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Perceptual systems adapt to their inputs. As a result,
prolonged exposure to particular stimuli alters
judgments about subsequent stimuli. This phenomenon
is commonly assumed to be sensory in origin. Changes in
the decision-making process, however, may also be a
component of adaptation. Here, we quantify sensory
and decision-making contributions to adaptation in a
facial expression paradigm. As expected, exposure to
happy or sad expressions shifts the psychometric
function toward the adaptor. More surprisingly, response
times show both an overall decline and an asymmetry,
with faster responses opposite the adapting category,
implicating a substantial change in the decision-making
process. Specifically, we infer that sensory changes from
adaptation are accompanied by changes in how much
sensory information is accumulated for the two choices.
We speculate that adaptation influences implicit
expectations about the stimuli one will encounter,
causing modifications in the decision-making process as
part of a normative response to a change in context.

Introduction

Perceptual adaptation has long been an important
tool for studying visual representation. The premise
behind many adaptation studies is that if judgments
about a stimulus dimension are systematically influ-
enced by adaptation, then that dimension is part of the

sensory code. Hence, adaptation has been called the
‘‘psychophysicist’s electrode’’ (Frisby, 1980), or put
another way, ‘‘if it adapts, it’s there’’ (Mollon, 1974).
This logic has been used to infer properties of the
neural code from behavior, including color opponency
(Hering, 1874), spatial frequency channels (Blakemore
& Campbell, 1969; Campbell & Robson, 1968), and
directional motion selectivity (Exner, 1887). When
using adaptation to study sensory representations,
changes in the observer’s decision-making strategy
typically do not play an important role: Despite some
recent interest in the decision-level normalization in
adaptation (Mather & Sharman, 2015), decisional
effects are typically not assessed in adaptation studies,
or are considered an unwanted artifact best eliminated
by experimental design (e.g., Morgan, 2013, 2014).

Here we take a different approach. Given that the
nervous system is constantly adjusting to the local
environment, adaptation is likely an integral part of its
ordinary operation, and is therefore important to
understand in and of itself. Adaptation presumably
confers an advantage to an observer by increasing the
likelihood of responding appropriately given the
observed or expected stimuli in the current environ-
ment (Rieke & Rudd, 2009; Webster, 2015). If part of
this process is a change in decision strategy (in addition
to changes in sensory representation), then the manner
in which decisions are made needs to be accounted for
in any complete model of adaptation. In this paper, we
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simultaneously investigated decisional and representa-
tional effects arising from perceptual adaptation, and
sought to quantify the contribution of both types of
effects on judgments made during adaptation.

To accomplish this, we used a common experimental
design for probing adaptation, in which an observer
views a prolonged or repeated stimulus while making
interleaved judgments about test stimuli. The particular
stimulus domain we used was facial expression, a
natural stimulus category that has been shown to
produce strong and reliable effects of adaptation (Fox
& Barton, 2007; Hsu & Young, 2004; Russell & Fehr,
1987; Webster, Kaping, Mizokami, & Duhamel, 2004;
Xu, Dayan, Lipkin, & Qian, 2008); for example, a
facial expression judged as neutral when the observer is
unadapted will be reported as sad following prolonged
viewing of a happy facial expression. The difference
between the pre- and post-adaptation judgments of the
same stimulus could arise because of a representational
change or a change in the criterion for specifying one or
the other choice, or a combination of these. We sought
to account for these effects within a single experimental
paradigm, in which we recorded both choice and
response time. The two dependent measures can be
used in tandem to constrain a dynamic model of the
decision-making process (Bogacz, 2007; Brunton,
Botvinick, & Brody, 2013; Donkin, Brown, Heathcote,
& Wagenmakers, 2011; Purcell & Kiani, 2016b;
Shadlen & Kiani, 2013; Smith & Ratcliff, 2004; Usher
& McClelland, 2001). One general form of a decision
model, an accumulation to bound model, has been used
to link the psychometric function (choice as a function
of stimulus strength) and the chronometric function
(response time as a function of stimulus strength)
(Link, 1992; Ratcliff & McKoon, 2008). By simulta-
neously accounting for both types of data, the model
can be used as a tool to understand how decisions
change under conditions of adaptation.

Importantly, effects at different stages of the
perceptual decision-making process—from the accu-
mulation of evidence to arriving at a stop criterion—
translate to different patterns of choice and response
times. These patterns are made transparent in the
framework of an accumulation to bound model of the
decision-making process. The model assumes that a
stimulus gives rise to sensory evidence that fluctuates
over time due to stochasticity of neural responses, and
that the observer accumulates this noisy evidence until
a decision boundary is reached. Models of this general
form have been applied to a wide range of perceptual
tasks, accounting for both behavioral and neural data
(Gold & Shadlen, 2007; Purcell et al., 2010; Ratcliff,
Cherian, & Segraves, 2003), including face perception
(Okazawa, Sha, & Kiani, 2016). In the framework of
this model, a pure representational effect modifies the
sensory evidence furnished by the test stimulus and is

expected to cause equivalent shifts in the subject’s
psychometric and chronometric functions. In contrast,
a change in the starting point or termination criterion
of the evidence accumulation process can introduce
asymmetries in the chronometric function; for example,
if as a result of adaptation, the termination criterion
becomes smaller for one of two choices, then we would
expect faster responses when this choice is made
compared to the alternative, even for an identical
stimulus. If, on the other hand, the termination
criterion changes symmetrically for the two decisions,
say both decision bounds becoming smaller, responses
would be more susceptible to noise in the evidence
accumulation process. As a result, the observer will be
expected to make less consistent judgments (a shallower
psychometric function), and to exhibit shorter response
times for both decisions.

By examining the pattern of response times and
choice during facial expression adaptation paradigms,
we were able to address several questions. First, we
asked whether the change in behavior due to adaptation
is well described within the framework of a drift-
diffusion model—specifically, is a change in model
parameters sufficient to capture the main patterns by
which the psychometric and chronometric functions
change under conditions of adaptation? Second, in
Experiment 1, using a method of constant stimuli, we
quantified the degree to which representational and
decisional factors were altered by adaptation, and we
weighed the relative contributions of these two factors to
the shift in the psychometric function. Third, in
Experiment 2, we asked whether and how these patterns
change when the range of test stimuli is chosen to ensure
that the participant makes an approximately equal
proportion of responses under all conditions. Together,
the results from the two experiments show that under
ordinary experimental methods for probing adaptation,
participants tend to make substantial changes to their
decision strategy, and that the decision-making and
representational changes combine to produce the shifts
in judgments typically associated with adaptation.

Methods

Participants

Six volunteers (four male, 18–45 years old) partici-
pated in the experiment, either at New York University
(four participants) or Stanford University (two partic-
ipants). All participants had normal visual acuity or
corrected-to-normal vision with glasses or contact
lenses. The experimental protocol was approved by the
New York University Committee on Activities In-
volving Human Subjects and by the Stanford Univer-
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sity Institutional Review Board. Informed written
consents were obtained from all participants prior to
the study. Two of the participants were authors (NW,
LS). The other four were naive. Each participant
completed 5,830–7,480 trials (median: 6,655) over
approximately 13 one-hr sessions.

Stimuli

We constructed a stimulus set of 41 grayscale images
of faces, windowed within an oval aperture to mask the
ears and hairline (Figure 1A). The stimulus set depicted
a single person with emotional facial expressions
spanning a range from happy to sad. We adopt the
arbitrary convention of defining a stimulus axis that
increases for sad expressions, from 0 (happy) to 1 (sad).
We derived the images from photographs in the
MacBrain Face Stimulus Set developed by Nim
Tottenham and made publicly available to the scientific
community (http://www.macbrain.org/resources.htm).
The database contains color photographs of actors
instructed to make various facial expressions—fearful,
happy, sad, angry, surprised, calm, neutral, disgusted—
with the mouth either open or closed (16 photographs
per model). Our stimuli were made from two of these,
the happy and sad closed-mouth photographs of Model
#18. The expressions in the database were validated by
independent test subjects, with 91% and 95% accuracy
on an eight-choice decision for our two stimuli
(supplementary table 2A in Tottenham et al., 2009). A
subset of the models, including #18, gave permission to
reprint the images in scientific journals (https://www.
macbrain.org/resources.htm).

