
Clinically Applicable System for Rapidly Predicting Enterococcus
faecium Susceptibility to Vancomycin

Hsin-Yao Wang,a,b Chia-Ru Chung,c Chao-Jung Chen,d,e Ko-Pei Lu,f Yi-Ju Tseng,a Tzu-Hao Chang,g,h Min-Hsien Wu,a,h,i,j,k

Wan-Ting Huang,q Ting-Wei Lin,a Tsui-Ping Liu,a Tzong-Yi Lee,l,m Jorng-Tzong Horng,a,c,n Jang-Jih Lua,o,p

aDepartment of Information Management, National Central University, Taoyuan City, Taiwan
bPh.D. Program in Biomedical Engineering, Chang Gung University, Taoyuan City, Taiwan
cDepartment of Computer Science and Information Engineering, National Central University, Taoyuan City, Taiwan
dGraduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
eProteomics Core Laboratory, China Medical University Hospital, Taichung, Taiwan
fGraduate Program in Biomedical Information, Yuan-Ze University, Taoyuan City, Taiwan
gGraduate Institute of Biomedical Informatics, Taipei Medical University, Taipei City, Taiwan
hClinical Big Data Research Center, Taipei Medical University Hospital, Taipei City, Taiwan
iGraduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City, Taiwan
jDivision of Haematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
kBiosensor Group, Biomedical Engineering Research Center, Chang Gung University, Taoyuan City, Taiwan
lSchool of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
mWarshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China
nDepartment of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan
oSchool of Medicine, Chang Gung University, Taoyuan City, Taiwan
pDepartment of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan City, Taiwan
qDepartment of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan

ABSTRACT Enterococcus faecium is a clinically important pathogen that can cause sig-
nificant morbidity and death. In this study, we aimed to develop a machine learning
(ML) algorithm-based rapid susceptibility method to distinguish vancomycin-resistant E.
faecium (VREfm) and vancomycin-susceptible E. faecium (VSEfm) strains. A predictive
model was developed and validated to distinguish VREfm and VSEfm strains by analyz-
ing the matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spec-
trometry (MS) spectra of unique E. faecium isolates from different specimen types. The
algorithm used 5,717 mass spectra, including 2,795 VREfm and 2,922 VSEfm mass spec-
tra, and was externally validated with 2,280 mass spectra of isolates (1,222 VREfm and
1,058 VSEfm strains). A random forest-based algorithm demonstrated overall good classi-
fication performances for the isolates from the specimens, with mean accuracy, sensitiv-
ity, and specificity of 0.78, 0.79, and 0.77, respectively, with 10-fold cross-validation, time-
wise validation, and external validation. Furthermore, the algorithm provided rapid
results, which would allow susceptibility prediction prior to the availability of phenotypic
susceptibility results. In conclusion, an ML algorithm designed using mass spectra
obtained from the routine workflow may be able to rapidly differentiate VREfm strains
from VSEfm strains; however, susceptibility results must be confirmed by routine meth-
ods, given the demonstrated performance of the assay.

IMPORTANCE A modified binning method was incorporated to cluster MS shifting ions
into a set of representative peaks based on a large-scale MS data set of clinical VREfm
and VSEfm isolates, including 2,795 VREfm and 2,922 VSEfm isolates. Predictions with the
algorithm were significantly more accurate than empirical antibiotic use, the accuracy of
which was 0.50, based on the local epidemiology. The algorithm improved the accuracy
of antibiotic administration, compared to empirical antibiotic prescription. An ML algo-
rithm designed using MALDI-TOF MS spectra obtained from the routine workflow
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accurately differentiated VREfm strains from VSEfm strains, especially in blood and sterile
body fluid samples, and can be applied to facilitate the rapid and accurate clinical test-
ing of pathogens.

KEYWORDS vancomycin-resistant Enterococcus faecium, antibacterial drug resistance,
matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass
spectrometry, machine learning, rapid detection, Enterococcus faecium, clinical
methods, microbiology, vancomycin resistance

E nterococcus spp. are crucial pathogens in health care-associated infections (1).
Enterococcal species can cause a variety of infections, including urinary tract infec-

tions and bloodstream infections, and can even result in death (2). Moreover, vancomy-
cin-resistant Enterococcus faecium (VREfm) has placed a heavy burden on health care (3).
Early detection of vancomycin resistance is essential for successfully treating VREfm
infections (4). The use of vancomycin could be discontinued, and other antibiotics (e.g.,
linezolid and daptomycin) could be administered, based on the laboratory results of van-
comycin resistance (5, 6). Thus, patients’ prognosis could be improved and the develop-
ment of further drug resistance could be avoided by using antibiotics to which microor-
ganisms are susceptible (5). Moreover, commonly used laboratory drug susceptibility
tests, such as the broth microdilution or agar diffusion test, are time-consuming.
Antibiotic susceptibility testing (AST) for vancomycin is time-consuming, and the Clinical
and Laboratory Standards Institute recommends a full 24 h of incubation for accurate
detection of vancomycin resistance in enterococci (7). This could considerably delay
timely prescription of antibiotics against E. faecium. Furthermore, prescribing antibiotics
based on empirical evidence, without determining AST results, could result in low effec-
tiveness (approximately 50%), depending on the local epidemiology of VREfm (6). Thus,
a new scheme is needed to provide rapid and accurate VREfm AST results.

