. The clonotype frequencies for each sample were also
provided. We preprocessed our TCR/BCR datasets in a similar
manner before integrating them with Ren’s dataset and
calculated the clonotype frequencies per sample. Please note
that only those B-cell/T-cell clones with corresponding cell-type
annotations obtained from scRNA-seq analysis (see Methods
section Single-Cell RNA-Seq Cell Type Annotation) were
considered for further analysis. The final numbers are given in
Table S2A. The UMAPs were plotted using the scanpy.pl.umap()
function in (21), and the rest of the analysis was done using R-
package Immunarch (v0.6.6) (29, 30).
January 2022 | Volume 12 | Article 781432
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Cell–Cell Interaction Analysis
The Scanpy AnnData (21) containing all cells was subsetted to T
cells, Natural killer (NK) cells, monocytes, dendritic cells (DCs),
and plasmacytoid dendritic cells (pDCs) belonging to the 41
samples with a sampling date 27–47 days. This AnnData was
further divided into three subsets corresponding to the three
severities. The R-package CellChat (v1.1.3) (31) was used to infer
cell–cell interaction networks where these annData objects used
by Scanpy were converted to separate cellchat objects and then
merged for comparison. To identify the upregulated and
downregulated signaling pathways using differential expression
analysis, two cellchat objects were analyzed at a time. Those
differentially expressed signaling ligands with a Bonferroni
corrected p-value lower than 0.05 and a log fold change higher
than 0.01 were considered upregulated in the second dataset,
while those ligands and receptors with a Bonferroni corrected p-
value lower than 0.05 and a log fold change higher than 0.01 in
the first dataset were considered downregulated in the second
dataset. Only those ligand/receptor genes expressed in at least
10% of cells in the respective datasets were considered for
visualization and analysis.
RESULTS

The Recovered COVID-19 Patient Cohorts
To profile the transcriptional immune landscape of COVID-19
patients in the recovery stage, we collected 10 PBMC samples
from recovered COVID-19 patients 27–47 days after symptom
onset, and 2 PBMC samples from healthy control. Using single-
cell sequencing technologies, we performed single-cell RNA
sequencing as well as single-cell immune profiling (both single-
cell B-cell receptor sequencing, scBCR-seq, and single-cell T-cell
receptor sequencing, scTCR-seq) on these 12 samples (we term
the dataset we generated as the “Li dataset”; see Methods). To
improve the reliability and reproducibility of the data analysis,
we added 12 PBMC samples from COVID-19 patients in the
recovery stage from the previously reported dataset (9) along
with 17 PBMC samples from healthy control (this added dataset
is termed as the “Ren dataset”). These samples were selected to
match the sampling time (according to the day after symptom
onset) of the Li dataset, i.e., both datasets had a sampling day of
27–47 days after symptom onset (Tables S1A, B). The overall
integrated data included 19 healthy control samples (HC), 16
mild/moderate recovered (MR) samples, and 6 severe/critical
recovered (SR) samples, which were classified according to
WHO criteria (https://www.who.int/publications/i/item/covid-
19-therapeutic-trial-synopsis) (Figure 1A and Tables S1A, B).
In Table S1C, we compare the detailed characteristics of patients
and controls (including median sampling day and sample type,
patient median age, gender, comorbidities, and outcome).
Consistent with other reports (9, 16), we found that the
median age of severe/critical patients is greater than that of
mild/moderate patients. The median sampling day of the
mild/moderate and severe/critical recovery groups are 33.5 and
34.5 days (days after symptom onset), respectively (Table S1C).
Frontiers in Immunology | www.frontiersin.org 4
This basically eliminates the effect of detection time on the result
of scRNA-seq of patients, and these two groups are comparable
in our data.