We converted the happy and sad images to grayscale
and used these as the endpoints of our continuum of
emotional expression. We made 39 intermediate stimuli
using morphing software (Morph 2.1, Norrkross
software, available at http://www.norrkross.com/
software/morphx/morphx.php). The 41 stimuli were
equally spaced on the morph trajectory. To minimize
artifacts in the intermediate stimuli such as the
transparent overlay of noncorresponding regions from
the two endpoints, we hand-labeled about 50 pairs of
corresponding points in the two end-point images. The
corresponding points were placed along the outer
border of the face and on and around internal features
(eyes, nose, mouth, brow). These points guide the
geometric warping, which helps ensure that cross-
fading only occurs between corresponding image
regions. After morphing, all stimuli were windowed
within an oval aperture with a 1.35 aspect ratio (height
to width).

Visual inspection by the authors confirmed that the
morphed stimuli appeared to have facial expressions
that varied smoothly from happy to sad and looked as

natural (artifact-free) as the two endpoints. As we
report in the Results, the regularity in perceived
stimulus strength along the happy-to-sad continuum
was also assessed quantitatively using psychophysical
methods. As there were 41 stimuli in our set—original
happy and sad endpoints and the 39 intermediate
stimuli—we defined the stimulus strength by dividing
the image number (0 to 40) by 40. The complete set of
the stimuli in our morph trajectory is provided as
supplementary data (Supplementary Figure S1).

During the experiment, participants sat in front of a
flat-screen CRT display and, using a chin rest,
maintained a viewing distance of 52–57 cm. The stimuli
were presented at either 13.5 3 10 degrees of visual

Figure 1. Stimulus set and procedure for Experiment 1. (A)

Stimulus morph line from happy to sad. The end points, stim-0

and stim-1 were the two adapting stimuli, and defined the

range from happy to sad. The intermediate stimuli smoothly

transitioned between the two emotional expressions. (B) Trial

structure. The participant viewed the adapting stimulus for 30 s

at the start of each block, fixating the black cross. After a 0.5-s

delay, the test stimulus was presented, scaled down by 50%,

and remained on the screen until the participant made a key

press to indicate a sad or happy facial expression. Each block

consisted of 110 trials, with each trial testing one of 11 stimuli

that spanned the morph line. After the first trial, the participant

viewed the same adapting stimulus, but for 2 s rather than 30 s.

The prototype stimuli were adopted from photographs of

Model #18 in the MacBrain Face Stimulus Set (https://www.

macbrain.org/resources.htm; the model gave permission to

reprint the images in scientific journals).
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angle (adapting stimuli) or 6.25 3 5 degrees of visual
angle (test stimuli).

Procedure

Summary

Each observer participated in two experiments to
measure adaptation to emotional expression, complet-
ing 27–40 blocks of trials (median: 30) per experiment,
with 110 trials per block. Each 1-hr session comprised
multiple blocks and each block lasted about 6–8 min
(depending on the participant’s response time), with the
opportunity to rest between blocks.

Experiment 1: Fixed stimulus range

During each block of trials, participants adapted to
one of the two endpoint images in our stimulus set—the
happy face (stimulus 0) or sad face (stimulus 1)—or to
no stimulus (blank screen with a fixation cross), and
made happy/sad judgments about 11 intermediate
stimuli (levels 0.125, 0.375, 0.400, 0.425, 0.450, 0.475,
0.500, 0.525, 0.550, 0.575, and 0.875). The 11 test
stimuli appeared 10 times in random order. In each
session, participants completed four to eight blocks of
trials—typically two consecutive blocks of no-adapta-
tion and four consecutive blocks of either adapt-happy
or adapt-sad—so that across the multiple sessions there
was an equal number of each of the three types of
adaptation blocks. We considered the first six blocks
for each adaptation condition to be training blocks,
and did not use them for subsequent analysis.

Every block began with a long adaptation trial, in
which the participant viewed the adapt-happy stimulus,
adapt-sad stimulus, or no image (a uniform gray
screen) continuously for 30 s while maintaining fixation
on a small black cross in the center of the screen
(Figure 1B). After the 30 s of adaptation, the
participant viewed a brief blank screen with a fixation
cross (0.5-s interstimulus interval) followed by the test
stimulus. The test stimulus was half the size of the
adapting stimulus in length and width. The purpose of
the size change was to decorrelate the local image
features between the adapting and test stimuli. The
transfer of adaptation across a large change in image
size supports the interpretation that the aftereffect is
linked to global properties of the image rather than to
the specific local luminance and contrast; even very
small shifts in position (0.28) between adaptor and test
have been shown to reduce or eliminate the influence of
adaptation from nonface specific mechanisms (Xu et
al., 2008). The test stimulus remained on the screen
until the participant pressed a key to indicate their
response (x for happy, m for sad). Following the button
press, there was a 1-s intertrial interval with a blank

screen. For the subsequent 109 trials in the block, the
trial structure was the same except that the adapting
stimulus (or blank screen) was viewed for only 2 s
instead of 30 s. This method of using a long initial
adaptation period followed by shorter periods of top-
up adaptation before each test stimulus is typical of
adaptation experiments (Clifford & Rhodes, 2005). The
adapting stimulus was the same throughout the block
of 110 trials. Participants were not provided feedback.
They were only asked to provide consistent responses
across blocks.

Experiment 2: Balanced responses

Experiment 2 was identical to Experiment 1 except
for the set of test stimuli. In Experiment 1, the set of
test stimuli was the same across observers and adapting
conditions (Figure 2, top). When adapting to the happy
face, most responses were ‘‘sad’’ (58.3% pooled across
observers), and when adapting to the sad face, most
responses were ‘‘happy’’ (62.8% pooled across observ-
ers; see Table 1). In Experiment 2, we altered the range
of stimuli per observer and per adapting condition in
order to balance the proportion of sad and happy
responses. This was achieved by fitting a psychometric
function to the judgments made in each practice block,
and recentering the middle stimuli to the point of
subjective equality (PSE) from the psychometric fit for
the subsequent blocks. In the first session of each
adaptation condition, we estimated the PSE over
multiple blocks and repeated the measurements until a
stable PSE was observed across consecutive blocks. In
subsequent sessions, the first block was used to ensure
stability of PSE across days. In the case that the PSE
changed significantly, we reestimated the new PSE over
multiple blocks and used the new value for recentering
the stimuli; as a result, some participants had greater
than 11 stimulus levels. This procedure was applied
independently for each adaptation condition. The
calibration was successful, in that the mean responses
were close to 50% for each observer in each condition
for Experiment 2 (Table 1).

Data analysis

The broad goal of our analysis was to test whether
(and how) a computational model of decision making
could account for the distribution of response times
and choices for each test stimulus strength in each
adaptation condition. Accurately modeling these dis-
tributions requires a large number of trials per
condition. Even with about 6,000 trials per participant,
there was limited power to fit models to individual
participant’s data (;1,000 trials for each adaptation
condition in each experiment). For the primary
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analysis, we therefore combined data across partici-
pants. We also show individual participant’s data and
model fits in the supplementary material (Supplemen-
tary Figure S4), and for each analysis in the main text
we report the number of participants showing statisti-
cally significant results consistent with the group data.
Finally, we devised a bootstrap procedure to aggregate
individual participant’s results across the tested popu-
lation. In each iteration of the bootstrap procedure, we
calculated the average of the quantity of interest (e.g.,
change of decision bound) for each subject by sampling
and averaged the results across subjects. We repeated
the process 104 times to make a bootstrap distribution
of the across-subject averages. The p values were based
on this distribution (e.g., proportion of average bound
changes that exceeded zero).