Recently, matrix-assisted laser desorption ionization–time of flight mass spectrome-
try (MALDI-TOF) mass spectrometry (MS) has become a popular technique among
clinical microbiology laboratories worldwide because of its reliability, rapidity, and
cost-effectiveness in identifying bacterial species (8–10). In addition to species identifi-
cation, MALDI-TOF MS has shown potential in other applications, such as strain typing
(11, 12) and AST (9, 13). MALDI-TOF MS can generate massive amounts of data with
hundreds of peak signals on the spectra (11, 14), the complexity of which can be over-
whelming to even an experienced medical staff (12). Some studies have attempted to
identify the characteristic peaks by using software protocols (15, 16). However, the
approach is typically based on spectrum averages. Peak intensities on MALDI-TOF MS
spectra are not quantified, and averaging the spectra is susceptible to biases due to
outliers. Furthermore, only a few very discriminative peaks can be identified, and the
comprehensive picture for a bacterial characteristic (e.g., antibiotic resistance) may be
missed by such an approach. Thus, the results of recent studies have been discordant,
which has limited the clinical utility of the tool (17–19).

Machine learning (ML) is a good analytical method for solving classification problems
through identification of implicit data patterns from complex data (20). The ML method out-
performs traditional statistical methods because of its excellent ability to handle complex
interactions among large numbers of predictors and its good performance in nonlinear classi-
fication problems. ML has been successfully applied in several clinical fields. Thus, the ML algo-
rithm is especially appropriate for analyzing complex data such as MALDI-TOF MS spectra. To
our knowledge, a few studies have used ML in the analysis of MALDI-TOF MS spectra for rapid
characterization of VREfm, but the number of cases in those studies were insufficient, limiting
the generalization of ML algorithms (21–23). Moreover, none of the studies has comprehen-
sively validated antibiotic susceptibility prediction of ML algorithms by using large real-world
data sets to date.

In this study, we aimed to develop and validate a VREfm prediction ML model by using
consecutively collected real-world data from two tertiary medical centers (Chang Gung
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FIG 1 (a) Heat map. We selected the top 10 discriminative peaks by chi-square testing of the occurrence
frequency of peaks in VREfm and VSEfm (see Table S2 in the supplemental material). The heat map was

(Continued on next page)
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Memorial Hospital [CGMH] Linkou branch and CGMH Kaohsiung branch). Using large real-
world MALDI-TOF MS clinical data sets, ML algorithms are expected to predict VREfmmore
accurately and rapidly and in a ready-to-use manner, which is necessary for clinical applica-
tions (24). Moreover, we confirmed the robustness and generalization of the ML algorithm
through the following validation methods: cross-validation (CV), timewise internal valida-
tions (unseen independent testing data set classified according to time), and external vali-
dation (unseen independent testing data set from another medical center). Based on real-
world evidence-based validation, our VREfm prediction ML models can be successfully
incorporated into routine workflows in clinical laboratories.

RESULTS
Predictive peaks for detecting VREfm. Crucial predictive peaks were defined as

those with significantly different frequencies (defined by the chi-square test) in VREfm
and vancomycin-susceptible E. faecium (VSEfm) samples. We extracted 876 predictor
candidates and used a chi-square test to select the important predictive peaks.

We selected the 10 most critical predictive peaks and plotted a heat map to visual-
ize the difference between VREfm and VSEfm samples (Fig. 1). Peaks of m/z 3,172,
3,302, 3,645, 6,342, 6,356, 6,603, and 6,690 were found more frequently in VREfm sam-
ples, whereas peaks of m/z 3,165, 3,681, and 7,360 occurred more frequently in VSEfm
samples. Although frequencies for these important predictive peaks were significantly
different, we found them in both VREfm and VSEfm samples. The full list of crucial pre-
dictive peaks is provided in Table S2 in the supplemental material.

We selected several important predictive peaks from the predictor candidate list,
which was ordered according to the chi-square scores. Figure S4 in the supplemental
material shows the change in performance of ML models when the number of critical
predictive peaks was increased. For all of the ML algorithms used in the study, a similar
performance trend was observed; the accuracies of the ML models reached a plateau
when the number of important predictive peaks included was .100 (see Fig. S4). Thus,
the top 100 crucial predictive peaks were selected as the peak composition for the sub-
sequent experiments.