After quality control, we obtained transcriptomes of 86,650
cells, 3,693 productive BCR clones, and 15,717 productive TCR
clones from the Li dataset (Table S2A). From the Ren dataset we
retrieved 178,239 cells, 13,899 productive BCR clones, and
41,676 productive TCR clones (Table S2A). A Unified
Manifold Approximation and Projection (UMAP) based on
the Harmony-corrected latent space was generated (Figure 1B;
see Methods). We identified 28 distinct cell populations using a
machine learning-based approach (25) in comparison with two
annotated reference datasets (3, 6) (Figure 1B). These cell
populations were further confirmed with known marker gene
expression (Figures S1A, B).

We first analyzed the compositional changes of the broad
categories of immune cells in PBMC (Figure 1C). Notably, in
severe/critical COVID-19 patients in the recovery stage, the
proportion of CD14 monocytes (based on the expression of the
marker genes CST3, LYZ, CD14) in PBMCs were elevated, but
CD4 T cells (IL7R, LTB) were decreased (Figure 1C), consistent
with a previous report (9). CD8 T cells (which express CD8A,
CD8B) decrease in severe/critical recovered patients in
comparison with healthy controls.

Immune Characteristics of Myeloid Cells
in the Recovery Stage
Multiple subtypes of myeloid cells significantly changed in cell
proportions and genes transcription during the progression of
COVID-19 dependent on symptom severity (6, 9). To
understand the immune characteristics of these myeloid cell
subtypes during the recovery stage of COVID-19, we analyzed
the relationship between patient age, sex, symptom severity, and
PBMC compositions (Figure 2 and Figures S2, S3). The
percentages of CD14 Mono and CD14 Mono (NFKBIA) cells
were significantly higher in severe/critical recovered patients
compared with healthy controls. We analyzed the correlation
between all COVID-19 convalescent patient samples and age,
and found CD14 Mono increases with age in the convalescent
COVID-19 patients (r=0.7294, p=0.0019), but CD14 Mono
(NFKBIA) has no significant correlation with age (r=0.3153,
p=0.1530) (Figure 2C). Sex has no significant effect on the
proportions of these two cell subtypes (p>0.05) (Figure 2B).
Surprisingly, pDCs were significantly elevated in mild/moderate
recovered patients but were comparable with healthy controls in
severe/critical recovered patients (Figure 2A). Sex has no
significant effect on the percentage of pDCs, but age is
negatively correlated with the percentage of pDCs (r=−0.4825,
p=0.023) (Figures 2B, C).

Next, we defined an inflammatory score and HLA class II
score for each cell based on the expression of the reported
inflammatory response genes (32) and HLA class II genes (6)
(Table S3), respectively. We used these two scores to evaluate the
inflammation status and antigen presentation ability for each cell
(Figures 2D, E). The expression of HLA class II genes was
significantly reduced in severe/critical recovered patients, and
this reduction was more significant in monocyte and dendritic
January 2022 | Volume 12 | Article 781432

https://www.who.int/publications/i/item/covid-19-therapeutic-trial-synopsis
https://www.who.int/publications/i/item/covid-19-therapeutic-trial-synopsis
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. Recovered COVID-19 Patients' Immune Characteristics
cell populations (Figures 2D, E). Similarly, we calculated the
cytokine score and ISG score of each cell according to the
expression of the collected cytokine genes and ISG genes
(Table S3; see Methods). The expression of genes in cytokine
module was significantly increased in severe/critical recovered
patients but was comparable to healthy controls in mild/
moderate recovered patients or showed a downward trend
(Figures S2B, C). This phenomenon was observed in most cell
subtypes. The expression of genes in the ISG module was
essentially restored to healthy levels in recovered COVID-19
patients, but remained high in a subset of cell subtypes in severe/
critical recovered patients, for example Prolif T, CD8m T
(GZMH), and NK(GZMH) (Figures S2B, C).
Frontiers in Immunology | www.frontiersin.org 5
Through the KEGG (33) pathway analysis, we further detected
the differences in cell function of CD14 Mono, CD14 Mono
(NFKBIA), and pDCs in recovered patients with different clinical
severity (Figure 2F and Figure S2D). In CD14 monocytes, the
nucleotide-binding oligomerization domain (NOD)-like receptor
signaling pathway was enriched in severe/critical recovered
patients, but the antigen processing and presentation and
Intestinal immune network for IgA production were
downregulated (Figure 2F). In pDCs, Lysosome pathway was
downregulated in severe/critical recovered patients. Together
with the significant decrease in HLA class II score, it suggested
that the severe/critical recovered patients’ antigen processing and
presentation ability was reduced (Figures 2E, F).
A

