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Gene expression, like many biological processes, is subject to noise. This noise has been measured
on a global scale, but its general importance to the fitness of an organism is unclear. Here, I show that
noise in gene expression in yeast has evolved to prevent harmful stochastic variation in the levels of
genes that reduce fitness when their expression levels change. Therefore, there has probably been
widespread selection to minimise noise in gene expression. Selection to minimise noise, because it
results in gene expression that is stable to stochastic variation in cellular components, may also
constrain the ability of gene expression to respond to non-stochastic variation. I present evidence
that this has indeed been the case in yeast. I therefore conclude that gene expression noise is an
important biological trait, and one that probably limits the evolvability of complex living systems.
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Introduction

Noise in gene expression is the stochastic variation in the
expression level of a gene under a constant environmental
condition (Raser and O’Shea, 2005). Recently, it has become
possible to quantify the levels of noise in the expression of a
gene, and rapid progress has been made in understanding how
this noise might be regulated (for reviews, see Raser and
O’Shea, 2005; Kaufmann and van Oudenaarden, 2007). In
particular, in yeast, gene expression noise has been measured
on a global scale and shown to vary widely between different
genes, functional classes of genes and genes regulated
by different regulatory mechanisms (Bar-Even et al, 2006;
Newman et al, 2006). However, despite these global experi-
ments, the overall importance of noise in living systems is still
unclear.

Whereas the expression levels of some genes can be altered
without any apparent phenotypic effect, decreasing (Giaever
et al, 2002; Deutschbauer et al, 2005) or increasing (Sopko
et al, 2006) the expression of other genes can be very harmful.
Therefore, it has been predicted that if noise in gene expression
is a physiologically relevant trait, it might be minimised to
prevent harmful stochastic variation in the levels of these
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‘dosage-sensitive’ genes (Cook et al, 1998; Fraser et al, 2004).
The availability of global measurements of both gene
expression noise (Newman et al, 2006) and dosage-sensitive
genes (Giaever et al, 2002; Deutschbauer et al, 2005; Sopko
et al, 2006) mean that this prediction can now be system-
atically tested.

In their global analysis of gene expression noise in yeast,
Newman and co-workers found that essential genes tend to
have lower noise than nonessential genes (Newman et al,
20006). Batada and Hurst highlighted that this finding was
consistent with selection to minimise noise for dosage-
sensitive genes (Batada and Hurst, 2007a). In further support
of this hypothesis, they showed that noise tends to be lower for
haploinsufficient genes (i.e., genes that reduce growth when
their dosage is decreased by half in heterozygotes) than for
haplosufficient essential genes, and that genes that produce a
strong growth defect when deleted tend to have lower noise
than those producing a weak growth defect (Batada and Hurst,
20074).

Although the lower mean noise reported for essential and
haploinsufficient genes is consistent with the noise being
minimised to avoid harmful stochastic variation in the
expression of dosage-sensitive genes, the interpretation of
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these results is complicated by the existence of many variables
that are known to correlate with both noise (Bar-Even et al,
2006; Newman et al, 2006) and gene essentiality (Jeong et al,
2001; Pal et al, 2003; Papp et al, 2004; Chen and Xu, 2005;
Gustafson et al, 2006), including gene expression levels,
regulatory mechanisms, protein interactions, and protein
functions. The relationship between dosage-sensitivity and
noise may therefore not be a direct one.

In this report, I first perform a more detailed analysis of the
relationship between gene expression noise and gene dosage-
sensitivity. Most importantly, I show that genes with high
noise are depleted of both genes that reduce fitness when their
expression is increased as well as of those that reduce fitness
when their expression is reduced. These two classes of genes
are largely independent, which together with the previous
evidence (Newman et al, 2006; Batada and Hurst, 2007a)
makes it very likely that the relationship between dosage-
sensitivity and gene expression noise is a direct one. It
therefore seems that noise in gene expression has indeed been
widely minimised by natural selection to prevent stochastic
variation in the levels of dosage-sensitive genes.