Performance of VREfm prediction models. We summarized the ML models’ per-
formances in Tables 1 and 2 and Fig. 2. The details of the comparisons between differ-
ent algorithms are described in Table S3. The random forest (RF) model outperformed
support vector machine (SVM) and k-nearest neighbor (KNN) in 5-fold CV, timewise in-
ternal validation, and external validation (see Table S3); the area under the receiver
operating characteristic curve (AUROC) ranged from 0.8463 to 0.8553, and accuracy
ranged from 0.7769 to 0.7855. Moreover, performance robustness was also observed
with SVM and KNN. Figure 2 shows typical receiver operating characteristic (ROC)
curves for the three algorithms in all three validations. We used Youden’s index to
select the threshold from the ROC curves in search of balanced sensitivity and specific-
ity. Regarding external validation, the sensitivity and specificity of the RF model were
0.7791 (95% confidence interval [CI], 0.7620 to 0.7961) and 0.7930 (95% CI, 0.7764 to
0.8096), respectively. On the basis of the resistance rate (53.60% VREfm) in the external
validation data set, the positive predictive value (PPV) was 0.8130 and the negative
predictive value (NPV) was 0.7565.

Given that the RF algorithm attained the highest performance, we further tested
the performance of the RF-based VREfm prediction model using isolates from different

FIG 1 Legend (Continued)
plotted based on hierarchical clustering of all of the VREfm and VSEfm isolates from the CGMH Linkou
branch. Rows represent the isolates, and columns represent the top 10 discriminative peaks. The values in
the heat map represent the MS spectral intensity, which was log10 normalized and Z-score standardized. Red
indicates relatively higher peak intensity, while blue indicates lower peak intensity. The isolates are grouped
into five clusters. VREfm and VSEfm isolates can be visually differentiated by using the top 10 discriminative
peaks. (b) Intensity of the top 10 important predictors. The logarithms to base 10 of the peak intensities are
plotted for VREfm and VSEfm. (c) Occurrence frequency of the top 10 important predictors. The occurrence
frequency of the 10 peaks in VREfm and VSEfm is plotted.
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types of specimens in the independent testing data set (i.e., external validation by
using data from the CGMH Kaohsiung branch) (Table 2). The RF-based VREfm predic-
tion model attained higher performance in predicting VREfm among the isolates from
blood and sterile body fluid specimens than from the other specimen types. The
AUROC for predicting the isolates from blood specimens reached 0.9103 (95% CI,
0.8727 to 0.9480), whereas that for predicting the isolates from sterile body fluid speci-
mens reached 0.8714 (95% CI, 0.8321 to 0.9106). Moreover, the sensitivity (0.8870 [95%
CI, 0.8436 to 0.9303]) and specificity (0.8000 [95% CI, 0.7452 to 0.8548]) in predicting
the isolates from blood specimens were also balanced and significantly higher than
those for other specimens. In contrast, the performance of the RF-based VREfm predic-
tion model for isolates from urinary tract specimens (0.8494 [95% CI, 0.8258 to 0.8731])
was similar to that for the specimens overall (0.8553 [95% CI, 0.8399 to 0.8706]).

Protein purification and identification. To identify the protein peaks, a C4 liquid
chromatography (LC) column was used to purify the peaks, followed by protein diges-
tion and nano-LC-MS/MS analysis. However, even after protein separation on a C4 LC
column, it was still challenging to purify a single peptide or protein peak for identifica-
tion; therefore, only the m/z 3,645 peak was identified according to the protein fractio-
nation and nano-LC-MS/MS results. As shown in Fig. 3, after C4 LC column separation,
the m/z 3,645 ([M12H]21/2) peak and its singly charged m/z 7,289 protein peak were
present only in fraction 9. Fractions 8, 9, and 10 were digested and analyzed with
nano-LC-MS/MS. We identified the doubly charged m/z 3,642 peak (singly charged

TABLE 1 Performance of VREfm prediction models in terms of k-fold CV, timewise validation,
and external validation

Evaluation metrics

Machine learning models:

RF model SVMmodel KNNmodel
AUROC (95% CI)
5-fold CV 0.8495 (0.8397–0.8594) 0.8367 (0.8264–0.8471) 0.7908 (0.7792–0.8024)
10-fold CV 0.8491 (0.8392–0.8589) 0.8338 (0.8234–0.8442) 0.7589 (0.7468–0.7710)
Timewise validation 0.8463 (0.8273–0.8654) 0.8368 (0.8169–0.8566) 0.7908 (0.7690–0.8127)
External validation 0.8553 (0.8399–0.8706) 0.8407 (0.8246–0.8569) 0.8050 (0.7872–0.8227)

Accuracy (95% CI)
5-fold CV 0.7769 (0.7660–0.7878) 0.7610 (0.7499–0.7721) 0.7248 (0.7131–0.7364)
10-fold CV 0.7789 (0.7608–0.7827) 0.7587 (0.7476–0.7699) 0.6906 (0.6786–0.7027)
Timewise validation 0.7840 (0.7640–0.8039) 0.7815 (0.7615–0.8016) 0.7228 (0.7011–0.7445)
External validation 0.7855 (0.7687–0.8024) 0.7781 (0.7610–0.7951) 0.7355 (0.7174–0.7536)