B

C

FIGURE 1 | Single-cell atlas of recovered COVID-19 patients and healthy controls. (A) Flowchart depicting the overall design of the study. (B) UMAP presentation of
the integrated single-cell transcriptomes of cells derived from recovered COVID-19 patients and healthy controls. (C) Box plots show the comparative analysis of the
percentage of major cell types in PBMC cells. NK, natural killer cells; Mono, monocytes; DC, dendritic cells. T test with healthy, *p < 0.05, **p < 0.01.
January 2022 | Volume 12 | Article 781432
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A B

C

D E

F

FIGURE 2 | Single-cell transcriptome characteristics of the myeloid immune response in recovered COVID-19 patients. (A) Boxplots depicting percentages of
multiple cell types in PBMC cells, colored by group-specific color. T tests (and non-parametric tests), *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (B) The box
plots show the cell subtype proportions in different genders. (C) The correlation analysis charts show the correlation between patient age and cell subtype
proportions (Spearman’s correlation). (D) UMAPs of PBMC cells colored by inflammatory score (top panel) and HLA_class II score (bottom panel). (E) Box plots
show the inflammatory score (top panel) and HLA_class II score (bottom panel) of subtypes from healthy controls (n = 19), mild/moderate recovered (n=16), severe/
critical recovered (n=6) patients. Significance was evaluated with T tests (and non-parametric tests), for each subtype versus healthy controls. (F) Dot plots depict
enriched signaling pathways in different serious groups in CD14 monocytes and pDCs. The number in parentheses represents the number of genes with significant
differences. Mono, monocytes; pDCs, plasmacytoid dendritic cells; HC, healthy control; MR, mild/moderate recovered; SR, severe/critical recovered. T tests (and
non-parametric tests), *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
Frontiers in Immunology | www.frontiersin.org January 2022 | Volume 12 | Article 7814326
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Single-Cell Transcriptional Landscape
of T Cells
T-cell immunity plays an important role inCOVID-19 patients (4).
To further clarify the T-cell immune characteristics of COVID-19
patients during the recovery stage, we analyzed eachT-cell subtype.
According to the cell proportion analysis, CD4m T, CD4m T
(GZMK), CD8m T (IL7R), gd T, and Vg9Vd2 T (34, 35) cells
significantly decreased in severe/critical recovered patients, but
were comparable with healthy controls in mild/moderate
recovered patients (Figure 3A and Figure S3A). Unlike these T-
cell subtypes, proliferating T (prolif T) cells were increased in
severe/critical recovered patients compared to healthy controls
(Figure 3A), which was consistent with the results reported by
Ren et al. (9). In the correlation analysis with age, prolif T cells were
positively correlated with age (r=0.5206, p=0.0005), while gdT cells
andVg9Vd2 T cells were negatively correlatedwith age (r=−0.4498,
p=0.0032; r=0.4344, p =0.0045, respectively) as shown in Figures
S3B, C. Similar to myeloid cells, sex had no significant effect on all
T-cell subtypes (data not shown).

