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Human immunodeficiency virus type 1 (HIV-1) infects and kills T cells, profoundly dam-
aging the host-specific immune response. The virus also integrates into memory T cells 
and long-lived macrophages, establishing chronic infections. HIV-1 infection impairs the 
functions of macrophages both in vivo and in vitro, which contributes to the development 
of opportunistic diseases. Non-typhoidal Salmonella enterica serovar Typhimurium has 
been identified as the most common cause of bacterial bloodstream infections in HIV-
infected adults. In this review, we report how the functions of macrophages are impaired 
post HIV infection; introduce what makes invasive Salmonella Typhimurium specific for 
its pathogenesis; and finally, we discuss why these bacteria may be particularly adapted 
to the HIV-infected host.
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CLeARANCe AND ACTivATiON CAPACiTY OF MACROPHAGeS

Although macrophages are different in the different tissues and organs in which they reside, they 
can all be characterized by their strong capacity to internalize and degrade particles in phagolys-
osomes. Transcriptomic analysis has pointed to unique gene expression profiles in response to 
pathogens components (1). One obvious functional set of genes shared by all phagocytes encodes 
for the components of lysosomes, such as the vacuolar ATPase H+ pump and lysosomal hydrolases. 
Subtle differences can be revealed when comparing the clearance capacities of polymorphonu-
clear neutrophils, macrophages or dendritic cells. Clearance is the hallmark of neutrophils and 
macrophages, while dendritic cells have been reported to be milder with internalized material, 
with some material remaining undegraded (2–5). In this review, we will focus on macrophages, as 
they are target cells for both the human immunodeficiency virus type 1 (HIV-1) and Salmonella 
pathogens.

Phagocytosis begins with the clustering of receptors that are engaged by ligands present on the 
surface of the target particle. Many types of receptors can be implicated in the recognition step, 
regulating the fate of the internalized material. Phagocytic receptors can be subdivided into recep-
tors that bind to opsonins, like the immunoglobulins and complement, and receptors that bind 
to non-opsonins. The latter interact with molecular groups on the surface of the target particle 
or pathogen, including sugars, lipids, and polypeptides that are referred to as pathogen-associated 
molecular patterns (6, 7). Early signaling from surface receptors leads to the polymerization of actin 
that drives plasma membrane deformation and the formation of a closed phagosome (8, 9). For 
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large targets to be efficiently internalized, membrane remodeling 
is essential, relying on the focal delivery of intracellular compart-
ments including recycling endosomes (10–12). The large GTPase 
dynamin2 is crucial for phagosome sealing (13).

Once closed, the phagosome evolves very much like smaller 
endocytic compartments, undergoing a series of fusion and 
fission events with the compartments of the endocytic pathway 
(14, 15). This process, called phagosome maturation, is accom-
panied by the dynein-mediated movement of the phagosome 
along microtubules (16, 17). The microtubule network is crucial 
for the phagosome to reach the lysosomes positioned at the 
center of the cell and to efficiently mature into a phagolysosome. 
Indeed, it has been demonstrated that the loading of dyneins at 
the plus ends of microtubules by the plus-end binding protein, 
EB1, is critical for phagosome maturation (18).

Early phagosomes harbor markers of the early endosomes such 
as Rab5 and its effector, the early endosome antigen 1 (EEA1) 
(19). Other effectors of Rab5 are the class III phosphatidylinositol 
3 kinase human vacuolar protein-sorting 34 that generates phos-
phatidylinositol 3-phosphate [PI(3)P] (20). It has been demon-
strated that PI(3)P is important after phagosome completion, for 
its maturation (21). EEA1 carries a FYVE domain that binds to 
PI(3)P, a zinc finger that binds to Rab5 and regions responsible for 
multimerization. EEA1 also binds to the t-SNARE Syntaxin-13, 
which is important for membrane fusion (22). Rab5 exchange 
factors, including Rabex-5, Rin1, and Gapex-5, coordinate Rab5 
activation and microtubule dynamics (23).