Sensitivity (95% CI)
5-fold CV 0.8054 (0.7951–0.8517) 0.7826 (0.7719–0.7934) 0.7873 (0.7767–0.7980)
10-fold CV 0.7863 (0.7756–0.7969) 0.8192 (0.8091–0.8292) 0.7096 (0.6978–0.7214)
Timewise validation 0.8153 (0.7965–0.8341) 0.8415 (0.8238–0.8592) 0.7491 (0.7281–0.7702)
External validation 0.7791 (0.7620–0.7961) 0.7954 (0.7789–0.8120) 0.8044 (0.7881–0.8207)

Specificity (95% CI)
5-fold CV 0.7497 (0.7384–0.7609) 0.7403 (0.7289–0.7517) 0.6649 (0.6526–0.6772)
10-fold CV 0.7789 (0.7680–0.7897) 0.7009 (0.6890–0.7128) 0.6725 (0.6603–0.6848)
Timewise validation 0.7477 (0.7266–0.7688) 0.7120 (0.6900–0.7340) 0.6922 (0.6698–0.7146)
External validation 0.7930 (0.7764–0.8096) 0.7580 (0.7405–0.7756) 0.6560 (0.6365–0.6755)

TABLE 2 Performance of the RF-based VREfm detection model with different types of specimens in terms of external validation

Metric

Types of specimens:

Blood samples
(n = 205)

Urinary tract samples
(n = 988)

Sterile body fluid samples
(n = 338)

Wound samples
(n = 730)

AUROC (95% CI) 0.9103 (0.8727–0.9480) 0.8494 (0.8258–0.8731) 0.8714 (0.8321–0.9106) 0.8432 (0.8121–0.8743)
Accuracy (95% CI) 0.8488 (0.7997–0.8978) 0.7743 (0.7482–0.8004) 0.8077 (0.7657–0.8497) 0.7740 (0.7436–0.8043)
Sensitivity (95% CI) 0.8870 (0.8436–0.9303) 0.7672 (0.7409–0.7936) 0.7788 (0.7345–0.8230) 0.7339 (0.7018–0.7659)
Specificity (95% CI) 0.8000 (0.7452–0.8548) 0.7805 (0.7547–0.8063) 0.8222 (0.7815–0.8630) 0.8676 (0.8430–0.8922)
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peak of m/z 7,289) as RS14Z_ENTFA (average neutral mass, 7,153 Da), with acetylated
modification (Fig. 4).

DISCUSSION

We developed ML-based models for rapidly and accurately predicting the presence of
VREfm in various specimens based on MALDI-TOF MS data. The models revealed higher per-
formance in predicting VREfm in invasive infections (i.e., blood and sterile body fluid samples).
We used large-scale real-world data sets to validate the robustness and generalization of the
ML-based models, using k-fold CV, timewise internal validation, and external validation. The
capability of ML-based models to perform rapid and accurate AST for vancomycin presents a
promising breakthrough in determining viable antibiotics against VREfm-related infections.

Our results suggested that antibiotic susceptibility could be predicted accurately by
using ML algorithms to analyze MALDI-TOF MS data. MALDI-TOF MS is a powerful

FIG 2 (a) ROC curves for different algorithms in terms of Linkou 5-fold CV. (b) ROC curves for different algorithms in terms of
timewise validation. (c) ROC curves for different algorithms in terms of external validation. (d) ROC curves for the RF-based VREfm
model with the isolates from different types of specimens.
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analytical tool in current clinical microbiology laboratories, because it offers rapid and
cost-effective identification of bacterial species (8–10). Moreover, based on the massive
amounts of data produced by MALDI-TOF MS, some studies demonstrated that sub-
species typing could be predicted from a specific pattern of MS spectra alone (11, 12).
Furthermore, other studies showed good correlation between antibiotic susceptibility
and specific patterns of MS spectra (13, 17–19, 25). However, some issues have limited
the generalization of these results. First, most of the studies adopted an additional pro-
tein extraction step before analytical measurement with MALDI-TOF MS. The protein
extraction step could enhance data quality; however, it is not routinely used in clinical
practice because it is labor-intensive, time-consuming, and expensive (11, 13). In con-
trast, we used the direct deposition method, which is recommended by the manufac-
turer of the instrument and is used for everyday tests. Thus, our models are more feasi-
ble for the existing workflow in laboratories because they were adapted using real-
world data. Second, the amounts of data in previous studies were too small to be rep-
resentative. Here, we demonstrated that the ML-based models for predicting VREfm
can be applied as a clinical decision support tool using large data sets collected
through direct deposition, with various validation methods. Moreover, Idelevich et al.
reported that turnaround times could be largely reduced to 5.9 h for MALDI-TOF MS
identification purposes (26). Further investigation to determine the suitability of short-
term-incubation MALDI-TOF MS spectra for AST would be valuable.