Interestingly, in NK and T cell types, the transcriptional
activator genes and functional immune genes, such as FOS,
JUN, CD69, CXCR4, NFKBIA and TNFAIP3, were generally
elevated in mild/moderate recovered patients (Figure 3B),
while the expression of GIMAP4, SELPLG, S1PR1, and STAT1
genes decreased (Figure 3B). In the KEGG pathway analysis,
CD4m T cells exhibited enriched Th17 cell differentiation in
mild/moderate recovered patients, while severe/critical recovered
patients lacked IL-17 and TNF signaling pathway (Figure 3C).
IL−17 signaling pathway was also downregulated in severe/
critical recovered patients for CD8m T (GZMK) (Figure 3C).
In CD4m T (GZMK), the cytotoxic activity-related PRF1 and
SLC9A3R1 gene expression level was significantly reduced, KLF6
and CD83 were significantly increased in mild/moderate
recovered patients, and the expression level of these genes in
severe/critical recovered patients was comparable to healthy
controls (Figure 3D). These four functional genes had similar
expression pattern in the different severity for three CD8
memory T cell types (Figure S3D). IFNG was significantly
increased in the mild/moderate recovered patients for the three
CD8 memory T cell types (Figure S3D). These results suggested
that the percentages of CD4 T cells and CD8 T cells was
significantly reduced in severe/critical recovered patients, but
the expression level of transcriptional activator genes and
functional immune genes was comparable to healthy controls
or had a slightly downward trend. Although the percentage of
CD4m T, CD4m T (GZMK), and three CD8 memory T cell types
in mild/moderate recovered was equal to or slightly higher than
that in healthy controls. The memory T cells differentiation-
related genes were significantly upregulated. These different
immune characteristics may produce different SARS-CoV-2-
specific memory T cells in different recovered patients.

T-Cell and B-Cell Immune Repertoires in
Recovered COVID-19 Patients
Our sequencing data also included scTCR-seq and scBCR-seq
dataset to investigate the characteristics of TCR/BCR immune
Frontiers in Immunology | www.frontiersin.org 7
repertoires in recovered COVID-19 patients. UMAP results
showed the distribution of TCR/BCR clone size in T/B cell
subpopulations. The expanded clonotypes of the TCR clonal
size >=5 were mainly from CD8m T (GZMH), CD8m T
(GZMK), and Vg9Vd2 T cells (Figures 4A, B). Also, the
expanded BCR clonotype ratio was very small. The clonotypes
of BCR clonal size >=5 mainly came from plasma and memory B
cells, and the clonotypes of BCR clonal size 2–4 mainly came
from naïve B(TCL1A) and memory B cells (Figures 4A, B).
Surprisingly, we found comparable T-/B-cell clonal expansion in
healthy controls, mild/moderate, and severe/critical recovered
patients (Figure 4C and Figure S4A). This was not consistent
with the results reported by Zhang et al. (8). Whether this
inconsistency was caused by the difference of sample types (the
sample types used by Zhang et al. were peripheral blood CD3+ T
cells and CD3−CD19+CD20+CD27+ antigen-experienced B
cells) or the number of productive TCR/BCR clones obtained
by sequencing or number of samples, it needs to be further
verified. Further, in these cell types, clinical severity did not affect
the TCR/BCR diversity (Figure 4E). The TCR/BCR diversity of
CD8m T (GZMH), CD8m T (GZMK), and memory B was
negatively correlated with age (R<0), while that of prolif T and
plasma had a positive trend with age with no significant (p>0.05;
Figure 4D). In addition, sex does not affect the TCR/BCR
diversity of these cells (Figure S4B).

Next, to reveal the unique gene patterns and preferences of
BCR or TCR in recovered COVID-19 patients, we compared
the usage rate of immunoglobulin variable (V) genes. The
severe/critical recovered patients use IGHV3-21 more
frequently, compared to healthy controls (Figure S4C).
Patients in the recovery stage had a certain bias towards the
usage of other V genes as well, but there were large variations
among individuals, and there was no statistically difference
(Figure S4C). Finally, we analyzed the distribution of the heavy
chain CDR3 (HCDR3) amino acid sequence length in the BCR
repertoires of memory B cells. There was no significant
difference in the distribution of HCDR3 lengths in memory B
cells between the recovery stage of COVID-19 and the healthy
control (Figure S4D).
The Cross-Talk Between Myeloid Cells
and T-Cells in the Recovered
COVID-19 Patients
In myeloid cell subtypes, the HLA class II score significantly
decreased in CD14 monocytes and DCs of severe/critical
recovered patients. We also found that the antigen processing
or presentation pathways of CD14 monocytes and pDCs were
downregulated in severe/critical recovered patients. We further
investigated whether these changes contributed to the differences
in CD4m T and CD8m T cell proportions, and cell–cell
interaction analysis on the main subgroups of monocytes, DCs,
and CD4m T cells and CD8m T cells was performed (Figure 5;
see Methods).