Acquisition of Rab7 is still considered to be a hallmark of late 
phagosomes, although a choreography of Rab proteins has been 
shown to be recruited during phagocytosis (24). The products 
of PI3K are involved in the dissociation of Rab5, but are not 
essential for the recruitment of Rab7 on the phagosome (25). 
Data in yeast have shown that the proteins Mon1 and Ccz1 serve 
as a Rab7 exchange factor (26). Phagosomes undergo fusion 
with late endosomes and lysosomes via a Soluble NSF attach-
ment protein receptor (SNARE) mediated process. It has been 
demonstrated that Syntaxin 7 and Syntaxin 8, with VAMP7 and 
VAMP8, are involved in phagosome-lysosome fusion (27). The 
vpsC–homotypic protein sorting (HOPS) complex that mediates 
the transition from Rab5 to Rab7 endosomes could play a similar 
function in phagosome maturation. The complex is composed of 
Vps11, Vps16, Vps18, Vps33, Vps39, and Vps41. In yeast, Rab7 
is activated by Vps39. The Vps41 protein is a key component of 
the HOPS complex as it is required for the stabilization of the 
HOPS complex on the endosomal membrane before fusion with 
the vacuole. Regulation by the p38 MAP kinases of Vps41 has 
recently been highlighted as an explanation for the differential 
trafficking of virulent LPS of Coxiella burnetii (28). This type of 
regulation might also be implicated in phagosome maturation 
in macrophages. Rab7 and Arl8 orchestrate both microtubule-
dependent transport of late endosomes/lysosomes and their 
fusion with endosomes, autophagosomes, and phagosomes. Both 
proteins are important for lysosome tubulation in macrophages 
(29). Rab7-interacting lysosomal protein and the long splice-
variant of oxysterol-binding protein related-protein 1 (ORP1L) 
function together to link phagosomes to the microtubule motor 
dynein/dynactin (30, 31). Arl8 has been shown to control 

phagosome maturation and bacterial killing (32). It has also been 
demonstrated that Arl8 plays an important role in phagosome 
maturation in Caenorhabditis elegans (33). Arl8 connects lys-
osomes to kinesins through SifA and kinesin interacting protein 
(34), in particular, to kinesins 1 and 3, controlling lysosomal posi-
tioning (35). Some effectors, like PLEKHM1, act as dual effectors 
for Rab7 and Arl8 to promote cargo delivery to lysosomes (36) 
and may also play a role during phagosome maturation.

Acidification occurs gradually while the compartment matures 
into a phagolysosome, which is important for the optimal activity 
of hydrolytic enzymes delivered by late endosomes and lysosomes. 
Acidification reaches a pH of 5.5 in the late phagosome, due to 
the acquisition of proton pumping vATPases. Negatively charged 
chloride ions may enter the compartments to compensate for the 
proton influx, although this role has not been established experi-
mentally. However, the depletion of luminal cations, Na+ and K+, 
during maturation has been established (37). Anion and luminal 
cation exchange may serve to maintain lysosome osmolarity and 
volume during the acidification steps.

Microbicidal activity in the phagolysosome depends both 
on hydrolases and on the generation of reactive oxygen and 
nitrogen species (ROS and RNS, respectively) (38). The NADPH 
oxidase is acquired at the early stages of phagosome maturation. 
Its activity is complemented by the inducible NO synthase, iron 
scavengers, and transporters, as well as lysozymes, lipases and 
proteases, such as the cathepsins. These species are delivered to 
phagosomes and directly contribute to killing. Their activities can 
be modulated by cell activation and the concomitant signaling 
pathways that are initiated downstream of surface receptors in 
complex regulatory loops. For instance, the interaction between 
the RUN domain Beclin-1 interacting cysteine-rich-containing 
(RUBICON) protein and the NADPH oxidase upon TLR 
stimulation forms a feedback loop with the cascade signaling to 
cytokine production (39).

Finally, when degradation is incomplete, antigens derived from 
the internalized material are presented on the major histocom-
patibility complex molecules (Class I or II), especially in dendritic 
cells. Signaling pathways are activated and the phagosome itself 
can be considered a signaling platform. Together, these events 
lead to the production of cytokines and inflammatory mediators, 
which can be modulated depending on the surface receptors 
engaged by the cargo (40, 41).

