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Abstract: Osmanthus fragrans is a well-known native plant in China, and carotenoids are the main
group of pigments in the petals. Abscisic acid (ABA) is one of the products of the metabolic pathway
of carotenoids. Application of ABA could affect pigmentation of flower petals by changing the
carotenoid content. However, little is known about the effects of ABA treatment on carotenoid
accumulation in O. fragrans. In this study, different concentrations of ABA (0, 150 and 200 mg/L)
were spread on the petals of O. fragrans ‘Yanhonggui’. The petal color of ‘Yanhonggui’ receiving
every ABA treatment was deeper than that of the control. The content of total carotenoids in the
petals significantly increased with 200 mg/L ABA treatment. In the petals, α-carotene and β-carotene
were the predominant carotenoids. The expression of several genes involved in the metabolism of
carotenoids increased with 200 mg/L ABA treatment, including PSY1, PDS1, Z-ISO1, ZDS1, CRTISO,
NCED3 and CCD4. However, the transcription levels of the latter two carotenoid degradation-related
genes were much lower than of the five former carotenoid biosynthesis-related genes; the finding
would explain the significant increase in total carotenoids in ‘Yanhonggui’ petals receiving the
200 mg/L ABA treatment.
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1. Introduction

Osmanthus fragrans is a favorite traditional flower in China because of its delightful flower color and
scent. Carotenoids are the major pigments in the petals of O. fragrans [1]. Carotenoids produce many
yellow, orange and red pigments in nature, including many fruits [2], vegetables, flowers [3], butterflies
and crayfish [4]. In the petals, which mainly contain carotenoids, the kind and content of the carotenoids
determine the color. In Marigold (Calendula officinalis), for example, the carotenoid content of the
most pigmented varieties is approximately 100-fold that of white flowers [5]. In addition, carotenoid
metabolism-related genes contribute to the color formation in these flowers, including biosynthesis-
and degradation-related genes. In plants, carotenoids are derived from the 2-C-methyl-D-erythritol
4-phosphate (MEP) pathway in plastids [4]. Phytoene, formed by phytoene synthase (PSY), is the
first committed step in the metabolic pathway of carotenoids. Then, the colorless phytoene is
catalyzed by four enzymes, including phytoenedesaturase (PDS), ζ-carotene isomerase (Z-ISO),
ζ-carotene desaturase (ZDS) and carotenoid isomerase (CRTISO), to produce lycopene. Lycopene is
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catalyzed by lycopene β-cyclase (LCYB) and lycopene ε-cyclase (LCYE) to form α-carotene; in contrast,
β-carotene is catalyzed only by LCYB. Furthermore, α-carotene is converted to lutein by β-ring
carotene hydroxylase (CHYB) and ε-ring carotene hydroxylase (CHYE), which is the end-product of
the α-carotene branch. β-caroteneis catalyzed by CHYB twice to form zeaxanthin. Then, zeaxanthin is
converted to neoxanthin by neoxanthin synthase (NSY). The isomers of violaxanthin and neoxanthinare
cleaved by nine-cis-epoxy-carotenoid dioxygenases (NCEDs) to produce ABA [6–8].