For each signaling pathway considered for the cell–cell
interaction analysis (see Methods), we compared the
January 2022 | Volume 12 | Article 781432
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aggregated incoming and outgoing signaling for each cell
population. While mild/moderate recovered and severe/critical
recovered patients presented similar overall signaling patterns
with different patterns to healthy controls (Figure 5A). Based on
these signaling patterns, we focused on the interaction of MHC-
II, TNF, IL1, IL16, INF-II, and CD48 and other ligand-receptor
pairs in monocytes, DCs, and CD4 and CD8 memory T cells
Frontiers in Immunology | www.frontiersin.org 8
(Figures 5B, C). In the Circos plot, we found in an unbiased
manner that the MHC II signaling was downregulated in CD14
monocytes, DCs, pDCs in severe/critical recovered patients
compared to healthy controls. The TNF_TNFRSF1B ligand-
receptor pair related to inflammation expression was
upregulated in mild/moderate recovered patients compared to
healthy controls (Figure 5B). These results were consistent with
A

B

C

D

FIGURE 3 | Single-cell transcriptome characteristics of the T and NK cell immune response in recovered COVID-19 patients. (A) Boxplots depicting percentages of
T cell subtypes in PBMC cells, colored by group-specific color. (B) Heatmap visualization of average mRNA expression levels of the differential genes in three severity
groups in T and NK cell subtypes. (C) Dot plot depicting enriched signaling pathways in different serious groups in CD4m T and CD8m T(GZMK). HC, healthy control;
MR, mild/moderate recovered; SR, severe/critical recovered. The number in parentheses represents the number of genes with significant differences. (D) Boxplots of
the gene expression of CD4m T(GZMK) cluster from healthy controls (n = 19), mild/moderate recovered (n = 16), severe/critical recovered (n = 6) patients. T tests (and
non-parametric tests), *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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A

B C

D

E

FIGURE 4 | Distribution of BCR/TCR expanded clonotypes and associations of patient age and COVID-19 severity with the diversity of B and T cell repertoires.
(A) UMAPs embedding of T/B cells colored by the density of cells characterized by different clonal expansion sizes (n = 1, n = 2-4, and n > = 5). Shown separately in
different COVID-19 severity. (B) Column charts of T/B cell subpopulation composition of expanded TCR/BCR clones. (C) Box plots show characterization and
comparison of TCR clonal expansion among severe/critical recovered patients (SR), mild/moderate recovered patients (MR), and healthy controls (HC), by quantifying
the ratio of expanded clones. (D) The correlation analysis charts show the correlation between patient age and the BCR/TCR diversity of CD8m T(GZMH), CD8m T
(GZMK), Prolif T, Memory B, and Plasma (Spearman’s correlation). (E) Box plots show the BCR/TCR diversity of CD8m T(GZMH), CD8m T(GZMK), Prolif T, Memory
B, and Plasma among severe/critical recovered patients (SR), mild/moderate recovered patients (MR), and healthy controls (HC). The chao1 method in R-package
Immunarch was used to evaluate repertoire diversity.
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our previous observations with HLA class II score and
inflammatory score trends (Figures 2D, E). Surprisingly, HLA-
DRA, HLA-DRB1, and other HLA class II genes were
downregulated in CD14 monocytes, DCs, pDCs in severe/
critical recovered patients, but they were upregulated in mild/
moderate recovered patients (Figures 5B, C). These results
suggested that the expression of HLA-DRA, HLA-DRB1, HLA-
Frontiers in Immunology | www.frontiersin.org 10
DPA1, HLA-DRB5, HLA-DQA1, HLA-DQB1, and other HLA
class II genes in monocytes and DCs in the recovery stage was
related to the severity of COVID-19 disease, and their
downregulation may contribute to the memory T cell
differentiation–related transcripts inactivation and the low
percentage of CD4m and CD8m T cells in severe/critical
recovered patients compared to healthy controls.
A