DYSReGULATiON OF MACROPHAGe 
PHAGOCYTOSiS BY Hiv iNFeCTiON

The initial detection of the acquired immunodeficiency syn-
drome (AIDS) epidemic in 1981 began with reports of an unusual 
syndrome in which previously healthy young males were present-
ing with diseases such as Kaposi’s sarcoma, cytomegalovirus 
pneumonia, and Pneumocystis carinii pneumonia, previously 
described in immunocompromised patients (42). The syndrome 
was then named AIDS. Indeed, the principal effect of the virus 
is to decrease the immune defenses of infected individuals, 
leading to the appearance of opportunistic diseases and tumors. 
Invasive pneumococcal and oral candidosis presented early in 
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FiGURe 1 | Modified phagocytosis in HIV-infected macrophages. Left panel—Once HIV infection of a macrophage is established, intracellular trafficking is rerouted 
to the virus-containing compartment (VCC). In non-infected macrophages, phagocytosis is initiated by the binding of phagocyte surface receptors to ligands present 
on the microorganism or to the opsonizing molecules that coat the target particle. In HIV-infected cells, surface receptors (e.g., FcR) can be downregulated (A). 
After binding, a cascade of signaling events leads to actin polymerization and engulfment of the particulate material in a closed compartment termed, the 
phagosome. The inhibition of phagocytosis in HIV-infected macrophages was related to perturbation of F-actin and cAMP production. The viral factor Nef further 
reduces the efficiency of phagosome formation via its interaction with the AP1 adaptor protein, reducing the focal delivery of intracellular compartments (A). In 
non-infected macrophages, the phagosome matures into a degradative compartment called phagolysosome. This occurs after fusion and fission with various 
endocytic compartments, and the phagolysosome migrates along microtubules. However, in HIV-infected macrophages, the viral factor Vpr inhibits phagosome 
maturation and centripetal movement of the phagolysosome toward the nucleus. Part of the intracellular trafficking, such as the EHD3 recycling machinery, is 
rerouted to the VCC (B). In addition, viral infection inhibits macrophage late events and responses such as cytokine production (C). Right panel—Primary human 
macrophages were infected with HIV-1ADA for 8 days before incubation with IgG-opsonized sheep red blood cells (SRBCs) for 60 min at 37°C. They were fixed, 
permeabilized, and labeled with anti-p24 followed by Alexa488-anti-goat IgG (upper line), AMCA-anti-rabbit IgG to detect the total SRBCs (second line), anti-LAMP1 
followed by Cy3-anti-mouse IgG (third line), and anti-tubulin followed by Cy5-anti-human IgG (not shown). Merged images (lower line) show p24 in green, SRBCs in 
blue, LAMP1 in white, and microtubules in red. Z stacks of wide field fluorescent images were acquired, deconvoluted, and treated with ImageJ. Bar, 10 µm.
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HIV-infected patients, especially in Africa, together with non-
typhoidal Salmonella infections, which will be the focus of the 
following section in this review.

The introduction of highly active antiretroviral therapy 
(HAART) has radically altered the incidence of AIDS, initially 
in developed countries, and later on, worldwide. However, even 
with HAART, which results in undetectable plasma HIV loads, 
HIV transcription persists in reservoirs, such as long-lived 
memory T  cells, phagocytic cells, as well as other cell types in 
various tissues (43).

Already in the 1980s, Crowe et al. reported that macrophages 
are targets for HIV-1 and may act as major reservoirs of virus (44, 
45). It has since been established that there is some specificity in 
the infection cycle of HIV-1 in macrophages (46–49) and see Ref. 
(50) for a recent review in the same topic.