Plant hormones play important roles in plant growth, development and secondary metabolism.
Previous studies have shown that ethylene treatment can increase the content of carotenoids in different
species, such as Citrus sinensis Osbeck [9], Satsuma mandarin (Citrus unshiu Marc.) [10] and papaya
(Carica papaya cv. ‘Golden’) [11], because genes involved in biosynthesis of carotenoids, such as
PSY, LCYB and CHYB, are upregulated by ethylene treatment [9]. In contrast, IAA treatment delays
carotenoid accumulation in tomato [12]. For methyl jasmonate (MeJA), carotenoid accumulation
was enhanced in Coriander (Coriandrum sativum) receiving MeJA treatment because of the increased
transcripts level of CsCHYE, CsPDS, CsZDS and CsLCYE [13]. Other plant hormones, such as salicylic
acid (SA), can also enhance the accumulation of carotenoids [14]. ABA regulates a wide range of
plant growth and developmental processes [15,16] and mediates plant responses to environmental
stresses [17,18]. In addition, the application of exogenous ABA has been shown to affect carotenoid
content in Lycopersicon esculentum, as ABA treatment decreased the content of lutein but significantly
increased the content of β-carotene. In two additional species of tomato, the application of ABA
increased lutein, β-carotene and zeaxanthin in their leaves [19,20]. Correlated with the change in
carotenoids, the expression of genes involved in the metabolic pathways of carotenoids was also
influenced by ABA treatment. Recently, it has been shown that the expression of other carotenoid
biosynthesis-related genes, such as PSY, could also be increased by ABA treatment [21]. In O. fragrans,
the research are mainly about its flavor and color. Wang et al. found that O. fragrans could be divided
into two clusters, an orange-red cluster and a yellowish-white cluster, respectively, in terms of the
content of carotenoids and flavonoids in petals. The petals of the yellowish-white cultivars exhibited
high contents ofβ-carotene, lutein andα-carotene, whereas the petals of the orange-red cultivars mainly
contained β-carotene and α-carotene. The profound diversity in the total carotenoid concentrations of
the two clusters was determined by the transcript levels of OfCCD4 [22]. The main volatile organic
compounds in petals of O. fragrans are linalool, α-ionone, β-ionone, and γ-decalactone, and 19 ◦C
would promote the emission of a floral scent [23]. Studies have shown that the biosynthesis of volatile
compounds in O. fragrans is caused by the OfCCD4 instead of OfCCD1 [24,25]. However, there is
no report on ABA regulation of carotenoids in O. fragrans. Our purpose was to determine the effects
of different ABA concentrations on carotenoids accumulation and the expression patterns of genes
involved in carotenoids metabolism in the petals of O. fragrans ‘Yanhonggui’. This will help us have a
better understanding of carotenoids accumulation in petals of O. fragrans under stress, because the
production of ABA would increase when plants receive abiotic stress [26,27]. Furthermore, it would
provide us with basic knowledge on breeding new cultivars of O. fragrans with deeper or lighter
color petals.

2. Results

2.1. Effect of ABA Treatment on the Petal Color

In order to understand the petals’ color change after ABA treatment, we used Color Reader to
measure the phenotype of the petals’ a* (redness), b* (yellowness), L* (lightness), C* (chroma) and h*
(hue-angle). The a* and b* values of ‘Yanhonggui’ petals receiving ABA treatment at S2 showed no
difference compared to the control, and the L* values of petals receiving 150 mg/L ABA were higher
than the other two treatments (0 and 200 mg/L ABA) (Table 1). At S3, the a* values were similar among
treatments, while the L* value of the control was highest, followed by the 150 mg/L and 200 mg/L ABA
treatments. There were no differences in h* values among every treatment. The L*, h*, C* and b* values
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were similar to the control, and the a* values for plants receiving the 150 mg/L ABA treatment were
higher than the control but were similar to those receiving the 200 mg/L ABA treatment.

Table 1. Phenotype parameters of ‘Yanhonggui’ receiving different concentrations of ABA treatment.

Stage Treatment a* b* L* C* h*

S2 0 mg/L 0 35.60 ± 0.98a 52.35 ± 0.03a 63.00 ± 0.23b 63.32 ± 0.58a
150 mg/L 150 33.50 ± 0.60a 54.77 ± 1.21a 67.33 ± 0.60a 64.20 ± 1.31a
200 mg/L 200 35.57 ± 0.45a 51.93 ± 2.52a 63.13 ± 1.27b 62.96 ± 2.30a

S3 0 mg/L 0 38.70 ± 0.69a 47.95 ± 2.45a 61.75 ± 0.43a 61.64 ± 2.34a
150 mg/L 150 38.80 ± 0.06a 50.55 ± 0.89a 60.00 ± 0.52a 63.73 ± 0.67a
200 mg/L 200 41.20 ± 1.31a 49.20 ± 2.02a 58.67 ± 1.10b 64.17 ± 2.38a