Combining data across participants

For both experiments, trials with response times
greater than 5 s (0.06% of trials for Experiment 1 and
0.03% for Experiment 2) were considered outliers and
were omitted from analysis.

For Experiment 1, in which each participant viewed
the same set of test stimuli, combining data was
straightforward: We concatenated the trials across
participants for each of the 33 combinations of
adaptation conditions (happy, sad, and neutral) and
test items (11 stimulus strengths), and then analyzed the
group data with three models, one per adaptation
condition.

For Experiment 2, the set of test stimuli varied
across adaptation condition and participant, both in
terms of the number of stimuli tested and the range of
the stimuli. To combine across participants, the stimuli
were aligned and binned in the following manner. First,
we computed the PSE separately for each participant in
each adaptation condition by fitting a logistic regres-
sion to the judgments (see the Effect of adaptation on
choice section below). This value was, by design, close
to the middle test stimulus for each participant and
adaptation condition, since the test stimuli were chosen
based on performance during practice blocks with the

Figure 2. Test stimuli for Experiments 1 and 2. The upper panel

shows the test stimuli for Experiment 1 (fixed stimulus set).

Each row shows one adaptation condition indicated by the dot

colors (blue: adapt sad; red: adapt happy; black: unadapted).

The test stimuli were identical for all participants and all

adapting conditions. The test comprised nine equally spaced

stimuli near the midpoint of our stimulus set, and two stimuli

near the extremes. The middle stimuli are most useful for

estimating the steep portion of the psychometric curves, and

the more extreme stimuli for estimating the asymptotes. The

lower panel shows the stimuli for Experiment 2 (balanced

responses). These stimuli differed for each participant and each

adapting condition. The stimuli were chosen in order to achieve

an approximately equal probability of happy and sad responses

for each participant and each adapting condition, as determined

in practice blocks. To obtain balanced responses, the range of

test stimuli was generally shifted towards the adapting

stimulus.

Experiment 1: Fixed stimuli Experiment 2: Balanced stimuli

Unadapted Happy-adapted Sad-adapted Unadapted Happy-adapted Sad-adapted

S1 0.493 0.695 0.333 0.492 0.500 0.488

S2 0.375 0.311 0.312 0.489 0.516 0.490

S3 0.498 0.722 0.423 0.485 0.510 0.483

S4 0.633 0.660 0.332 0.595 0.709 0.448

S5 0.499 0.539 0.467 0.476 0.505 0.425

S6 0.487 0.591 0.418 0.539 0.546 0.522

Pooled 0.495 0.583 0.372 0.515 0.527 0.481

Table 1. Probability of sad responses in Experiments 1 and 2.
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explicit goal of centering the range on the individual’s
PSE. For each of the three adaptation conditions
(happy-adapted, sad-adapted, and unadapted), we
averaged the PSEs across participants, yielding a
condition-specific PSE. We then added to the stimulus
strength the difference between the group average PSE
and the individual’s PSE, thereby aligning the stimulus
strengths used across participants to a common
reference for each adaptation condition. After align-
ment, we binned the data points into 19 discrete bins,
and dropped any bin that fewer than two-thirds of
participants contributed to, leaving 11 bins per
adaptation condition. Once data were combined across
participants, model fitting was identical for the two
experiments.

The identical binning procedure was also used for
individual participant analysis, except that the data
were not combined across participants.

Effect of adaptation on choice

To calculate the PSE for each adaptation condition,
we used the following logistic regression:

logit P sadð Þ½ � ¼ b0 Sþ b1ð Þ ð1Þ

where logit pð Þ ¼ log p
1�p

� �
, P sadð Þ is the probability of

choosing ‘‘sad,’’ and S is the stimulus strength,
expressed as a number between 0 (happy) and 1 (sad).
b0 and b1 are regression coefficients that account for
the slope and bias of the psychometric function. The
PSE was defined as the stimulus strength for which the
probability of the two choices became equal (0.5), that
is PSE ¼ �b1. Regression coefficients in Equation 1
and subsequent logistic regressions were calculated
using maximum likelihood fitting. Regression param-
eters and standard errors of Equation 1 for each
participant and for the pooled data across participants
are in Supplementary Table S1. We quantified the shift
of psychometric functions as the difference of the PSE
of adapted and unadapted conditions. Standard error
of the shift was calculated by bootstrapping.

To test for changes in the slope of the psychometric
function in adapted and unadapted conditions, we used
the following logistic regression:

logit P sadð Þ½ � ¼ b0 þ b4L3ð Þ Sþ b1 þ b2L1 þ b3L2ð Þ ð2Þ
where Li are indicator variables: L1 is 1 for happy-
adapted trials and 0 otherwise, L2 is 1 for sad-adapted
trials and 0 otherwise, and L3 is 1 for either happy- or
sad-adapted trials and 0 otherwise. b1 accounts for a
bias in the unadapted condition, and b2 and b3 indicate
the change of PSEs in the adapted conditions compared
to the unadapted condition. b4 indicates the change in
the slope of the adapted psychometric functions
compared to the unadapted condition.

Drift-diffusion models

We modeled the full set of data—the distribution of
response times and choices—assuming that decisions in
our task were made by accumulating noisy sensory
evidence toward a threshold (decision bound). A
simplified version of this bounded accumulation
process is formalized by drift-diffusion models, which
have been shown to successfully explain choice and
response time for a broad range of cognitive and
perceptual decision-making tasks (Krajbich, Armel, &
Rangel, 2010; Purcell et al., 2010; Shadlen & Kiani,
2013; Smith & Ratcliff, 2004). The visual stimulus gives
rise to a sensory representation that fluctuates sto-
chastically over time. The evidence conferred by these
momentary representations are modeled as draws from
a unit-variance Gaussian distribution, whose mean is a
monotonic function of the stimulus strength. The
momentary evidence is accumulated until one of the
two decision bounds is reached (upper bound for sad
responses and lower bound for happy responses). The
time to bound is decision time. The experimentally
measured response time on each trial is the sum of
decision time and some nondecision time, which is
comprised by sensory and motor delays.

Due to the stochastic nature of evidence, integration
of evidence is a diffusion process with drift, where the
average drift rate is the mean of momentary evidence.
Larger drift toward a decision bound increases the
probability of making the corresponding choice and
reduces its decision time. If adaptation changes sensory
representations to shift the drift rates in favor of one of
the choices, it will cause a shift in the psychometric
function without changing its slope. Also, changes in
drift rates will cause an equal shift in the chronometric
function (response times as a function of stimulus
strength).

The height of decision bounds also influences the
likelihood of choices and their decision times. Specif-
ically, smaller bound heights are associated with
shorter decision times and higher susceptibility to the
noise of the diffusion process. This increased suscepti-
bility to noise translates into a lower slope in the
psychometric function. An asymmetry in the height of
the two decision bounds causes a shift in the
psychometric function by increasing the likelihood of
the choice associated with the smaller bound. There will
also be a shift in chronometric functions. However,
unlike changes of drift rate, this shift is accompanied by
a split in the chronometric function, where for each
stimulus strength, responses associated with the smaller
bound are faster.