The group of Crowe has performed pioneering work in ana-
lyzing the phagocytic capacity of blood monocytes from a small 
sample of the Sydney Blood Bank Cohort or in vitro differenti-
ated and infected macrophages. They studied phagocytosis of 
apoptotic neutrophils, a Mycobacterium avium complex, Candida 
albicans, Toxoplasma gondii, and IgG- or complement-opsonized 
targets (51–55). The data suggested that phagocytosis by 
monocytes from WT HIV-1-infected individuals was impaired, 
whereas the phagocytic capacity of the phagocytes from the Δnef 
HIV-1-infected subjects was not. Interestingly, no correlation 
was found between the level of inhibition of phagocytosis and 
the viral load or the CD4 counts (52). The authors reported an 
increased level of basal F-actin in HIV-infected cells, which 
could account for a defective capacity of the actin cytoskeleton 
to efficiently remodel during phagosome formation (Figure 1A). 
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Some HIV-1 induced receptor downregulation was observed in 
primary human macrophages (56), as in alveolar macrophages 
for mannose receptors (57). The group of Crowe also pointed to 
a crucial role of the Nef viral protein in impairing phagocytosis 
in infected blood monocytes in vivo, a phenotype that they did 
not observe in monocyte-derived macrophages-infected in vitro. 
Nef was reported to downregulate many surface receptors and 
markers from the surface of treated model cells (58, 59), as well as 
CD36 on macrophages, which may be related to defective phago-
cytosis of inert particles and killed bacteria in Nef-treated cells 
(60). Other reports showed that HIV-1 infection did not induce 
any decrease in the surface expression of phagocytic receptors 
(52, 61). The impact of in  vitro infection of macrophages with 
HIV-1 on various types of phagocytosis was analyzed. The focal 
delivery of endosomal compartments at the site of phagocytosis 
was impaired in a Nef-dependent manner, probably due to Nef 
interaction with the adaptor complex, AP1, on endosomes (61) 
(Figure 1A). This endosomal delivery was shown to be required 
for efficient phagocytosis of large particulate material (11, 62), 
and interestingly, to be controlled by the NF-κB signaling protein 
Bcl10 (63). Other molecular defects reported in HIV-infected 
macrophages include elevated intracellular cAMP levels (64) 
and decreased expression of the common gamma chain (65) 
(Figure 1). Of particular significance, defective phagocytosis was 
also reported in the population of small alveolar macrophages in 
the lung of HIV-infected patients (66).

The later steps of phagosome maturation were also reported 
to be impaired in HIV-infected macrophages, with early reports 
showing that the intracellular replication of live T. gondii was 
enhanced in HIV-infected macrophages. Interestingly, treatment 
of macrophages with interferon gamma, a known activator of 
these cells, decreased parasite replication, but did not control 
parasite levels (53). An assay developed in the laboratory of 
Russell to monitor the superoxide burst in phagocytes by flow 
cytometry was used to analyze whole blood samples of HIV/
tuberculosis-infected individuals (67). The authors were able to 
demonstrate an impaired superoxide burst activity in the phago-
cytes of coinfected patients. Using similar tools together with 
other assays, it was determined that Nef was not crucial to the 
in vitro mediation of the phagosome maturation defect in HIV-
infected macrophages, while, unexpectedly, the viral protein Vpr, 
was (Figure 1B) (18). Vpr perturbs the microtubule dynamics, 
the localization of the plus-end microtubule binding protein EB1 
and therefore, the positioning of the dynein motors necessary 
for driving phagosomes to the cell center. In addition, the viral 
infection of macrophages relies on the budding of newly envel-
oped viral particles in virus-containing compartments (VCCs), 
which presumably requires the recruitment of large amounts of 
membrane. Part of the intracellular endocytic machineries are 
de-routed toward the VCCs in HIV-1-infected macrophages, as is 
the case for the EHD3 sorting protein (18). It is therefore probable 
that many of the intracellular trafficking pathways are altered in 
virus-infected cells, as a side effect of viral particle production. 
This may benefit many opportunistic pathogens in a non-specific 
manner.