S4 0 mg/L 0 42.35 ± 0.03b 48.80 ± 1.73a 59.15 ± 0.55ab 64.63 ± 1.29b
150 mg/L 150 44.15 ± 0.55a 49.40 ± 1.33a 56.55 ± 0.61b 66.26 ± 1.36ab
200 mg/L 200 44.20 ± 0.17a 55.43 ± 1.79a 60.83 ± 1.39a 70.91 ± 1.48a

S2: initial flowering stage. S3: full flowering stage. S4: late flowering stage. Tukey’s multiple-range test was used,
and least significant range analysis at 5% significance is shown by lowercase letters for the same stage for the control
and treatments. All experiments were performed in triplicate. Data are shown as means ± SEM. Means followed by
the same letter do not differ significantly.

2.2. Effect of ABA Treatment on Carotenoid Composition of the Petals

The carotenoids content in petals of ‘Yanhonggui’ were analyzed using the HPLC system.
Carotenoids detected in ‘Yanhonggui’ petals included the internal standardβ-apo-8′-carotenol (Figure 1,
P3), phytoene (P1), lutein (P2), β-cryptoxanthin (P5), α-carotene (P6), β-carotene (P7), and an
unidentified carotenoid (P4) based on their retention at S4 [22]. The total carotenoid content (TC)
obtained with 200 mg/L ABA treatment was the highest, and the content of carotenoids in petals receiving
the 150 mg/L ABA treatment was similar to that of the control, with 14,047.00 µg/g, 14,188.34 µg/g,
and 15,328.64 µg/g dry weight (DW) content obtained for the tested treatments (control, 150 mg/L and
200 mg/L ABA treatment) (Table 2). The major carotenoids detected were α-and β-carotene, which
accounted for more than 90% of the total carotenoids. Furthermore, with the 200 mg/L ABA treatment,
β-carotene had the highest content (8887.31 µg/g DW); however, there was no significant difference
between the 150 mg/L ABA treatment and the control of β-carotene. Similarly, the amount of α-carotene
was highest for the 200 mg/L ABA treatment (5740.65 µg/g DW), followed by the 150 mg/L ABA
treatment and the control (5089.04 µg/g and 4779.50 µg/g DW, respectively). Furthermore, the amounts
of the other carotenoids were much lower than α- and β-carotene. Among these carotenoids, phytoene
content showed no remarkable difference among all three treatments. For lutein, the content with ABA
treatment was higher than that of the control. In contrast, the detected content of β-cryptoxanthin with
the 150 mg/L ABA treatment was lower than that of the other two treatments.



Plants 2020, 9, 454 4 of 12
Plants 2019, 8, x FOR PEER REVIEW 4 of 11 

 

 

Figure 1. HPLC chromatograms of carotenoid pigments extracted from petals of ‘Yanhonggui’. P1: 

phytoene. P2: lutein. P3: internal standard β-apo-8′-carotenol. P4: unidentified carotenoid. P5: β-

cryptoxanthin. P6: α-carotene. P7: β-carotene. 

Table 2. Carotenoid content in the petals of ‘Yanhonggui’ receiving ABA treatments. 

Content 0 mg/L ABA 150 mg/L ABA 200 mg/L ABA 

P1 44.81 ± 0.91b 53.90 ± 2.53a 59.17 ± 1.15a 

P2 33.53 ± 0.55c 53.92 ± 0.29a 43.96 ± 0.64b 

P4 376.97 ± 0.36b 364.53 ± 0.38b 404.89 ± 7.80a 

P5 185.05 ± 2.56a 150.90 ± 1.03b 192.67 ± 2.90a 

P6 4779.50 ± 15.97c 5089.04 ± 64.07b 5740.65 ± 72.36a 

P7 8627.15 ± 1.05b 8476.13 ± 98.27b 8887.31 ± 27.09a 

TC 14,047 ± 13.07b 14,188.43 ± 165.24b 15,328.64 ± 95.05a 

Tukey’s multiple-range test was used, and least significant range analysis at 5% significance is shown 

by lowercase letters for the same stage for the control and treatments. All experiments were 

performed in triplicate. Data are shown as means ± SEM. Means followed by the same letter do not 

differ significantly. 