We used two methods to fit the drift-diffusion model
to the data. We report the results for the data combined
across participants, but similar, albeit noisier, results
are obtained from single subject fits.
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Our first fitting method aimed at understanding
how sensory evidence changed with the stimulus
strength. There is no a priori reason to assume that a
linear morph line in the stimulus space should lead to
a linear change of sensory evidence. Therefore, we set
out to elucidate this relationship using both model-
free and model-based methods. For the model-free
method, we calculated the probability (Figure 3A) and
the log odds of the probability (Figure 3B) of sad
choices for each stimulus strength. Changes of the
logit[P(sad)] as a function of stimulus strength
approximate changes in the average evidence con-
ferred by the stimuli (Kiani, Cueva, Reppas, &
Newsome, 2014). For the model-based approach, we
created a high-parameter drift-diffusion model with 1
degree of freedom (df) for the drift rate of each
stimulus strength (Figure 3C). Overall, the model had
14 parameters: 11 parameters for the sensitivities (drift
rates) of the 11 stimuli; two parameters for the
decision boundaries (happy and sad); and one
parameter for nondecision time. Fitting such a model
to data is computationally intensive because the

number of model evaluations for convergence of the
fitting procedure grows rapidly with the number of
model parameters. Also, avoiding local minima in a
high-parameter model requires repeating the fitting
process from numerous starting points, which multi-
plicatively increases the number of model evaluations.
To reduce computational costs, we relied on a fast
fitting process developed by Palmer, Huk, and
Shadlen (2005) that uses analytical solutions of the
drift-diffusion model for the probability of choices
and the mean reaction time for each stimulus strength
(Link, 1992). Briefly, for a drift-diffusion process that
starts at zero:

P sadjSð Þ ¼ exp 2lS
�Bð Þ � exp �2lSDBð Þ

exp 2lS
�Bð Þ � exp �2lS

�Bð Þ ð3Þ

�T Sð Þ ¼
�B 2P sadjSð Þ � 1ð Þ � DB

lS

þ T0 ð4Þ

where P sadjSð Þ and �T Sð Þ are the probability of making
sad responses and the mean reaction time for stimulus

Figure 3. Perceptual validity of the stimulus set. The unadapted condition was used to assess the validity of the stimulus set. (A)

Psychometric functions from Experiments 1 (fixed stimulus set) and 2 (balanced responses) show smooth and generally monotonic

patterns for each subject. (B) The psychometric functions fit to the pooled data across observers were plotted using the logit function

on the y-axis rather than percent correct. If stimuli that are equally spaced on the x-axis are equally spaced perceptually, and the

participant makes a decision via a diffusion process with fixed bounds, then a linear relationship is predicted. This approximately holds

for the middle range of stimuli in both experiments. Linearity fails for the extreme stimuli. (C) The level of sensory evidence for each

stimulus was computed from a diffusion process in which the bounds could be asymmetric. The results again show a linear

relationship for the middle stimuli in both experiments.
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S. �B is the average of the absolute bound heights for
the two choices, DB is the offset of the absolute bound
heights, lS is the drift rate associated with stimulus S,
and T0 is the average nondecision time. Using these
analytical solutions, we optimized the model param-
eters to maximize the sum of the log likelihood of
observed choices and the log likelihood of observed
response times (see Palmer et al., 2005 for details).
This fitting procedure is fast and suitable for high-
parameter models, but it does not optimize the joint
likelihood of choices and response times on single
trials (see below for a better alternative). Both the
model-based and model-free approaches indicated a
linear change of drift rates with stimulus strength for
the intermediate stimuli but not for the extreme
stimuli. We used this knowledge to develop a more
accurate but computationally more intensive fitting
procedure.

Our second fitting method aimed at providing a
precise estimation of changes of the drift rates, bound
heights, and nondecision time across different adapta-
tion conditions. It calculated the probability density of
different response times for each choice and found
model parameters that maximized the joint likelihood
of experimentally observed choices and response times
across trials. The probability of crossing the upper and
lower decision bounds at each decision time was
calculated by solving the Fokker–Planck equation
(Karlin & Taylor, 1981; Kiani & Shadlen, 2009; Purcell
& Kiani, 2016a):

]p v; tð Þ
]t

¼ �lS

]p v; tð Þ
]v

þ 0:5
]2p v; tð Þ

]v2
ð5Þ

where v is the accumulated evidence and p v; tð Þ is the
probability density of the accumulated evidence be-
tween the two decision bounds at time t. The boundary
conditions of Equation 5 are:

p v; 0ð Þ ¼ d vð Þ ð6Þ

p Bl; tð Þ ¼ 0 and p Bu; tð Þ ¼ 0 ð7Þ
where d vð Þ denotes a delta function, and Bl and Bu are,
respectively, the lower and upper bounds. The first
boundary condition (Equation 6) enforces that the
diffusion process starts at zero and the second
boundary condition (Equation 7) terminates the
process as soon as one of the two decision bounds is
reached. Response time distribution for each stimulus
strength and choice was obtained by convolving the
distribution of bound crossing times with the distribu-
tion of nondecision times. The distribution of nonde-
cision times was a Gaussian, whose mean was a free
model parameter (T0) and whose standard deviation
was one third of the mean. Treating the standard
deviation of nondecision time as an additional degree
of freedom in the model did not change the results.

Because the numerical solution of Equation 5 is
computationally intensive, we reduced the number of
model parameters based on the results of our first
fitting method, which showed linear change of drift
rates for intermediate stimulus strengths (Figure 3C).
Therefore, instead of separate drift rates for the 11
stimulus levels, we used four parameters: two param-
eters for the drift rates of the two extreme stimuli and
two parameters to define a linear relationship between
drift rates and stimulus strength for the middle nine
stimuli (Figures 4B and 6B). This allowed us to reduce
the number of free parameters from 14 to seven (two
parameters for the bounds, one parameter for nonde-
cision time, and four parameters for drift rates). The
fits were performed independently for each of the three
adaptation conditions. Adding more parameters to the
model by assuming different nondecision times for the
two choices (a total of eight parameters per condition)
did not change the quality of the fits or our conclusions
about changes of sensitivity and bound heights with
adaptation (Supplementary Figures S2 and S3).

Standard errors of model parameters in both fitting
methods were obtained by multiple fits to bootstrapped
datasets (40–60 iterations) and calculating the standard
deviation of model parameters across iterations.

Contribution analysis

Both changes in sensitivity (drift rates) and in
decision bounds can alter the proportion of choices,
and hence can contribute to a shift in the psychometric
function during adaptation. For each adaptation
condition, we quantified these contributions by divid-
ing each experimentally observed shift into three
components: (a) CS, the expected shift of the psycho-
metric function if bound heights remained the same as
in the unadapted condition but drift rates changed by
the amount in the model fit of the adapted condition,
(b) CB, the expected shift if drift rates remained the
same as in the unadapted condition but decision
bounds changed by the amount in the model fit of the
adapted condition, and (c) CB3S, the expected shift
from the interaction of changes in drift rates and bound
heights. To calculate CS and CB, we used the drift-
diffusion model and the specified model parameters to
generate predictions for the probabilities of sad and
happy responses for each stimulus strength in the
adaptation condition. We fit Equation 1 to these
predicted probabilities to calculate the expected PSE
and subtracted the unadapted PSE from it to get the
expected shift. We then calculated the interaction effect
(CB3S) as total shift � CS � CB. To calculate the
overall contribution of the changes of bound heights
and sensitivity to the observed shifts of the psycho-
metric functions, we evenly divided the shift due to the
interaction of parameters. That is, the overall contri-
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bution of changes of bound heights equals
CB þ 0:5CB3S, and the overall contribution of changes
of sensitivity equals CS þ 0:5CB3S.

Results

Validity of the stimulus set

Our stimulus set comprised equally spaced points
along a morph trajectory. However, perceptual spaces
and physical spaces need not correspond, so the
perceptual strength of the stimuli must be determined
empirically. We assessed the relationship between the
physical and perceptual spaces in the no-adaptation
condition in three ways. First, we examined the
psychometric functions, expressed as the percentage of

sad judgments versus stimulus strength. For each
observer, the psychometric functions were approxi-
mately monotonic and well fit by a logistic function, in
both Experiments 1 and 2 (Figure 3A). This indicates
that the stimulus strength according to the morph
trajectory monotonically matched perceptual judg-
ments: The closer a stimulus was to the happy or sad
end point, the more likely it was to be judged happy or
sad, respectively. Moreover, the psychometric functions
were highly similar for the two experiments in most
observers, indicating that the slight difference in
experimental design (choosing the range of stimuli
based on practice blocks) did not substantially alter
baseline performance.