Having established this, I then investigate whether selection
to minimise noise has had any long-term consequences for the
evolution of gene expression in yeast. I present evidence that
the requirement to minimise noise may have limited the ability
of genes to change expression in response to genetic
perturbations. Moreover, the need to limit noise may also
have restricted the extent to which gene expression can change
between species. I conclude that noise in gene expression is an
important biological trait, and one that may also limit the long-
term evolvability of an organism.

Results and discussion

Genes sensitive to either a decrease or to an
increase in expression have low noise

Stochastic variation in the expression of genes has been
predicted to be more harmful for genes that reduce fitness
when their expression levels are altered (Cook et al, 1998;
Fraser et al, 2004). In their global analysis of gene expression
noise, Newman and co-workers indeed found that genes that
are harmful when they are deleted tend to have lower noise
than other genes (Newman et al, 2006; Batada and Hurst,
2007a). However, they also found many other features that had
similar or stronger correlations with noise (Newman et al,
2006). Given that there are also many similar features
(including expression levels, regulatory mechanisms, protein
interactions, and protein functions) that have been associated
with gene essentiality (Jeong et al, 2001; Pal et al, 2003; Papp
et al, 2004; Chen and Xu, 2005; Gustafson et al, 2006), it is
therefore not clear whether the relationship between gene
expression noise and essentiality is a direct or an indirect
effect.

To resolve this ambiguity, I turned to a second set of genes
that would be expected to have low noise if stochastic
variation in gene expression is harmful—genes which are
harmful when their expression is increased. If noise has indeed
been minimised to prevent harmful stochastic variation in
gene expression, then these genes would also be expected to
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have low noise. The set of genes that are toxic when they are
overexpressed in yeast do not significantly overlap those that
are harmful when they are deleted (Sopko et al, 2006). They
also encode proteins with very different properties and cellular
functions (Sopko et al, 2006; Semple et al, 2008) and so
represent a good independent test of a direct relationship
between dosage-sensitivity and gene expression noise.

As shown in Figure 1, just as is seen for genes that reduce
fitness when they are deleted (essential genes, haploinsuffi-
cient genes, genes required for normal growth, Figure 1A-C),
the proportion of genes that inhibit growth when they are
overexpressed is much lower for genes with high noise (DM)
than for genes with low noise (Figure 1D). For example, among
the 236 genes that have DM < —2, 26% are essential, 10% are
haploinsufficient, 19% are required for normal growth, and
16% are harmful when overexpressed. In contrast of the 359
genes that have DM >3, only 3% are essential, 0.3% are
haploinsufficient, 3% are required for normal growth, and 4 %
are toxic when over-expressed (P< 10> for all phenotypes,
Fisher’s exact test). That is, both genes that are sensitive to a
decrease or to an increase in expression very rarely have high
noise. These two independent sets of genes have very different
properties, and so this result strongly suggests that the
relationship between noise and dosage-sensitivity is a direct
one. This conclusion is also supported by comparing the levels
of noise between genes with different severities of fitness
defect (Batada and Hurst, 2007a, Supplementary Figure 1).
Noise in gene expression therefore appears to be tuned to
minimise stochastic variation in the expression levels of
dosage-sensitive genes. Either there must exist mechanisms to
prevent stochastic variation in the expression levels of these
genes, or there has been selection to prevent these genes from
evolving regulatory mechanisms that would result in high
noise.

Essential genes may be highly expressed to limit
hoise

Noise in gene expression has been found to correlate inversely
with gene expression levels (Bar-Even et al, 2006; Newman
et al, 2006). The measure of noise used here (DM) (Newman
et al, 2006) is designed to compensate for this effect, and
indeed the trends seen here are not due to variations in gene
expression levels (Supplementary Figure 2). However, in-
creasing gene expression levels does represent a simple
mechanism to reduce noise, and this may partially explain
why essential genes tend to have high expression levels
(Pal et al, 2003). In contrast, this seems unlikely to represent a
valid strategy to reduce noise levels for genes that are harmful
when they are overexpressed, and indeed these genes have low
expression levels (our unpublished data), and so must use
other mechanisms to reduce noise.