2.3. Effect of ABA Treatment on the Expression of Genes Involved in Carotenoid Metabolism in the Petals 

Quantitative real-time PCR analysis of fourteen genes involved in carotenoid matabolism was 

performed. The OfACT gene was an internal control. At S2 and S3, high ABA treatment (200 mg/L 

ABA) increased the expression of the upstream genes OfPSY1, OfPDS1, OfZDS1, OfCRTISO, 

OfCHYB2, OfNSY1 and OfNCED3, which are involved in the biosynthetic pathway of carotenoids, 

and the transcription levels of OfZ-ISO and OfLCYB1 were only upregulated at S2 with the 200 mg/L 

ABA treatment. The expression of OfCCD4 was upregulated at S3 and S4. Moreover, not all of the 

genes mentioned above were affected at other stages by ABA treatment. In contrast, expression of 

OfCCD1 and OfVDE decreased with the 200 mg/L ABA treatment at S2. Unlike the gene expression 

patterns found with the 200 mg/L ABA treatment, the application of 150 mg/L ABA only increased 

the expression of several genes, such as OfCHYB2 and OfCCD4 at S3, OfLCYE1 and OfNSY1 at S3 and 

S4, and OfNCED3 at S2 and S3. However, the transcript levels of other genes detected with the 150 

mg/L ABA treatment were not affected and even decreased in some stages (Figure 2). 

Figure 1. HPLC chromatograms of carotenoid pigments extracted from petals of ‘Yanhonggui’. P1:
phytoene. P2: lutein. P3: internal standard β-apo-8′-carotenol. P4: unidentified carotenoid. P5:
β-cryptoxanthin. P6: α-carotene. P7: β-carotene.

Table 2. Carotenoid content in the petals of ‘Yanhonggui’ receiving ABA treatments.

Content 0 mg/L ABA 150 mg/L ABA 200 mg/L ABA

P1 44.81 ± 0.91b 53.90 ± 2.53a 59.17 ± 1.15a
P2 33.53 ± 0.55c 53.92 ± 0.29a 43.96 ± 0.64b
P4 376.97 ± 0.36b 364.53 ± 0.38b 404.89 ± 7.80a
P5 185.05 ± 2.56a 150.90 ± 1.03b 192.67 ± 2.90a
P6 4779.50 ± 15.97c 5089.04 ± 64.07b 5740.65 ± 72.36a
P7 8627.15 ± 1.05b 8476.13 ± 98.27b 8887.31 ± 27.09a
TC 14,047 ± 13.07b 14,188.43 ± 165.24b 15,328.64 ± 95.05a

Tukey’s multiple-range test was used, and least significant range analysis at 5% significance is shown by lowercase
letters for the same stage for the control and treatments. All experiments were performed in triplicate. Data are
shown as means ± SEM. Means followed by the same letter do not differ significantly.