Second, we made a more quantitative assessment
of the perceptual spacing by comparing the stimulus
strength with the log-odds (logit) of the judgments.
Although the logit and the probabilities are simple

Figure 4. Adaptation results from Experiment 1 (fixed stimulus set). (A) Behavioral results of Experiment 1 from group data. The

psychometric function (left) shows evidence of adaptation: Adapting happy or sad increased the likelihood of responding sad or

happy, respectively. The chronometric functions (right) show a shift in the direction of adaptation, peaking at the PSE. In addition,

adapting to happy or sad faces reduced the response time compared to no adaptation. Fitted curves on the psychometric and

chronometric functions are derived from the same drift-diffusion model fits (one fit per adaptation condition). (B) Model parameters

for the three adaptation conditions. Adaptation caused a shift in the sensory evidence plots (left) in the direction of adaptation.

Adaptation also caused a reduction in decision bounds (middle), with a larger reduction for sad when adapting happy, and vice versa.

Positive and negative bounds in the drift-diffusion model corresponded to sad and happy choices, respectively. Finally, there was a

modest reduction in nondecision time during the adaptation conditions (right).
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monotonic transforms, the logit fit is easier to assess
by visual inspection: According to a simple model of
perceptual decision making via diffusion to fixed and
symmetric bounds, the logit of the probability of
judgments is a linear function of sensory evidence
available for the choice (Kiani et al., 2014; Link,
1992; Palmer et al., 2005). For the nine intermediate
stimuli tested, the logit changed linearly with
stimulus strength (Figure 3B). The linear relationship
did not hold for the two extreme stimulus values
tested. This could either be because the perceptual
space was warped at extreme values (relative to the
physical space), or because we could not accurately

measure the logit when the probabilities were close to
0 or 1.

Finally, we fit the judgments and response times with
a drift-diffusion model, allowing for asymmetric
bounds, and asked whether the fitted parameters for
sensory evidence (drift rates) scaled with the physical
stimulus values. We used the first fitting strategy
described in the Methods (Equations 3 and 4), in which
there was a free parameter for the drift rate of each
stimulus strength. This test, unlike the psychometric
functions, makes use of both response time and
judgments. As with the logit of the judgments alone,
the parameters for sensory evidence (drift rate) were
close to linear for intermediate stimulus values, but not
the two extreme values (Figure 3C). These results
together indicate that the perceptual space is approx-
imately linear with respect to the physical space over a
substantial range, justifying the reduction in the
number of free parameters for subsequent model
fitting.

Experiment 1: Adaptation to facial expression
affects both sensitivity and decision bounds

For Experiment 1, the test stimuli were identical
across adaptation conditions and participants. As
expected from prior literature (Hsu & Young, 2004;
Russell & Fehr, 1987; Webster et al., 2004; Xu et al.,
2008), adapting to a facial expression caused the
psychometric function to shift toward the adapting
stimulus (Figure 4A, left). This means that adaptation
to a sad expression made participants more likely to
judge the test stimulus as happy, and adaptation to a
happy expression made participants more likely to
judge the test stimulus as sad. The PSE shifted by
�0.028 6 0.002 (pooled data, p , 10�8; median shift
for individual subjects,�0.022; for five out of 6 subjects
p � 0.05) and 0.039 6 0.002 (pooled data, p , 10�8;
median shift for individual subjects, 0.022; for all
subjects p � 0.05) in the expected directions during
adaptation to the happy and sad images, respectively.
The difference in the PSE between the two adapt
conditions (0.067) corresponds to approximately 2.7
steps in the 41-image morph line (Supplementary
Figure S1).

Adaptation also altered the chronometric functions.
An unexpected result was that relative to no adapta-
tion, adapting to a happy or sad expression substan-
tially reduced the overall response time: Participants
responded about 100 ms faster to stimuli at or near the
PSEs following adaptation to either facial expression
compared to no adaptation (Figure 4A, right). Fur-
thermore, the peak of the response time distributions
shifted toward the adaptor, so that the most ambiguous

Figure 5. Chronometric functions by response for Experiment 1.

(A) Response times as a function of stimulus strength (x-axis),

adaptation condition (happy in red, sad in blue), and choice

(happy responses with darker colors; sad responses with lighter

colors). The stimulus range is reduced to emphasize the data

near the PSEs. The PSEs are indicated by the dashed vertical

lines. Lines are model fits. (B) The absolute value of the decision

bounds, with darker colors for the happy bound and lighter

colors for the sad bounds, replotted from Figure 4. An

asymmetry in the response time for stimuli near the PSE (upper

panel) is reflected in an asymmetry in the decision bound

(lower panel).
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stimulus (the stimulus closest to the PSE in each
condition) had the slowest response times.

The full data, including the psychometric and
chronometric functions, were fit by the drift-diffusion
model applied to individual trial data (second fitting
strategy in methods, Equations 5 through 7). The
diffusion model overall did a good job of simultaneously
fitting the psychometric and chronometric functions
(Figure 4A), indicating that across our stimulus set, task,
and adaptation conditions, performance can be accu-
rately described by a simple drift-diffusion model of
decision making. This is compatible with integration of
sensory evidence for face discrimination as shown before
(Okazawa et al., 2016). The advantage of the model fit is
that it allows us to ask what aspects of the decision-
making process explain the pattern of behavioral results.

The change in performance following adaptation
was primarily explained by three features of the
diffusion model. First, the drift rate (or sensitivity) of
each stimulus shifted toward the adaptor (Figure 4B).
This observation is consistent with a long history of
studies suggesting that adaptation causes a change in
sensory representation. For example, a stimulus that
was considered neutral in the unadapted experiment
(drift rate 0) was interpreted as providing evidence for a

sad decision (positive drift rate) following adaptation
to a happy face.

Second, and more surprisingly, the decision bound
was systematically lower during adaptation. Treating
all bounds as positive, the average of the two bounds
was lower following adaptation to either the happy or
sad expression, compared to no adaptation (Figure 4B,
middle). The decrease in bound height was 9.6% and
11.5% for the happy-adapted and sad-adapted trials
compared to no adaptation (z test on model parame-
ters, pooled data, p , 10�8; median bound reduction
for individual subjects, 7.5% for happy-adapted and
10.8% for sad-adapted; for sad-adapted, three subjects
p � 0.05; for happy-adapted, two subjects p , 0.05;
combined changes across subjects, bootstrap p , 10�4).
This inference from model parameters was clearly
reflected in the overall reduction in response time
during adaptation (Figure 4A, upper right). A reduc-
tion in bounds indicates that participants made their
judgments based on the accumulation of less data, and
therefore predicts that under adaptation, participants
should be less accurate. This is indeed what we
observed, in that the psychometric functions became
20.1% shallower during adaptation (pooled data, b4¼
�6.24 6 0.90, p , 10�8, Equation 2).

Figure 6. Adaptation results from Experiment 2 (balanced responses). Same as Figure 4, but for Experiment 2 in which the stimulus

set was adjusted to ensure that responses were balanced in each adaptation condition.
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Finally, we observed that the decision bounds became
asymmetric during adaptation. In particular, the happy-
adapted condition caused a lower bound for sad
judgments (pooled data, 22.4 6 0.4 vs. 27.8 6 0.4, p ,
10�8; median bound reduction for individual subjects,
10.1%; the reduction was significant for three out of six
subjects with p� 0.05; combined changes across subjects,
bootstrap p , 10�4), and the sad-adapted condition
caused a lower bound for happy judgments (20.0 6 0.4
vs. 23.4 6 0.4, p , 10�8; median bound reduction for
individual subjects, 10.0%; the reduction was significant
for three subjects with p� 0.05; combined changes across
subjects, bootstrap p , 10�4). A prediction made by the
diffusion model we employed is that if the bounds for the
two decisions are asymmetric, then the distribution of
response times will differ for the two decisions, even for a
fixed stimulus: Specifically, the response times for the
decision with the lower bound will be shorter. This
prediction was largely borne out by the data (Figure 5).
In the sad-adapted condition, happy responses were
about 100 ms faster than sad responses for stimuli near
the PSE (Figure 5A). Because the figure zooms in on the
response times for the ambiguous stimuli, it amplifies
apparent discrepancies between the model and data.
Better fits can be achieved by adding an urgency function
to the model (Churchland, Kiani, & Shadlen, 2008;
Hanks, Kiani, & Shadlen, 2014). However, because the
discrepancies between model and data tend to be small
(,50 ms), we opted for a simpler model without urgency
to lower the number of model parameters. The faster
happy responses for the sad-adapted condition explains
why the model fit the boundaries asymmetrically, with a
lower bound for happy decisions when adapting to sad
faces (Figure 5B). The effect was similar, though smaller
in magnitude and noisier, for the happy-adapted
condition.