Typically, detection of vanA and vanB genes is sufficient for reporting the resistance
phenotype of enterococcal isolates. However, the nucleic acid test (NAT) is costly and
increases economic burdens in health care. Moreover, turnaround times can be long if

FIG 3 MALD-TOF MS analysis of the C4 LC fractions 8 to 10. The peak of m/z 3,645 and its singly charged protein peak (m/z 7,289) are evident in
fraction 9.
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FIG 4 Nano-LC-MS/MS spectra for identification of RS14Z_ENTFA. The identified protein sequence is underlined.
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NATs are performed in a batched manner. Many studies have reported the identifica-
tion of bacterial susceptibility using infrared spectroscopy with multivariate analysis
(27–30). Another study reported that MS in selected-reaction-monitoring mode could
be used for the determination of bacterial susceptibility of Staphylococcus aureus to
antibiotics in 60 to 80 min, directly from extremely infected patient samples, in con-
trast to the current time-consuming culture (31). Using either infrared spectroscopy or
MS generates multivariate data, and analysis of the complex data with the ML
approach could be effective. All approaches explored in the literature report promising
data, but case numbers are relatively small. Larger cohorts would be needed to vali-
date the utility and robustness of these promising approaches. In contrast, we used
MALDI-TOF MS in tandem with ML algorithms to predict vancomycin resistance in an
already identified species (i.e., E. faecium). With this approach, we directly used the
MALDI-TOF MS spectra that were generated for species identification, and no addi-
tional tests were needed. Thus, our proposed approach would be more cost-effective
and clinically practical. Moreover, we demonstrated robustness through internal valida-
tion, timewise validation, and external validation. Taken together, these results indicate
that the VREfm predictive model is ready to be implemented in clinical settings.

Although identifying crucial predictive peaks for VREfm classification may not be
essential in clinical applications, the specific combination of crucial predictive peaks
would be beneficial for further studies investigating the molecular mechanism of
VREfm. Typically, the vanA cluster is the most common mediator of vancomycin resist-
ance in enterococci (32), although many vancomycin resistance genes have been iden-
tified (33). Many factors contribute to antibiotic resistance, and the complex mecha-
nisms of antibiotic resistance could evolve in response to the selective pressures of
competitive environments (e.g., antibiotic use) (32). Thus, identifying the important
predictive peaks for VREfm could help clarify the mechanisms behind resistance. In the
present study, for example, m/z 6,603, 6,631, and 6,635 peaks were frequent for VREfm
(see Table S2 in the supplemental material). These findings are consistent with those
obtained in a previous study, which reported that m/z 6,603 is specific for vanB-posi-
tive VREfm strains, while m/z 6,631 and 6,635 are specifically found for vanA-positive
VREfm strains (22). Identification of these peaks needs further investigation, as it could
reveal new antibiotics against VREfm.

We purified and identified the peak at m/z 3,645, which was one of the most predic-
tive peaks (see Table S2). We identified the doubly charged m/z 3,645 peak as 30S ribo-
somal protein S14 type Z (RS14Z_ENTFA) with acetylated modification. The peak of m/
z 3,645 (i.e., 30S ribosomal protein S14 type Z) was more frequently identified in VREfm
strains than in VSEfm strains (Fig. 1c). To the best of our knowledge, the role of 30S ri-
bosomal protein S14 type Z in vancomycin resistance has not yet been reported.
Typically, ribosomal proteins are implicated in resistance to macrolides but not glyco-
peptides (34). Ribosomal protein is stable and hence would be suitable for a diagnostic
approach that could be used for the long term. In addition to m/z 3,645, our ML-based
approach found several potential peaks that were associated with resistance to vanco-
mycin (see Table S2).

Our ML models consistently performed well in 10-fold CV, timewise internal validation,
and external validation. Moreover, all of the ML algorithms used in this study exhibited
good performances (AUROC values of . 0.8), suggesting that discriminating VREfm from
VSEfm is generally achievable after adequate feature extraction and selection processes. In
timewise internal validation, we intended to simulate a prospective study for a model
trained by “past data” to analyze “future data.” Based on their performances in timewise in-
ternal validation, we concluded that the trained ML models could also perform well with
prospectively collected data, which are not seen in the training process. Results in previous
studies differentiating VREfm from VSEfm by using MALDI-TOF MS spectra could not be
generalized (17–19, 22). Those inconsistent results could be a result of using fewer features
(,10). Peak-level reproducibility of MALDI-TOF mass spectra was reported to be approxi-
mately 80% (35). Classification performance is compromised when essential peaks are
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limited and happen to be absent in the mass spectra. The steady and good performance
of our ML models could be explained by the inclusion of more than 100 peaks. When
some essential peaks were not reproduced in the mass spectra, we used alternative essen-
tial peaks for accurate classification. The number of essential peaks indirectly compensated
for the insufficient reproducibility of MALDI-TOF MS mass spectra. In predicting VREfm
strains from various specimen types, we found that the RF-based model performed espe-
cially well with blood and sterile body fluid samples. The superior prediction performance
could be attributed to the relatively smaller numbers of VREfm strains in blood and sterile
body fluid samples. Bacterial infections in blood or sterile body fluids are typically regarded
as invasive infections (36). Only a few VREfm strains (sequence type 17 [ST17], ST18, ST78,
and ST203) cause invasive infections in blood or sterile body fluids, according to studies in
Taiwan (37) and Ireland (38). The nature of the classification problem would be simpler
when the number of labels is fewer.