2.3. Effect of ABA Treatment on the Expression of Genes Involved in Carotenoid Metabolism in the Petals

Quantitative real-time PCR analysis of fourteen genes involved in carotenoid matabolism was
performed. The OfACT gene was an internal control. At S2 and S3, high ABA treatment (200 mg/L
ABA) increased the expression of the upstream genes OfPSY1, OfPDS1, OfZDS1, OfCRTISO, OfCHYB2,
OfNSY1 and OfNCED3, which are involved in the biosynthetic pathway of carotenoids, and the
transcription levels of OfZ-ISO and OfLCYB1 were only upregulated at S2 with the 200 mg/L ABA
treatment. The expression of OfCCD4 was upregulated at S3 and S4. Moreover, not all of the genes
mentioned above were affected at other stages by ABA treatment. In contrast, expression of OfCCD1
and OfVDE decreased with the 200 mg/L ABA treatment at S2. Unlike the gene expression patterns
found with the 200 mg/L ABA treatment, the application of 150 mg/L ABA only increased the expression
of several genes, such as OfCHYB2 and OfCCD4 at S3, OfLCYE1 and OfNSY1 at S3 and S4, and OfNCED3
at S2 and S3. However, the transcript levels of other genes detected with the 150 mg/L ABA treatment
were not affected and even decreased in some stages (Figure 2).
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Figure 2. Expression levels of genes involved in carotenoid metabolism in ‘Yanhonggui’ petals
receiving ABA treatments. Tukey’s multiple-range test was used, and least significant range analysis
at 5% significance is shown by lowercase letters for the same stage for the control and treatments.
All experiments were performed in triplicate. Data are shown as means ± SEM. Means followed by the
same letter do not differ significantly.