B

C

FIGURE 5 | The interactions of monocyte, DC, NK, and CD4+/CD8+ memory T cell. (A) Heatmaps showing the overall signaling associated with each cell subtype.
For each signaling pathway considered for the cell–cell interaction analysis using CellChat (see Methods), we can compare the aggregated incoming and outgoing
signaling for each cell subtype in each severity. The top barplot represents the total non-normalized signaling for each cell subpopulation, while the right barplot
represents the total log-normalized signaling for each pathway. (B) Circos plot showing the prioritized interactions mediated by ligand-receptor pairs between
different cell types. HC, healthy control; MR, mild/moderate recovered; SR, severe/critical recovered; DC, dendritic cells; Mono, monocytes; NK, natural killer cells.
(C) Summary illustration comparing the list of HLA genes and inflammatory genes that were upregulated or downregulated in mild/moderate recovery (MR) and
severe/critical recovery (SR) compared to healthy controls (HC) in T cells, DCs, and monocytes.
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DISCUSSION

The immune status of COVID-19 patients during the recovery
stage is the key to whether they can obtain immune protection
against SARS-CoV-2 reinfection. Basic immune memory and
high serum antibody levels can be obtained about 28 days after
foreign antigens invade the human body (36). Therefore,
collecting peripheral blood of recovered patients 27–47 days
after the onset of SARS-CoV-2 infection is one of the best choices
to understand the immune characteristics of COVID-19 patients
during the recovery stage, and find molecular markers related to
disease severity or protection rate against reinfection. In this
study, we generated single-cell sequencing data from the blood of
SARS-CoV2 recovered patients and performed an integrated
analysis with published data. We constructed a single-cell
transcriptome landscape map of peripheral immune cells of
recovered COVID-19 patients.

The results of the proportions and cytokine scores of cell
subtypes in recovered patients in our study are consistent with
those reported by Ren et al. (9). However, due to differences in
cell population annotations and the number of samples included,
the results of some cell subtypes cannot be directly compared.
The samples we analyzed only included samples with a sampling
time of 27–47 days (days after symptom onset). To determine if
this impacted on results, we extracted sample data from the Ren
dataset with 21–90 days sampling time (days after symptom
onset) and assessed how the sampling time, severity, sample type,
gender, and age influence cell subtype proportions (Figure S2A).
We found gender has no significant effect on all cell subtypes,
and age has significant effects on CD4m T, CD4m T (GZMK),
CD8m (IL7R), prolif T, gd T, and Vg9Vd2 T (Figure S2A and
Figure S3C), all consistent with our subpopulation results. This
shows that these findings were verifiable and stable in recovered
COVID-19 patients for at least 2–3 months after symptom onset.
Compared with Zhang et al.’s study on isolated T cells and B cells
(8), our study obtained fewer TCR and BCR clones in each
sample. Therefore, we have obtained very few characteristics of
the T- and B-cell immune repertoire of recovered COVID-
19 patients.

Our findings on HLA class II are different from those of Wilk
et al. The Wilk et al. study focused on the progression stage of
COVID-19 patients, while our study discusses the recovery stage.
In the study of Wilk et al. (6), the HLA class II score was
downregulated in patients with COVID-19 in the progression
stage and the most decreased in severe/critical patients. In
samples with sampling date 27–47 days after symptom onset,
severe/critical recovered patients maintained lower HLA class II
scores and higher ISG scores, compared to healthy control, while
mild/moderate recovered patients were comparable to healthy
controls. Furthermore, through cell–cell interaction analysis, we
found several HLA class II genes, which are downregulated in
severe/critical recovered patients but upregulated in mild/
moderate recovered patients. These results suggested that the
immune response of mild/moderate patients could gradually
return to normal levels during the recovery stage, while severe/
critical patients could remain in an immune disorder state. This
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might cause lower protection rate of severe/critical recovered
patients against SARS-CoV-2 reinfection.