Proteins with more protein interactions have lower
noise
Gene essentiality and gene expression levels both also

correlate with the number of protein interactions made by a
gene product (Jeong et al, 2001; Pal et al, 2003). The
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Figure 1 Noise is minimised for dosage-sensitive genes. The relationship between gene expression and the proportion of genes that are (A) essential,

(B) haploinsufficient, (C) inhibit growth when deleted or (D) inhibit growth when overexpressed. The result when considering all dosage-sensitive genes is shown in (E).
The percentage of genes with each phenotype is shown for each of 10 equally sized bins of genes ranked according to an expression-level-adjusted measure of
noise (DM). The range of each bin is shown, except for the maximum of the top bin, which extends to 61.0.

relationship between noise and dosage-sensitivity is still very
strong even after accounting for the number of protein
interactions made by a gene product or for its membership of
a protein complex (Figure 2), which again suggests that this is
a direct effect. However, it can also be seen in Figure 2 that
genes with more protein interactions do tend to have lower
noise even after accounting for dosage sensitivity. Such an
effect has previously been predicted on theoretical grounds
(Fraser et al, 2004), and I suggest here three possible
explanations for this effect. First, the number of protein
interactions may be a variable capturing fitness defects that
have not yet been measured in the laboratory. Second, the
reduced noise of protein complex subunits may reflect
selection to reduce harmful ‘imbalance’ in the stoichiometry
of protein complexes (Papp et al, 2003; Fraser et al, 2004).
Third, the reduced noise of protein complex subunits may be a
consequence of active mechanisms that rapidly degrade
protein complex subunits that have not been stably associated
into complexes. That is, the stability of assembled complexes
themselves, combined with active degradation methods, may
be responsible for the observed low noise.

Noise may limit the evolvability of gene expression

I have shown above that noise in gene expression has probably
been minimised to prevent harmful stochastic variation in the
expression of dosage-sensitive genes. A gene with low gene
expression noise must, by definition, be insensitive to
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stochastic variation in the levels of cellular components. This
may either reflect the expression of a gene being ‘insulated’
from cellular networks or the existence of mechanisms or
network motifs that function to reduce stochastic variation.
These same genes are therefore also likely to be insensitive to
non-stochastic alterations in the levels of cellular components,
including those resulting from genetic mutations. That is,
genes with low levels of noise in gene expression may also
have expression levels that change little in response to random
mutagenesis, and that are restrained in their ability to vary
throughout evolution. This in turn would be reflected in these
genes having expression patterns that only evolve slowly
between species. In this way selection to minimise noise may
constrain the long-term ‘evolvability’ of living systems
(Wagner, 2005). This intuitive prediction is supported by
theoretical work using artificial gene networks, which shows
that selection to minimise noise can result in gene expression
that is stable to genetic perturbations (Ciliberti et al, 2007).
To address this prediction that selection to minimise noise
may constrain the evolvability of gene expression, I used
genome-wide data measuring both the global response of gene
expression to random mutagenesis in mutation accumulation
experiments (‘mutational variance’) (Landry et al, 2007) and
the divergence of gene expression between closely related
yeast species (‘expression divergence’) (Tirosh et al, 2000). If
selection to control noise results in gene expression that is
stable to genetic perturbations, then both of these variables
should correlate well with noise. Moreover, if noise is
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minimised for dosage-sensitive genes, then dosage-sensitive
genes should have expression patterns that are stable to
random mutagenesis, and that evolve slowly between species.
All of these predictions are upheld by the available data. Both
mutational variance (Figure 3A, Spearman’s Rank correlation
coefficient p=0.27, P=1.08 x 10~ !4, n=776) and expression
divergence (Figure 3B, p=0.30, P=2.2x107'%, n=1750)
correlate very well with gene expression noise in yeast.
Moreover, also consistent with the predictions, the proportion
of dosage-sensitive genes is much higher for both genes with
low mutational variance (Figure 3C) and for genes with low
expression divergence between species (Figure 3D). That the
same trends are seen with these two very different measures of
expression divergence, measured both within and between
species, adds confidence to these conclusions.

Direct selection for robustness to mutation is not expected
under most conditions, because the single mutations being
considered do not reduce fitness and so cannot be selected in
most realistic conditions (Nowak et al, 1997; Wagner, 2000,
2005). In contrast, if noise reduces fitness, then there can be
direct selection to minimise noise in gene expression. There-
fore, as predicted by simulations (Ciliberti et al, 2007), I
propose that selection to minimise noise in the expression of
dosage-sensitive genes has resulted in these genes having
expression mechanisms that are also stable to genetic
perturbations and that therefore evolve slowly between
species.