3. Discussion

Previous studies showed that the a* value was positively affected by TC [22]; in other words,
the petals of cultivar which have deeper color contain more TC and the a* value was higher. In the
present study, the a* value showed a significant difference at S4 but not S2 or S3 with ABA treatment.
These results indicated that TC only changed at S4 significantly with ABA treatment in petals of
‘Yanhonggui’. So we only detected the carotenoid content at S4. The pattern of TC was consistent
with the a* value pattern in petals receiving ABA treatment. The application of ABA increased the
content of α-carotene, β-carotene and lutein in petals of ‘Yanhonggui’ (Table 2). Furthermore, α-
and β-carotene were the main carotenoids, which confirms the petal color of ‘Yanhonggui’ [28]. In a
previous study, it was reported that ABA treatment mainly increased the β-carotene and lutein content
in the leaves of tomato [20]. In the fruit tissue of tomato, the β-carotene content was also increased
by ABA treatment [19]. Lutein and β-carotene contents were also higher in ABA-treated plants than
in control plants in Chinese cabbage and turnip [29,30]. Interestingly, different concentrations of
ABA have different effects on the content of carotenoids. For pepper fruits, the main carotenoid,
capsanthin, was increased by treatment with 150 mg/L ABA, while higher concentrations of ABA
treatment reduced the content of capsanthin [31]. These results indicate that ABA treatments have
positive effects on carotenoid accumulation. However, ABA treatment may have negative effects on
carotenoids accumulation. The content of total carotenoids in tea plant (Camellia sinensis) flowers
were reduced by ABA treatment [32]. Similar results were found in the callus of Scutellaria baicalensis
after ABA treatment [33]. The effect of ABA treatment on carotenoids accumulation may vary among
plant species. In pepper fruits, 150 mg/L ABA treatment promoted the accumulation of capsanthin,
and it was 200 mg/L ABA treatment that significantly promoted carotenoid accumulation in the petals
of ‘Yanhonggui’.
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The genes involved in carotenoid metabolism—OfPSY1, OfPDS1, OfZ-ISO1, OfZDS1 and
OfCRTISO, OfCCD4 and OfNCED3—were upregulated by ABA treatment in the present study.
Consistent results were found in other species. In S. baicalensis [33] and Brassica oleracea [34], CCD4
and NCED were also upregulated by ABA treatment; the expression of OsPSY and OsNCED in rice
(Oryza sativa) [21] was higher with ABA treatment than in the control. Additionally, in Brassica rapa,
B. oleracea [34], Suaeda salsa [35] and Glycine max [36], ABA upregulated transcript levels of CCD1
and CCD4. PSY are the key enzymes indirectly regulating the biosynthesis of carotenoids that
also contribute to phytoene—the first carotenoid produced in plants [6]. It has been indicated
that abiotic stresses, including ABA, could regulate carotenoid accumulation via regulation of the
expression of PSY [21,37]. Furthermore, ABA responsive elements (ABREs) have been found in the
promoter of OsPSY [21] and AhNCED1 in peanut (Arachis hypogaea) [38], OfCCD1, OfCCD4 [39] and
AtNCED [40,41]—indicating that the expression of CCD1, CCD4, NCED and PSY could be induced by
ABA because it has been reported that genes whose promoters contained ABREs could respond to ABA
treatment in Arabidopsis thaliana [42,43]. The relative higher transcription of OfPSY1, OfPDS1, OfZ-ISO1,
OfZDS1 and OfCRTISO led to the higher content of precursor carotenoids. Then the higher transcripts
level of OfLCYB1, which is the key gene involved in production of α- and β-carotene, caused a higher
content of α- and β-carotene. While the precursor carotenoid detected was only phytoene and no
lycopene was detected. These results were consistent with our previous study [22]. The little amount
of precursor carotenoids could be caused by the downstream gene, OfLCYB1, in present study, because
ABA treatment promotes the expression of it. Although the expression levels of OfPSY1, OfPDS1,
OfZ-ISO1, OfZDS1, OfCRTISO, OfCCD4 and OfNCED were upregulated, the transcription level of
OfCCD4 and OfNCED was much lower than that of OfPSY, OfPDS1, OfZ-ISO1, OfZDS1 and OfCRTISO,
which indicates that the content of produced carotenoids was much more than that of degraded
carotenoids. Previous studies on carotenoids accumulation in different O. fragrans showed that,
consistent with the higher carotenoids contents, OfPSY1, OfPDS1, OfZ-ISO1, OfZDS1, and OfCRTISO
in the upstream pathways were highly expressed in the petals, and the expression profiles of OfLCYB1
in petals were higher than those of OfLCYE1. Regarding the genes of the degradation pathway, the
expression level of OfCCD1 was negatively correlated with the concentration of carotenoids, whereas
the expression levels of OfNCED3 and OfCCD4, which were highly expressed in petals, showed no
correlation with the TC content [22]. In the present study, the same genes mentioned above have
similar expression patterns in petals. The expression of these genes was promoted with ABA treatment,
especially the genes involved in carotenoids biosynthesis such as OfPSY1 and OfLCYB1. Additionally,
there is evidence of positive feedback regulation between OsPSY3, OsNCEDs and ABA treatment
in rice. OsPSY3 transcripts are up-regulated during increased abscisic acid (ABA) formation upon
salt treatment and drought. The simultaneous induction of genes encoding 9-cis-epoxycarotenoid
dioxygenases (NCEDs) is involved in the initial steps of ABA biosynthesis. Then, OsPSY3 and the
OsNCEDs are induced by ABA to promote ABA production [21]. Similarly, the application of ABA
could indirectly regulate the metabolic pathway of carotenoids in A. thaliana [37]. According to the
above conclusion and the results of the present study, we propose that there is a similar mechanism in
the petals of ‘Yanhonggui’ treated with ABA. The application of ABA promoted the expression of genes
whose promoters contained ABREs including OfPSY and OfNCED—the two key genes involved in
ABA biosynthesis [21,44,45], and other genes like OfPDS1, OfZ-ISO1, OfZDS1 OfCRTISO and OfLCYB1.
The higher expression of biosynthetic genes promotes the production of carotenoids, α-carotene and
β-carotene, especially; on the other hand, the higher expression of OfNCED3 could promote the
biosynthesis of ABA. The newly biosynthesized ABA, cooperating with absorbed exogenous ABA,
would promote the expression of OfPSY1, OfPDS1, OfZ-ISO1, OfZDS1, OfCRTISO and OfNCED3.
Finally, the application of ABA significantly increased the total carotenoids in petals of ‘Yanhonggui’.
ABA, genes including OfPSY1, OfPDS1, OfZ-ISO1, OfZDS1, OfCRTISO and OfNCED3, and carotenoids
all formed a positive feedback loop in ‘Yanhonggui’ treated with ABA. As more carotenoids are
contained in the petals, a deeper color is produced. It has been proven that pale flowers have fewer
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carotenoids than more deeply colored flowers [7]. Furthermore, the ABA-signaling pathway is a
complicated network, which includes ABA receptors (ABARs) [46], type 2C phosphatases (PP2Cs) [47],
ABRE-binding factors (ABFs) [48], and other proteins. Further investigation would be the measurement
of ABA and the contribution of endogenous and absorbed exogenous ABA on the carotenoids metabolic
pathway, and the mechanism of the ABA-signaling pathway on carotenoid metabolism to elucidate the
mechanism of petal color change in O. fragrans treated with ABA.