Limitations. This study has several limitations. First, although the models were
evaluated using external data from different medical centers, all training data and test-
ing data were collected from only two tertiary medical centers in Taiwan. Therefore,
directly applying the ML models in hospitals in other areas or countries, as well as in
primary care facilities, may not be feasible. However, we think that the method (but
not the trained model) could be generalized. Although our ML models were validated
comprehensively using three different approaches and the results showed that the dif-
ference in MALDI-TOF MS mass spectra between VREfm strains and VSEfm strains could
be distinguished with all of the ML algorithms we used, we suggest that others collect
locally relevant data for training and validate the VREfm prediction model, given that
the epidemiology of VREfm strains could be fairly different, based on sites. Second, our
primary goal was to develop and validate a practical and ready-to-use ML model in
real-world practice. We found some crucial predictive peaks for VREfm; however, we
did not confirm the identities of all of the peaks. The identification of those peaks
should be the focus of future investigations. Moreover, the ML model could rapidly
predict the vancomycin-susceptible or vancomycin-resistant phenotype for E. faecium
strains with clinically useful accuracy; however, we did not test other underlying resist-
ance mechanisms besides vanA/vanB. Third, we did not use the deep learning (DL)
algorithm to predict VREfm, although DL has been successful in the image classifica-
tion and radiology fields. In this study, VREfm could be accurately predicted using sev-
eral classic algorithms (i.e., RF, SVM, and KNN), which require fewer resources and less
time in training, with the use of models. DL usually requires more training samples and
is financially and computationally more expensive than classic ML algorithms (39). DL
utility in analyzing MS data rather than image data could be another promising effort
in the bioinformatics field. For caregivers, acting on imperfect information is not a rev-
olutionary idea. Compared with the current workflow, the proposed VREfm prediction
model would significantly improve antibiotic prescription based on existing MALDI-
TOF MS data. Thus, the proposed VREfm prediction model is a better approach than
the current workflow and could be clinically useful. To improve the VREfm prediction
performance of our models in the clinical setting, clinical information besides MALDI-
TOF MS spectra should be included. A more accurate prediction model could be built
based on comprehensive clinical and laboratory data.

Conclusions. We developed and validated robust ML models capable of discrimi-
nating VREfm strains from VSEfm strains based on MALDI-TOF MS spectra. These mod-
els were especially good at detecting VREfm causing invasive infections. The accurate
and rapid detection of VREfm by using the ML models would facilitate more appropri-
ate antibiotic prescription.

MATERIALS ANDMETHODS
Data source. We designed a novel ML approach that could improve the accuracy of antibiotic

administration and reduce the turnaround time for AST. We summarized the comparison between the
ML approach and the traditional approach currently used in clinical microbiology laboratories. The study
design is illustrated in Fig. 5. Data used in this retrospective study were consecutively collected from
clinical microbiology laboratories at two tertiary medical centers in Taiwan, namely, CGMH Linkou
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FIG 5 (a) Schematic illustration of the application of the VREfm model. A timeline of the bacterial culture testing using currently used clinical tests (i.e.,
traditional approach) and a modified timeline with the VREfm model incorporated (i.e., ML approach) are shown. In the traditional approach, specimens are
collected for bacterial culture test. Usually, 1 day is needed for growth of a single colony for species identification (by MALDI-TOF MS). Vancomycin AST for
VREfm requires another 1 day. In contrast, in the ML approach, the VREfm model can provide preliminary AST results at the time when the bacterial
species is identified by MALDI-TOF MS. In the treatment of VREfm, the ML approach can improve the accuracy of antibiotic use. Meanwhile, the turnaround
time of the bacterial culture test can be reduced to 1 day, which is a 50% reduction. (b) Schematic illustration of the study design. The study included
several steps, i.e., data collection, data preprocessing, predictor candidate extraction and important predictor selection, and model training, evaluation, and
testing. Data were obtained from two tertiary medical centers (Linkou and Kaohsiung branches of CGMH). The data included mass spectra and results of
the vancomycin susceptibility testing of E. faecium strains. Data from the CGMH Linkou branch were used for model training and validation, while data
from the CGMH Kaohsiung branch served as independent testing data. In the steps of data preprocessing and predictor candidate extraction and
important predictor selection, a specific set of crucial predictors was used for model training. k-fold, timewise CV, and external validation were used to
confirm the models’ robustness. The VREfm prediction model can detect VREfm accurately at least 1 day earlier than the current method can.
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branch and CGMH Kaohsiung branch, between 1 January 2013 and 31 December 2017. The clinical mi-
crobiology laboratories of these hospitals collected and processed all routine specimens. In total, 7,997
E. faecium cases were identified and included in this study; of those, 5,717 cases (48.89% VREfm) and
2,280 cases (53.60% VREfm) were obtained from the Linkou and Kaohsiung branches of CGMH, respec-
tively. E. faecium strains were isolated from blood, urinary tract, sterile body fluid, and wound samples. A
detailed description of the specimen types is provided in Table S1 in the supplemental material. The
study was approved by the institutional review board of Chang Gung Medical Foundation (approval
number 201900767B0). We followed the 2015 Standards for Reporting of Diagnostic Accuracy (40) and
the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis
reporting guidelines (41).