Importantly, an asymmetry in decision bounds
makes one response more likely than the other, and
hence can contribute to a shift in the psychometric
function. The decision-bound effects show that a
change in the decision-making process can complement
changes in sensory representation during adaptation,
with both effects contributing to the usual hallmark of
aftereffects from adaptation: a shift in the psychometric
function toward the adapting stimulus.

Experiment 2: Adaptation with balanced
responses

The first experiment showed that adaptation resulted
in changes in both sensory representations and in the
decision-making process. Because we used a method of
constant stimuli, and because adaptation caused the
PSE to shift toward the adapting stimulus, adaptation
also caused an imbalance in the proportion of

responses. For example, Participant 1’s percentage of
sad responses increased from 49% (unadapted) to 70%
(happy-adapted) in Experiment 1. One possibility is
that a bias in the response frequency caused partici-
pants to lower their decision bound for the more
frequent response. Such a possibility is supported by
studies showing that increased target frequency tends
to result in subjects lowering their decision bound to
respond more frequently to that target (Hanks,
Mazurek, Kiani, Hopp, & Shadlen, 2011; Link, 1992;
Mulder, Wagenmakers, Ratcliff, Boekel, & Forstmann,
2012). This process might have occurred in Experiment
1, such that an initial change in sensory representation
following adaptation resulted in an increased frequency
of making a particular response, and the increased
frequency of this response then resulted in a lowering of
the decision bound to make this response. If this were
the explanation for the change in bounds observed in
Experiment 1, then we would predict that when
responses were balanced, there would be little or no
change in decision bounds from adaptation.

To examine the effects of adaptation when responses
were balanced, we designed Experiment 2 such that the
proportion of responses was close to 50% for all
participants and all adaptation conditions. Several
features of the responses replicated Experiment 1, but
there were important differences as well.

First, as in Experiment 1, adaptation caused a
reliable shift in the psychometric function toward the
adapting stimulus (Figure 6A, left; PSE shift for happy-
adapted condition, pooled data, �0.073 6 0.002, p ,
10�8; median for individual subjects,�0.071; for all
subjects p � 0.05; PSE shift for sad-adapted condition,
pooled data 0.054 6 0.002, p , 10�8; median for
individual subjects, 0.051; for all subjects p � 0.05).
Second, as in Experiment 1, adaptation caused a
reduction in response time (Figure 6A, right), which the
diffusion model attributed to a reduction of decision
bound with adaptation (a reduction of 11.4% for the
happy-adapted condition, p¼ 2.2 3 10�7, and 6.8% for
the sad-adapted condition, p¼ 8.53 10�4, compared to
the unadapted condition; single subject results: happy-
adapted condition, median 12.2%, for five out of six
subjects p � 0.05, bootstrap p , 10�4 for combined
changes across subjects; sad-adapted condition, median
10.1%, for four subjects p � 0.05, bootstrap p , 10�4

combined changes across subjects). This reduction in
decision bound was slightly less pronounced than in
Experiment 1, and unlike Experiment 1, there was little
flattening of the psychometric function (b4 ¼�0.41 6
1.0, p¼ 0.68, Equation 2). Furthermore, there was an
asymmetry in the decision bounds following adaptation
(Figure 7). We observed a lower bound for sad
judgments in the happy-adapted condition (pooled
data, 22.2 6 0.5 vs. 26.4 6 0.5, p , 10�8; median
bound reduction for individual subjects, 12.8%; the
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reduction was significant for five out of six subjects
with p � 0.05; combined changes across subjects,

bootstrap p , 10�4), and a lower bound for happy
judgments in the sad-adapted condition (23.9 6 0.6 vs.
26.6 6 0.6, p¼ 1.73 10�6; median bound reduction for
individual subjects, 10.3%; the reduction was significant
for four subjects with p � 0.05; combined changes

across subjects, bootstrap p , 10�4).

The response time asymmetry was a less pronounced

effect compared to Experiment 1. In contrast, the
change in representation, indicated by the shift in drift
rates, was larger for Experiment 2 than Experiment 1.
Together these results suggest that when the test stimuli

are arranged such that the participant’s responses are
approximately balanced, adaptation has a larger effect
on sensory representations and a smaller effect on

decision strategy. We compare these phenomena
quantitatively in the next section.

Contributions of sensitivity and decision bounds
to shifts in psychometric functions

Both changes in sensory representation and changes
in decision bounds arising from adaptation can cause a
shift in the psychometric function. We parcellated the
shift in each of four conditions (happy-adapted and
sad-adapted conditions from Experiments 1 and 2) into
the separate contributions from the change in sensory
representation (drift rates) and change in decision
bound (Figure 8). The analysis shows several clear
patterns. First, in both experiments, the larger contri-
bution to the PSE shift came from the change in
sensitivity (red bars). Yet there was also a systematic
effect of the decision bound on the shift of psycho-
metric functions (blue bars), and this effect was larger
in Experiment 1 than Experiment 2, both for happy-
and sad-adapted conditions. Hence, when responses
were balanced by choosing appropriate stimulus sets
for each participant and each condition, adaptation
was more strongly driven by a change in sensory
representation and less strongly by a change in
decision-making strategy. This pattern holds whether
quantifying the contributions in units of stimulus
strength (Figure 8A) or as a fraction of the shift in the
PSE (Figure 8B). Note that this conclusion concerns
the effects of drift rates and bound heights on shifts in
the psychometric function and is independent of the
separate finding that the overall bound heights declined
in both experiments. Finally, the contributions from
sensitivity and bound changes were in the same
direction (i.e., all bars are positive). Had the bound
changes and sensitivity changes pushed the psycho-
metric function in opposite directions, then one of the
two factors would have had a negative contribution.
This indicates that both types of changes tended to
push the psychometric function toward the adaptor.

Discussion

Biological sensory systems are faced with the
competing challenges of operating under an enormous
range of possible stimulation levels while still main-
taining the ability to respond to small changes in the
input (Dunn, Lankheet, & Rieke, 2007). Given the
limited resources that the nervous system has at its
disposal, adapting to the observed or expected range of
stimulation can be an important tool for meeting these
dual demands (Rushton, 1965; Webster, 2015). A
widely observed behavioral signature of adaptation is a

Figure 7. Chronometric functions by response for Experiment 2.

Same as Figure 5, but for Experiment 2. When participants

adapted to the happy face (red plots) the response time was

slower for happy judgments than sad judgments (upper panel),

consistent with a lower bound for sad faces (lower panel).