4. Materials and Methods

4.1. Plant Materials and Growth Condition

O. fragrans ‘Yanhonggui’ potted plants were grown under greenhouse conditions at Zhejiang A&F
University and then were incubated at a constant temperature (25 ◦C) and relative humidity (70%)
before the Linggeng stage (S1: flower buds are similar to round bells). The growth medium was a
sterile mixture of peat: vermiculite: perlite (1:1:1). Samples were subjected to 12/12 hour light/dark
periods until the treatment was completed. The light intensity inside the incubator was set to 5000 Lux
by white fluorescent tubes. Then, 0 mg/L, 150 mg/L and 200 mg/L (±) ABA (Sigma-Aldrich, Shanghai,
China) was spread onto the flowers every 24 h from the Linggeng stage (S1). Nine of O. fragrans
‘Yanhonggui’ potted plants with similar heights, and similar amounts of branches and buds were
used in this present study. Each treatment contained three O. fragrans ‘Yanhonggui’ potted plants.
Flower petals from different branches of same plant at the initial flowering stage (S2: flower petals
start to expand), full flowering stage (S3: flower petals are fully open, and the anthers are yellow),
and the late flowering stage (S4: flower petals are fully open, and the anthers are brown) [1] (Figure 3)
were collected and mixed. At S2 and S3, mixed petals were randomly divided into two groups, part
of the petals immediately frozen with liquid nitrogen, and then stored at −80 ◦C until they were
used for gene expression analysis, and the rest was used for the measurement of flower color. At S4,
mixed flower petals were randomly divided into three groups, and the first group of petals were
immediately frozen with liquid nitrogen, and then stored at −80 ◦C until they were used for gene
expression analysis; the second group of petals was directly frozen after collection by lyophilization in
a freeze dryer and stored at −20 ◦C for carotenoids analysis. The third group of flower petals was used
for the measurement of flower color. All nine plants were sampled at every stage.
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4.2. Measurement of Flower Color

About 15 flowers at different branches from same plant were collected and mixed, and their petals
were used for the measurement of flower color. Petals from every plant (all nine plants and three in
each treatment), were measured respectively. The color of fresh petals was measured using lightness
(L*), hue-angle (h*), and two chromatic components, a* and b*, of the CIEL*a*b*color coordinates using
a Color Reader (CR-10; Konica Minolta Sensing Inc., Tokyo, Japan). L* values indicated lightness, and
the h* values were calculated from tan−1(b*/a*) [49].

4.3. Carotenoids Extraction and Analysis

About 60 flowers from different branches of the same plants were mixed and their petals were
used for carotenoid extraction and analysis. Petals from every plant (all nine plants and three in each
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treatment) were collected respectively. The extraction of carotenoids was performed following the
method described by Delpinorius et al. (2014) [50], with some procedural improvements. After grinding
with liquid nitrogen and drying by lyophilization in a dark room, 0.05 g dry sample was placed in a
10-mL vessel with 4 mL methanol. Next, 2.3 mL of a NaCl solution (10%, w/v) was added. The mixture
was shaken for 15 min and cooled at 4 ◦C. The mixture was centrifuged at 2700× g for 3 min at 4 ◦C,
and the organic layer was recovered. The aqueous phase was re-extracted with 2 mL of hexane:
diethyl ether (3:1, v/v) for 10 min and centrifuged in the same conditions. The organic solutions were
combined in a 5 mL glass tube and dried under a nitrogen stream at room temperature. The dry
residue was saponified at room temperature for 24 h using 1.5 mL of a 6% KOH solution in methanol
(w/v). After the addition of 1.5 mL of sodium chloride solution (10%, w/v), the mixture was placed
in a freezer for 15 min. Then, 2.5 mL of hexane: diethyl ether (3:1, v/v) was added, and the mixture
was vortexed and centrifuged at 433× g for 3 min (this step was repeated until the aqueous phase was
colorless). The organic layers were combined, and the solvent was removed under a nitrogen stream.
The residue was stored at −80 ◦C under nitrogen until HPLC analysis.