Identification of E. faecium and vancomycin susceptibility. E. faecium was identified using MALDI-
TOF MS spectra measured using a Microflex LT mass spectrometer and analyzed using Biotyper v3.1
(Bruker Daltonik GmbH, Bremen, Germany). A log score (generated through Biotyper v3.1) higher than 2
was considered to confirm the identification of E. faecium (11–13). We tested the vancomycin suscepti-
bility of E. faecium using disk diffusion testing. The details of E. faecium identification and AST are pro-
vided in the supplemental material.

MALDI-TOF MS data collection and preprocessing. The analytical MALDI-TOF MS measurements
were conducted according to the manufacturer’s instructions (Bruker Daltonik GmbH). Single colonies
grown on agar were picked and smeared onto a MALDI steel target plate to form thin films. One microli-
ter of 70% formic acid (FA) was applied to the films and dried at room temperature. One microliter of
matrix solution (50% acetonitrite (ACN) containing 1% a-cyano-4-hydroxycinnamic acid and 2.5% tri-
fluoroacetic acid) was then added on the films. The sample matrix was dried at room temperature before
analysis using a mass spectrometer. MALDI-TOF MS was conducted using a Microflex LT mass spectrom-
eter (Bruker Daltonik GmbH). Mass spectra were obtained under the following settings: linear positive
mode; accelerating voltage, 120 kV; nitrogen laser frequency, 60 Hz. In total, 240 laser shots were hit on
each sample spot for measurement. The Bruker Daltonics bacterial test standard was used for external
calibration of the spectra, and flexAnalysis v3.4 (Bruker Daltonik GmbH) was used for spectrum process-
ing. The Savitzky-Golay algorithm was used for spectrum smoothing. The spectrum baseline was sub-
tracted using the top hat method. The signal-to-noise ratio threshold was set at 2. E. faecium was deter-
mined using Biotyper v3.1 (Bruker Daltonik GmbH) on the basis of processed spectra. All of the spectra
for the cases reached acceptable quality (log scores of $2, as defined by manufacturer’s instruction).
Spectra ranging from 2,000 to 20,000 Da were collected for further analysis.

All of the E. faecium isolates had log scores of $2 provided by Biotyper v3.1 (Bruker Daltonik GmbH),
which ensures the quality of MS spectra (11–13). On this basis, we applied default preprocessing steps,
including baseline subtraction, smoothing, and recalibration, to treat the MALDI-TOF MS spectra (range,
2,000 to 20,000 Da) for each isolate by flexAnalysis v3.4 (Bruker Daltonik GmbH) (42). We then extracted
the peaks with high occurrence frequency as the predictor candidates through a binning size method
developed in a previous study (12, 25), which is illustrated in Fig. S2 in the supplemental material. The
extracted peaks were then adjusted according to the alignment of m/z 4,429, which was reported to be
one of the conserved peaks for E. faecium (15, 43) (see Fig. S3). By alignment to the internal conserved
peak, the possible shifting of spectra (12) observed could be adjusted.

Peak selection from MALDI-TOF MS spectra for model development. We applied the feature
selection method to select the most important peaks from MALDI-TOF MS spectra (44). The peaks were
ranked using P values for the chi-square test of homogeneity, which was employed to determine
whether frequency counts were distributed uniformly across VREfm and VSEfm strains. Initially, we
selected the top 10 important peaks to plot a heat map based on hierarchical clustering (see the supple-
mental material). All of the ranked peaks were incorporated in the model accordingly until the perform-
ance ceased to improve. Consequently, we obtained important peaks that were highly related to the dif-
ferentiation of VREfm and VSEfm isolates.

To determine the number of peaks included in the ML models, we added them into the ML models
and assessed performance using accuracy as the metric. First, the predictor candidates were sorted in a
descending order according to the importance score, and one peak was added at a time into the ML
models. On the basis of predictive peak composition, we used different algorithms, including RF, SVM
with a radial basis function kernel, and KNN, and applied 5-fold CV to the data from the CGMH Linkou
branch. The accuracies of the ML models were calculated to determine the adequate number of predic-
tive peaks.

Development and validation of VREfm prediction models. The ML-based methods have been suc-
cessfully applied (in either classification or prediction) in clinical practice (11–13). In this study, three
commonly used ML algorithms, namely, RF, SVM with a radial basis function kernel, and KNN, were used
to develop the VREfm prediction model. The details of these ML algorithms and model training proc-
esses are provided in the supplemental material.