When adapting sad, the pattern was reversed, but the effect

was much smaller.
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shift in the perceived neutral point toward the adapting
stimulus. The shift in the neutral point can be measured
with various psychophysical tools such as the method
of adjustment (Gibson, 1937; Gibson & Radner, 1937),
a staircase (Webster et al., 2004), or by fitting a
psychometric function using the method of constant
stimuli (Blake & Hiris, 1993). We focus here on shifts in
psychometric functions, but the same principles hold
for other methods of measuring neutral points. While

much past research on adaptation and other contextual
effects have focused on the phenomenon of a shifted
psychometric function (Afraz & Cavanagh, 2008; Blake
& Hiris, 1993; Leopold, O’Toole, Vetter, & Blanz,
2001; Winawer, Huk, & Boroditsky, 2008, 2010), it
provides neither a complete characterization of adap-
tation nor a mechanistically unambiguous description.
Below, we explain the ambiguous nature of psycho-
metric function shifts and use our response time
experimental design to offer a way to parcellate the
effects of sensory and decision-making mechanisms to
this shift. We then expand our perspective to offer a
broader and more complete description of adaptation
as a normative process.

Multiple factors can cause a shift in the
psychometric function

As expected, we found a clear shift in the psycho-
metric function in both of the experiments in this study.
In principle, this type of shift can arise for multiple
reasons. In the framework of signal detection theory,
two equally valid explanations are a change in criterion
(bias) and a change in the distributions of internal
responses (representation; see Figure 9). The tools of
signal detection theory allow one to infer the relative
position of the criterion to the internal responses, but
not the absolute quantities; hence, without a direct
measure of the internal state, one cannot distinguish
the two possibilities (Macmillan & Creelman, 2005).
Both explanations are plausible, evidenced by past
research. For example, with neural measurements, one
can show unambiguous sensory shifts as a result of
adaptation (Benucci, Saleem, & Carandini, 2013; Kohn
& Movshon, 2004; Snow, Coen-Cagli, & Schwartz,
2016). And in behavioral experiments, explicit instruc-
tion to make biased guesses when uncertain (Morgan,
Dillenburger, Raphael, & Solomon, 2012), or implicit
cues by manipulation of prior probabilities (Hanks et
al., 2011; Mulder et al., 2012; Rao, DeAngelis, &
Snyder, 2012) or expected rewards (Rorie, Gao,
McClelland, & Newsome, 2010), can cause shifts in the
psychometric function.

Because of this ambiguity, when seeking to disen-
tangle decisional and representational contributions to
adaptation-related aftereffects, researchers have re-
sorted to different, and often complicated, experimen-
tal paradigms designed to minimize the contribution of
decisional biases (Morgan, 2013, 2014; Morgan et al.,
2012). In these studies, the logic is that if an adaptation
effect is observed in a design in which a response bias is
unlikely to affect choice, then any measured aftereffect
is a genuine perceptual effect rather than a bias. In our
approach, rather than aiming for the absence of a
decision-making bias, we sought to measure it. If

Figure 8. Contribution of model parameters to shift in

psychometric function. (A) The shifts in the psychometric

functions resulting from adaptation were partitioned into the

contributions from sensitivity changes and from bound changes.

Each bar represents the contribution to the shift in the

psychometric function attributed to one of the two types of

parameters. Positive values indicate that the contribution was a

shift in the direction toward the adapting stimulus. The sum of

the two bars is equal to the amount that the PSE shifted, in

units of stimulus strength, during happy-adapted or sad-

adapted conditions compared to the unadapted condition. (B)

Same as Panel A, but normalized to the total shift in the PSE so

that each pair of bars sums to 1.
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decision-level biases are a fundamental part of sensory
decision making, and are often a component of
adaptation effects, as proposed recently by Mather and
Sharman (2015), then it is important to be able to

measure both effects in a single type of experiment and
quantify their relative contributions.

Response time provides the means for
parcellating decisional and representational
effects

Using established models of the decision-making
process (Donkin et al., 2011; Link, 1992; Moran, 2015;
Ratcliff & McKoon, 2008; Shadlen & Kiani, 2013), we
proposed that response time provides leverage to
parcellate effects of changes in sensory representation
and changes in how the representation is used in
making decisions. The results of our expression
adaptation task show that both sensory and decision-
making changes make significant contributions to the
shift of the psychometric function. Further, changes of
sensory representations are a dominant factor and
changes of the decision-making process are modulated
with the magnitude of response imbalance. The two
effects are synergistic, in that they both tend to shift the
psychometric function toward the adapting stimulus,
resulting in more judgments opposite to the adapting
stimulus (Figure 8). Our method, which can be applied
to several existing adaptation paradigms and expanded
to other tasks (see below), builds on the observation
that changes in the decision bounds lead to distinct
changes in response time distributions. One of the
manifestations of these changes is an asymmetry in the
chronometric function: Response time will be shorter
when making one response compared to another even
for the same stimulus (Figures 5 and 7). In contrast, a
pure representational effect will modify the sensory
evidence furnished by the test stimulus, and is expected
to cause equivalent shifts in the subject’s psychometric
and chronometric functions (Hanks et al., 2011; Purcell
& Kiani, 2016b). In any given experiment, a mixture of
these effects might be observed. A model is required to
quantitatively split the behavioral results into these
different causal factors. By applying a drift-diffusion
model to the results of a standard adaptation para-
digm, we have quantified the relative contributions of
bound and sensitivity in the same adaptation experi-
ment.

In addition to changes of sensitivity and decision
bound that influenced participants’ choice and decision
times, we also observed a small but consistent reduction
of nondecision time in the adapted conditions com-
pared to the unadapted condition (Figures 4B and
Supplementary Figure S2B; also see Figures 6B and
Supplementary Figure S3B). These reductions of
nondecision time contributed to the overall decrease of
response times in the adapted conditions. However, we
cannot pinpoint the origin of this reduction. It could
have been caused by adaptation or by higher predict-

Figure 9. Adaptation from the perspective of signal detection

theory. (Upper) The left panel shows hypothetical distributions

of sensory evidence for nine stimulus levels in the unadapted

condition. The stimuli can be thought of as the nine central

stimuli in our first experiment, ranging from happy (leftmost

curve) to sad (rightmost curve). The vertical dashed line is the

criterion, assumed to be unbiased. On any given trial, a sensory

response greater than the criterion results in a sad judgment,

and lower than the criterion to a happy judgment. The

proportion of sad judgments is plotted on the right, where the

nine symbols correspond to the nine stimuli on the left.

(Middle) Same as upper panel, but assuming that the

participant has adapted to a sad stimulus (black vertical line),

causing a leftward shift in sensory evidence, indicated by the

red arrow and the shifted distributions, and no change in

criterion. The shift in sensory evidence away from the adaptor

translates to a psychometric function shifted toward the

adaptor, shown as the red psychometric function on the right.

(The blue psychometric function is replotted from the upper

panel for comparison). (Lower) The third row is the same as the

middle row, except that adaptation is assumed to shift the

criterion (red dashed line) toward the adaptor, rather than

shifting the internal responses away from the adaptor. This

predicts a shift in the psychometric function that is identical to

the shift in the middle panel.
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ability of the test stimulus onset in the adapted blocks.
To equalize the interval between consecutive trials
across conditions, we elongated the blank interval
between trials in the unadapted condition by the
duration of the top-up adapting stimuli in the adapted
conditions (3.5 s total interval). However, this manip-
ulation could have increased temporal uncertainty of
the test stimulus onset, causing longer nondecision
times in the unadapted condition. Because changes of
nondecision time do not bear on the shift of the
psychometric function or asymmetries in response
times for the two choices, we focus our attention on
changes of sensitivity and decision bounds with
adaptation.

Several previous studies have reported changes of
response time following adaptation. However, they
typically did not distinguish between changes in
nondecision time and decision time, or changes in
sensory or decision-making processes that could
modify the decision time. Some of these studies
reported an elongation of response times (Hovland,
1936; Shulman, Sullivan, Gish, & Sakoda, 1986) and
some a shortening of response times (Kompaniez-
Dunigan, Abbey, Boone, & Webster, 2015; McDer-
mott, Malkoc, Mulligan, & Webster, 2010; Wissig,
Patterson, & Kohn, 2013). Many of these studies also
showed a stimulus-dependent change in response times,
with faster responses to stimuli that differ from the
adaptor compared to stimuli similar to the adaptor
(e.g., Hovland, 1936; Kompaniez-Dunigan et al., 2015;
Mathot & Theeuwes, 2013). A stimulus-independent
change is likely to be due to changes of nondecision
time, but stimulus-dependent changes could be caused
by both changes of sensitivity and changes of decision
bounds. In light of our results, it will be fruitful to
revisit those datasets and make attempts to dissect
different factors that could have contributed to
observed changes of response times. Such an explora-
tion will generate new insights about the diversity of
post-adaptation behavior and its potential causes.