Conclusions

In summary, the data presented here demonstrate that noise in
gene expression is tuned to minimise harmful stochastic
variation in the expression levels of dosage-sensitive genes.
Noise is thus an important biological trait, and one that has
probably been subject to direct natural selection. Moreover, in
agreement with theoretical predictions, the available data sets
in yeast suggest that selection to minimise noise may also have
constrained the long-term evolvability of gene expression in
this species.

Materials and methods

The following phenotype data sets were used: essential genes (Mewes
et al, 2006), haploinsufficient genes (Deutschbauer et al, 2005), genes
with a slow growth phenotypes in rich media (Giaever et al, 2002), and
genes with overexpression phenotypes (Sopko et al, 2006). Noise
measurements are from Newman et al (2006), who used GFP reporter
constructs to measure the levels of noise in the expression of >2500
yeast genes. Noise correlates with expression levels (Bar-Even et al,
2006; Newman et al, 2006), so an expression level-adjusted measure of
noise (DM) (Newman et al, 2006)) is used throughout this work.
Mutational variance (Vm) measurements, a measure of the divergence
in the expression level of a gene in mutation accumulation experi-
ments, were taken from Landry et al (2007). Measurements of
expression divergence between closely related yeast species were
taken from Tirosh et al (2006). Protein interaction data used are the
high-confidence (i.e., supported by more than one piece of evidence;
Bertin et al, 2007; Batada et al, 2007b) subset of the literature-curated
yeast protein interactome (Reguly et al, 2006). Literature-curated
protein complexes were downloaded from MIPS (Mewes et al, 2000).
Statistical tests were performed using the R package (http://www.
R-project.org).
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Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature. com/msb).

Acknowledgements

This work was funded by the Spanish Ministry of Education and
Science (MEC) through the EMBL-CRG Systems Biology Unit and by
the Institucié Catalana de Recerca i Estudis Avancgats (ICREA).

References

Bar-Even A, Paulsson J, Maheshri N, Carmi M, O’Shea E, Pilpel Y,
Barkai N (2006) Noise in protein expression scales with natural
protein abundance. Nat Genet 38: 636-643

Batada NN, Hurst LD (2007a) Evolution of chromosome organization
driven by selection for reduced gene expression noise. Nat Genet
39: 945-949

Batada NN, Reguly T, Breitkreutz A, Boucher L, Breitkreutz BJ, Hurst
LD, Tyers M (2007b) Still stratus not altocumulus: further evidence
against the date/party hub distinction. PLoS Biol 5: e154

Bertin N, Simonis N, Dupuy D, Cusick ME, Han JD, Fraser HB, Roth FP,
Vidal M (2007) Confirmation of organized modularity in the yeast
interactome. PLoS Biol 5: €153

Chen Y, Xu D (2005) Understanding protein dispensability through
machine-learning analysis of high-throughput data. Bioinformatics
21: 575-581

Ciliberti S, Martin OC, Wagner A (2007) Robustness can evolve
gradually in complex regulatory gene networks with varying
topology. PLoS Comput Biol 3: el5

Cook DL, Gerber AN, Tapscott SJ (1998) Modeling stochastic gene
expression: implications for haploinsufficiency. Proc Natl Acad Sci
USA 95: 15641-15646

Deutschbauer AM, Jaramillo DF, Proctor M, Kumm J, Hillenmeyer ME,
Davis RW, Nislow C, Giaever G (2005) Mechanisms of
haploinsufficiency revealed by genome-wide profiling in yeast.
Genetics 169: 1915-1925

Fraser HB, Hirsh AE, Giaever G, Kumm J, Eisen MB (2004) Noise
minimization in eukaryotic gene expression. PLoS Biol 2: e137

Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S,
Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A,
El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S,
Curtiss M, Davis K, Deutschbauer A et al (2002) Functional
profiling of the Saccharomyces cerevisiae genome. Nature 418:
387-391