Data from the CGMH Linkou branch were used for 10-fold CV and timewise internal validation; in
contrast, data from the CGMH Kaohsiung branch served as the independent testing data for external val-
idation. For 10-fold CV, data were randomly divided into 10 data sets. Each of the 10 data sets served as
the testing data set to evaluate the performance of the model developed with the other 9 data sets. In
10-fold CV, we obtained 10 measurements of metrics for evaluating the robustness of the VREfm predic-
tion models. Moreover, to evaluate performance using prospectively collected data, we conducted time-
wise internal validation; we used data collected between 1 January 2013 and 31 December 2016 as the
training data set for developing VREfm prediction models, while data from 1 January 2017 to 31
December 2017 served as the testing data set. To test the generalizability of the models, we used data
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from the CGMH Linkou branch to develop the predictive models and used data from the CGMH
Kaohsiung branch to test the models’ performance in a different medical institution. Additionally, we
evaluated the performance of the VREfm prediction model using different types of specimens, such as
blood, urine, sterile body fluid, and wound samples, using data from the CGMH Kaohsiung branch. We
adopted various metrics, including sensitivity, specificity, accuracy, PPV, NPV, ROC curve, and AUROC, to
assess and compare the performance of the VREfm prediction model.

Purification and digestion of protein markers. Proteins were extracted from bacterial isolates by
adding 100 ml of 70% FA, followed by 100 ml of pure ACN. The extracted protein sample was dried in a
centrifugal concentrator (miVac Duo concentrator; Genevac, Stone Ridge, NY, USA) and redissolved in 10
ml of 0.1% FA. For protein subfractionation, 5 ml of protein sample was injected onto a C4 LC column
(Waters XBridge BEH column [pore size, 300 Å; particle size, 3.5 mm; dimensions, 2.1 by 250 mm])
pumped with a high-performance liquid chromatography (HPLC) system (UltiMate 3000 LC system;
Dionex, Amsterdam, Netherlands). Water containing 0.1% (v/v) FA and ACN containing 0.1% (v/v) FA
were used as the mobile phase A and mobile phase B, respectively. Gradient elution at a flow rate of
250 ml/min was set as follows: 3 to 30% solvent B for 0 to 8 min, 30 to 70% solvent B for 8 to 16 min,
and 70 to 70% solvent B for 16 to 20 min. Protein fractions were collected at 1-min intervals and dried
by using a centrifugal concentrator. The collected fractions were redissolved with 0.1% FA and applied
to the MALDI-TOF MS system (ultraflex III TOF/TOF; Bruker) to acquire peptide/protein profiling data.
The collected protein fraction was then rehydrated with 20 mM ammonium bicarbonate solution,
reduced with 10 mM dithiothreitol at 56°C for 15 min, and alkylated with 55 mM iodoacetamide at room
temperature for 20 min. Trypsin was added to the protein solution at an enzyme-to-substrate ratio of
1:40 (wt/wt), and the mixture was incubated for 12 h at 37°C for digestion.

Nano-LC-MS/MS and database search. Nano-LC-MS/MS was performed using a nanoflow LC sys-
tem (UltiMate 3000 RSLCnano system; Dionex) coupled to a hybrid quadrupole TOF (Q-TOF) mass spec-
trometer (maXis impact; Bruker Daltonics). Tryptic peptide mixtures were injected using an autosampler
and loaded at a flow rate of 15 ml/min on a self-packed C18 trap column for desalting and preconcentra-
tion for 5 min. The peptides were then eluted onto an analytical column (Acclaim PepMap C18 column
[pore size, 100 Å; particle size, 2 mm; dimensions, 75 mm by 250 mm]; Thermo Fisher Scientific, USA)
coupled to a nanoelectrospray ionization source on the Q-TOF mass spectrometer. A gradient elution of
1% ACN with 0.1% FA to 40% ACN with 0.1% FA for 90 min was conducted at a flow rate of 300 nl/min
for peptide separation. Ten precursors of charge 12, 13, and 14 from each TOF-MS scan were dynami-
cally selected and isolated for MS/MS fragment ion scanning. MS and MS/MS accumulations were set at
1 and 10 Hz, respectively. The MS data were imported into ProteinScape v3.1 (Bruker) and searched in
the Swiss-Prot database (release 51.0) using an in-house MASCOT v2.6 server. Search parameters
selected were as follows: taxonomy, bacterial; enzyme, trypsin; fixed modifications, carbamidomethyl
(C); variable modifications, oxidation (M, H, W) and acetylation (K, N-term); precursor peptide tolerance,
50 ppm; MS/MS tolerance, 0.05 Da; peptide ion score accepted, $25.

Statistical analysis. The CIs for sensitivity, specificity, and accuracy were estimated using the calcu-
lation of the CI for a proportion in one sample situation. Specifically, the critical values followed the Z-
score table. To compare the percentages in matched samples, Cochran's Q test, a nonparametric
approach, was implemented in this study (45). Subsequently, we employed pairwise McNemar's tests
(46) for post hoc analysis and adopted the false discovery rate proposed by Benjamini and Hochberg to
adjust the P values (47). Furthermore, the CIs of AUROCs were determined using the nonparametric
approach, and the AUROC comparisons mainly adopted the nonparametric approach proposed by
DeLong et al. (48).

Data availability. The data and codes supporting the conclusions of this report are available from
the authors, without undue reservation, to qualified researchers.
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SUPPLEMENTAL FILE 1, PDF file, 1.5 MB.
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