Adaptation as an integrated sensory and
decision-making phenomenon

The insight that adaptation could be shaped by both
sensory and decision-making processes leads to a new
framework for understanding the neural mechanisms
that underlie adaptation. An immediate insight in this
framework is that the shift of the psychometric
function is only one of the manifestations of adapta-
tion, not a complete recapitulation of the phenomenon.
An equally important manifestation is the change in
response times, which show a multitude of alterations:
shift (Figures 4 and 6), asymmetry (Figures 5 and 7),
and an overall reduction (Figures 4 and 6). The

reduction of the decision times indicates a decrease in
bound heights and, thereby, accumulation of less
sensory evidence for both choices in the adapted
condition. This overall reduction of the accumulated
evidence is a large effect (;100 ms or 20% of the
dynamic range of response times in the two experi-
ments).

We speculate this reduction in response time has a
normative basis. If the nervous system uses adaptation
to adjust the range of stimuli it is most sensitive to
(Kohn, 2007; Rieke & Rudd, 2009; Webster, 2015),
then adaptation should have two mechanistic effects:
limiting the range of sensory stimuli that the system
expects to respond to and increasing the expected
chance of a successful choice. These effects are expected
if prolonged exposure to a stimulus is generally
associated with greater likelihood of observing new
stimuli that are similar to the adaptor; in the unadapted
state, there is less information about what to expect,
and hence a wider range of possibilities. The expecta-
tion of both a limited stimulus range and a greater
choice accuracy encourages a reduction of bound
height by reducing expected difficulty of the decision.
That is, the decision-making process may adjust itself
to maintain the same level of expected accuracy with
shorter decision times and less effort.

This bound height reduction has important impli-
cations for the interpretation of adaptation studies. For
example, some adaptation experiments have not found
a change in discriminability to stimuli close to the
adaptor (reviewed in, Webster, 2015). However, if one
does not account for response time, then it is possible
that an increase of sensitivity will be masked by a
simultaneous reduction of decision bounds. Indeed, we
observe a change of sensitivity in our own experiment.
For an example, see the sensitivity functions in Figure
6B and compare the left end of the thick red line with
the dashed black line. The shift of the sensitivity
function in the happy-adapted condition boosts dis-
criminability of the happy stimuli that participants
were less sensitive to in the unadapted condition. A
similar conclusion holds for the sad-adapted condition
(the right end of the thick blue line).

In addition to the overall reduction of decision
bound, our results revealed an asymmetry of the two
bounds. Participants tended to accumulate less evi-
dence for the choice opposite to the adapting stimulus.
We speculate that this asymmetry arises from two
different causes—one stemming from the participant’s
responses following adaptation, and one from the
adaptation process itself. The two explanations have
different implications for the two experiments. In our
first experiment, the range of test stimuli was fixed and
the proportion of responses was biased: On average,
participants made about twice as many judgments
opposite the direction of adaptation. For a rational
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observer, the greater likelihood of one response over
the other would lead to a reduced criterion for the more
likely response, consistent with the results in Experi-
ment 1 showing a relatively large asymmetry in decision
bounds. Studies that bias the proportion of responses
by altering the frequency of stimulus category also
show changes in decision bounds (Hanks et al., 2011;
Mulder et al., 2012; Rao et al., 2012), supporting this
interpretation. If this were the only explanation for the
change in decision bounds, we would expect the effect
to be eliminated when balancing the proportion of
responses, as we did in Experiment 2. As expected, this
experiment did in fact show a smaller effect of bound
height; however, systematic changes in bias, though
smaller, were nonetheless observed even when re-
sponses were balanced, calling for an additional
explanation.

The direction of changes in decision bounds is
informative about the goal of adaptation. If the goal
was to maintain a fixed neutral point irrespective of
the local context, and if long exposure to the adapting
stimulus signaled a greater likelihood of encountering
similar stimuli, then it would be rational for the
subject to lower his decision bound for the more likely
stimulus, opposite to what we observed. However, if
one purpose of adaptation is to recalibrate to the local
context, such that the neutral point remains relatively
close to the local mean (and therefore shifts relative to
the unadapted state), then lowering the bound for the
stimulus opposite adaptation would be reasonable. In
other words, asymmetric decision bounds, similar to
those observed in our experiments, become normative.
In this view, the change in decision bound is part of
the process of normalizing to the new context,
complementing sensory (or representational) normal-
ization.

If the recalibration of responses is achieved by both
decision-level normalization and sensory normaliza-
tion, then we would expect the change in bound height
to be present immediately following adaptation, and to
be present even when the proportion of responses is
balanced, as in Experiment 2. This interpretation is
consistent with a previous suggestion that decision-level
recalibration may be a widespread (and rational)
component of adaptation (Mather & Sharman, 2015).
Mather and Sharman (2015) pointed out that in many
domains, such as referees calling fouls in sports,
sensory evidence alone can be weak, and decision
factors may therefore play a large role in recalibration.
In addition, the two types of effects may have different
temporal dynamics: Sensory adaptation builds gradu-
ally, with longer or more repeated exposures resulting
in increasingly larger effects (Rhodes, Jeffery, Clifford,
& Leopold, 2007). Changes in bounds and other
decision strategies, if implemented rapidly, could speed
the recalibration of responses. In our experiments, the

first adaptation trial in each block was long (30 s), and
adaptation continued in the same direction both within
and across blocks of trials, presumably leading to the
accumulation of substantial sensory changes. Experi-
ments with much briefer periods of adaptation (e.g.,
Raymond & Isaak, 1998) may favor a greater
contribution of decision-level normalization.

A comparison of the two experiments points to an
important implication for experimental design and
interpretation. Selecting test probes via a method of
constant stimuli spanning a fixed range is sometimes
thought to be a gold standard in obtaining an unbiased
measure of a psychometric function (Woodworth &
Schlosberg, 1959). However, for experimental manip-
ulations expected to shift the neutral point in a
categorical decision, maintaining a fixed range of test
stimuli is likely to result in a biased proportion of
responses; this, in turn, is likely to cause the participant
to adopt a decision-making strategy optimal for the
task (for example, changing the termination bound for
a decision). A wide range of experimental manipula-
tions can shift the neutral point, such as adaptation,
attention, reward, or electrical stimulation of neural
subpopulations. If experimenters are interested in
focusing on sensory representations, it is best to
balance responses, even if it means departing from a
fixed stimulus set or method of constant stimuli.

Generalizability to adaptation of other stimulus
categories

In recent years, face stimuli have been widely used
for probing mechanisms of adaptation (reviewed in
Webster & MacLeod, 2011). Adaptation to face
properties, including emotional expression, produces
large and rapid effects, similar to the dynamics
observed for putatively lower level stimuli such as
motion, color, orientation, and spatial frequency
(Leopold, Rhodes, Muller, & Jeffery, 2005; Rhodes et
al., 2007). At the same time, making categorical
judgments about faces is a reasonably natural task.
Thus the findings are likely to reflect the sort of
adaptation processes that occur in ordinary perceptual
decision-making outside the laboratory. Further ex-
periments are needed, however, to assess the relative
contribution of decisional and sensory effects underly-
ing adaptation to other classes of stimuli or adaptation
effects measured by other tasks. The novel approach we
took here can easily be adapted to a wide range of other
paradigms.

Keywords: adaptation, sensitivity, decision bound,
reaction time, facial expression
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