Gustafson AM, Snitkin ES, Parker SC, DeLisi C, Kasif S (2006) Towards
the identification of essential genes using targeted genome
sequencing and comparative analysis. BMC Genomics 7: 265

Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and
centrality in protein networks. Nature 411: 41-42

Kaufmann BB, van Oudenaarden A (2007) Stochastic gene expression:
from single molecules to the proteome. Curr Opin Genet Dev 17:
107-112

Landry CR, Lemos B, Rifkin SA, Dickinson WJ, Hartl DL (2007) Genetic
properties influencing the evolvability of gene expression. Science
317: 118-121

Mewes HW, Frishman D, Mayer KF, Munsterkotter M, Noubibou O,
Pagel P, Rattei T, Oesterheld M, Ruepp A, Stumpflen V (2006) MIPS:
analysis and annotation of proteins from whole genomes in 2005.
Nucleic Acids Res 34: D169-D172

Newman JR, Ghaemmaghami S, Thmels J, Breslow DK, Noble M,
DeRisi JL, Weissman JS (2006) Single-cell proteomic analysis of S.
cerevisiae reveals the architecture of biological noise. Nature 441:
840-846

Nowak MA, Boerlijst MC, Cooke J, Smith JM (1997) Evolution of
genetic redundancy. Nature 388: 167-171

Molecular Systems Biology 2008 5


http://www.R-project.org
http://www.R-project.org
www.nature. com/msb

Selection to minimise noise in living systems
B Lehner

Pal C, Papp B, Hurst LD (2003) Genomic function: rate of evolution
and gene dispensability. Nature 421: 496-497; Discussion
497-498

Papp B, Pal C, Hurst LD (2003) Dosage sensitivity and the evolution of
gene families in yeast. Nature 424: 194-197

Papp B, Pal C, Hurst LD (2004) Metabolic network analysis of the
causes and evolution of enzyme dispensability in yeast. Nature
429: 661-664

Raser JM, O’Shea EK (2005) Noise in gene expression: origins,
consequences, and control. Science 309: 2010-2013

Reguly T, Breitkreutz A, Boucher L, Breitkreutz BJ, Hon GC,
Myers CL, Parsons A, Friesen H, Oughtred R, Tong A, Stark C, Ho
Y, Botstein D, Andrews B, Boone C, Troyanskya OG, Ideker T,
Dolinski K, Batada NN, Tyers M (2006) Comprehensive curation
and analysis of global interaction networks in Saccharomyces
cerevisiae. J Biol 5: 11

Semple JI, Vavouri T, Lehner B (2008) A simple principle concerning
the robustness of protein complex activity to changes in gene
expression. BMC Syst Biol 2: 1

6 Molecular Systems Biology 2008

Sopko R, Huang D, Preston N, Chua G, Papp B, Kafadar K, Snyder M,
Oliver SG, Cyert M, Hughes TR, Boone C, Andrews B (20006)
Mapping pathways and phenotypes by systematic gene
overexpression. Mol Cell 21: 319-330

Tirosh I, Weinberger A, Carmi M, Barkai N (2006) A genetic
signature of interspecies variations in gene expression. Nat Genet
38: 830-834

Wagner A (2000) The role of population size, pleiotropy and fitness
effects of mutations in the evolution of overlapping gene functions.
Genetics 154: 1389-1401

Wagner A (2005) Robustness and Evolvability in Living Systems.
Princeton, NJ: Princeton University Press

Molecular Systems Biology is an open-access journal
SRR 1 1blished by European Molecular Biology Organiza-

tion and Nature Publishing Group.
This article is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 Licence.

© 2008 EMBO and Nature Publishing Group



	Selection to minimise noise in living systems and its implications for the evolution of gene expression
	Introduction
	Results and discussion
	Genes sensitive to either a decrease or to an increase in expression have low noise
	Essential genes may be highly expressed to limit noise
	Proteins with more protein interactions have lower noise
	Noise may limit the evolvability of gene expression

	Conclusions
	Materials and methods
	Supplementary information

	Figure 1 Noise is minimised for dosage-sensitive genes.
	Figure 2 Proteins with more interactions have lower noise.
	Figure 3 Mutational variance (Vm) and expression divergence between species are restricted for dosage-sensitive genes with low noise.
	Acknowledgements
	References