We also found that there was a higher proportion of CD14
monocytes in severe/critical recovered patients. These CD14
monocytes exhibited phenotypes such as upregulation of
cytokine expression, downregulation of HLA class II genes,
and antigen processing and presentation signaling pathway.
Although the proportion of dendritic cells did not change, they
also showed upregulation of cytokines and ISGs expression, and
downregulation of HLA class II genes in severe/critical recovered
patients. We observed a decreased proportion of CD4m T and
CD8m T cells and showed a phenotype of downregulation of IL-
17 and TNF signaling pathways in severe/critical recovered
patients. This could suggest that the low antigen processing of
dendritic cells and monocytes might negatively affect the
memory T cell differentiation necessary to provide protection
against SARS-CoV2 reinfection. The downregulation of HLA
class II genes may be one of the reasons why convalescent
patients with high serum anti-spike titers produced a higher
proportion of non-neutralizing antibodies (15, 16, 18).

The proportions of most peripheral immune cell types in
mild/moderate recovered patients were equivalent to that of
healthy controls, but CD14 monocytes exhibited upregulated
expression of inflammatory genes such as TNF. The expression
of HLA-DRA, HLA-DRB1, and other HLA class II genes were
also upregulated in CD14 monocytes and DCs. Similarly, T-cell
differentiation regulation and memory T cell–related genes FOS,
JUN, CD69, CXCR4, and CD83 were upregulated. Therefore, we
believe that the recovery of CD14 monocytes includes the return
of cytokine expression and cell proportions to healthy levels. The
upregulation of HLA-DRA, HLA-DRB1, and other HLA class II
genes in CD14 monocytes and DCs may promote the change of
CD4m T cell and CD8m T cell transcriptomes, helping the
formation of T cell immune memory, thereby providing effective
cellular immunity against SARS-CoV-2 reinfection. Further
experiments are required to validate this hypothesis. Recent
studies from Public Health England, London, UK, Andrews
et al. found that the effectiveness of the Vaxzevria and
Comirnaty vaccines against symptomatic diseases has greatly
waned in people over 65 years of age (Unpublished, https://
twitter.com/jburnmurdoch/status/1438100712441974786?s=19).
This outcome seems to be similar to that found in SARS-CoV-2-
infected people. This suggests that the differential immune
characteristics we found in mild/moderate recovered and
severe/critical recovered patients may be the keys to the
development of an effective SARS-CoV-2 vaccine for the elderly.

SARS-CoV-2-specific memory T cell responses are long-lasting
in recovered COVID-19 patients (37–39) even though SARS-CoV-
2-specific antibody responsemaydecrease (15, 37, 40–42). Previous
studies have shown that T cell responses to SARS-CoV-1 and
Middle East Respiratory Syndrome Coronavirus (MERS-CoV)
are long-lasting, up to >17 years (43–45). Recent studies have also
demonstrated that SARS-CoV-2-specific memory T cell response
lasts formore than10months in recoveredCOVID-19patients, and
these cells are stem-likememoryT cells withmultifunctionality and
proliferation ability (38). In addition, Katherine et al. found
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memory T cells contribute to protection against SARS-CoV-2
rechallenge in a rhesus monkey model (29, 30). These results
support that the generation and persistence of memory T cells in
recovered COVID-19 patients are essential for humans to prevent
SARS-CoV-2 reinfection. Currently, there is no report on myeloid
cell immunity in recovered patients 1 year or more after infection,
and their role in preventing SARS-CoV-2 reinfection remains
unknown. In addition, it is still unclear whether the T cell
responses in severe COVID-19 patients who have recovered a
year or longer after infection have returned to normal.

In summary, our analysis of a large-scale scRNA-seq dataset
covering diverse disease severity has revealed multiple immune
characteristics during the recovery stage of COVID-19 that have
not been adequately studied previously. Such results provided a
critical resource and important insights in dissecting the human
body’s immune protection mechanism against SARS-CoV-2
reinfection and may help to develop effective SARS-CoV-2
vaccines for the elderly.
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