4.4. Analysis of Carotenoids

The residue of carotenoids was dissolved in 1.5 mL methyl tert-butyl ether (MTBE) that contained
β-apo-8′-carotenal as an internal standard (5 µg/mL) [51]. The carotenoid content analysis was
performed by using a high-performance liquid chromatography (HPLC) system (Shimadzu Corporation,
Kyoto, Japan). This system consists of an LC-20AT infusion pump, CTO-10AS VP column oven and
SPD-M20A spectrophotometric detector. A C30-column (YMC Co. Ltd. Japan, 4.6 × 250 mm, 5 µm)
was used at 25 ◦C, with a flow rate of 0.8 mL/min, and the data were recorded from 200 to 800 nm and
measured at 450 nm. An amount of 10 µL analytes was injected. The elution solvents were solvent A
(methanol) and solvent B (MTBE), and elution was performed as follows: 0 min, 0% B; 18min, 46% B;
35 min, 70% B; 37min, 70% B; 40min, 0% B; and 47min, 0% B.

4.5. RNA Extraction and cDNA Synthesis

About 60 flowers from different branches of the same tree were mixed and their petals were used
for RNA extraction and analysis. Petals from every plant (all nine plants and three in each treatment),
were collected and stored respectively. Samples from every plant were used for RNA extraction and
cDNA synthesis. Total RNA was extracted using a NucleoSpin RNA Plant kit (TaKaRa, Dalian, China),
and the cDNA was synthesized using a PrimeScript II Hi Fidelity RT-PCR kit (TaKaRa, Dalian, China).

4.6. Expression Analysis by Real-Time PCR

The primers used in RT-PCR reactions were developed by Zhang [28]. The expression level of
OfACT was used as the reference [52]. The transcript levels of genes were analyzed by quantitative
real-time PCR (RT-qPCR) using SYBRPremix Ex Taq II polymerase (TaKaRa, Dalian, China)and the
Light Cycler 480 II Real Time System (Roche, Switzerland) according to the manufacturers’ instructions.
Each 20 µL qRT-PCR reaction contained 10 µL SYBR R Premix Ex TaqTM II (Takara), 5 µL cDNA
(100 ng/µL), 1.0 µL of 10 µM forward and reverse primer (designed using Primer Premier 5.0 software).
The thermal cycling conditions were as follows: an initial denaturation of 30 s at 95 ◦C, followed by
40 cycles at 95 ◦C for 5 s and 60 ◦C for 30 s; then 95 ◦C for 5 s, 60 ◦C for 1 min and 95 ◦C for 15 s was used
for dissociation curve analysis. The relative expression levels were calculated using 2-∆Ct [53]. Each
statistical analysis was performed using IBM SPSS Statistics 19.0 (IBM, Armonk, NY, USA). The data
were analyzed using a Tukey’s multiple-range test (P < 0.05) with three replicates.

5. Conclusion

In this research, O. fragrans ‘Yanhonggui’ were sprayed with different concentrations of ABA.
The increased TC, α- and β-carotenes were due to the higher expression of OfLCYB1 upon receiving
200 mg/L ABA treatment. The higher transcription levels of OfPSY1, OfPDS1, Z-ISO1, OfCRTISO
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were upregulated by ABA treatment in O. fragrans petals, providing the precursors to produce the
main carotenes, α- and β-carotene. While the much lower expression levels of OfNCED3 and OfCCD4
caused resulted in the degraded carotenoids content being much lower than produced carotenoids
content. As a result, the increased carotenoids content, especially α- and β-carotenes, was greater than
that of the control, and led to the deeper color in O. fragrans petals.
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