Similarly, signaling to initiate cell activation and cytokine 
production is altered in HIV-infected cells (Figure 1C). Placental 

blood mononuclear cells purified from HIV-infected moth-
ers constitutively secrete more IL-1β and IL-6 and have more 
IL6, IL1β, and TNF-α mRNA; however, the high basal rates of 
secretion were associated with a lower response to stimulation 
with LPS (68). Reduced cytokine production was also observed 
in HIV-infected macrophages that were triggered for receptor-
mediated phagocytosis or infected with bacteria (18). Many pro-
inflammatory cytokine signaling pathways rely on the activation 
of the NF-κB pathway. The latter is transiently activated during 
the activation of transcription via the HIV promoter or the long 
terminal repeats. This may result in inadequate subsequent activa-
tion when the cells are subjected to a secondary trigger. Reduced 
intracellular protein levels of FcRγ, the signaling adaptor protein 
and chaperone required for FcγRI and III expression and func-
tion, were reported (69). Inhibition of subsequent downstream 
phosphorylation of Hck and Syk tyrosine kinases was observed 
in HIV-infected monocyte-derived macrophages undergoing Fcγ 
receptor-mediated phagocytosis.

UNiQUe iNTRiNSiC PROPeRTieS OF 
iNvASive NON-TYPHOiDAL 
SALMONeLLAe (iNTS)

In as early as 1990, non-typhoidal salmonellae (NTS) were con-
firmed as HIV-related pathogens in sub-Saharan African adults 
(70). Later, NTS bacteremia has become a common and recurrent 
illness among susceptible African children and HIV-infected 
adults (71). This bloodstream infection, in African, HIV-infected 
adults, was reported to have high mortality (47%) and recurrence 
(43%) rates (72), due to recrudescence and reinfection (73). 
The bacteremia may be due to both Salmonella enterica serovar 
Typhimurium and Salmonella enterica serovar Enteritidis (74).

Salmonella enterica is a Gram-negative bacterium that causes 
enteric diseases. The species, S. enterica, includes typhoidal and 
non-typhoidal Salmonella and comprises a large number of 
serovars. S. enterica serovars Typhi and Paratyphi cause typhoid 
and paratyphoid fevers, respectively. The pathogens penetrate 
through the intestinal mucosa, producing bacteremia and lodge 
in the macrophages of the reticuloendothelial system. The 
remaining serovars normally lead to a self-limiting diarrheal 
disease in healthy individuals, but some NTS, such as Salmonella 
Typhimurium, can cause bloodstream infection in immunocom-
promised adults (75). Thus, iNTS have emerged as a prominent 
cause of bacteremia in African individuals with an associated case 
fatality of 20–25% (76).

Multilocus sequence typing (MLST) analysis of numerous 
isolates of Salmonella Typhimurium from Malawi and Kenya 
revealed new sequence type variants of S. Typhimurium associ-
ated with iNTS in sub-Saharan Africa. This dominant regional 
genotype, MLST group ST313, presents several genetic differ-
ences compared with other strains of this serotype, such as NTS 
ST19 (77).

In addition, whole-genome sequence-based phylogenetic 
methods revealed that the majority of ST313 isolates fell within 
two closely related, clustered phylogenetic lineages: lineage I, 
with A130 as a hallmark strain; and lineage II, with D23580 as 
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a hallmark strain (78). These lineages are distinct from other  
S. Typhimurium lineages due to their distinct metabolic pro-
files (79) and antibiotic resistance (77). Indeed, Okoro et  al. 
observed that isolates from lineage II appeared after the use of 
chloramphenicol for the treatment of iNTS disease, suggesting 
a clonal replacement of isolates from lineage I, by those from 
lineage II influenced by antibiotic usage. In addition, the authors 
estimated that lineage I and lineage II appeared independently, 
~52 and ~35 years ago, respectively, and then developed with the 
HIV pandemic. Thus, Okoro et  al. propose that iNTS disease, 
in sub-Saharan Africa, is caused by highly related Salmonella 
Typhimurium lineages that may have developed in immunosup-
pressed populations and following antibiotic treatment (78).

Host-adapted Salmonella serovars that cause invasive disease 
such as S. enterica Typhi and S. enterica Paratyphi display some 
similarities to ST313 isolates, in particular some genome degra-
dation (80). Compared with non-iNTS S. Typhimurium isolates, 
ST313 isolates present numerous pseudogenes and deletions 
(77). In addition, whole-genome comparisons of a representative 
isolate of ST313, D23580 from Malawi, and ST19 strains (LT2, 
SL1344, and DT104) revealed a distinct repertoire of six 
prophage-like elements. These include five full-length prophages 
arbitrarily named Blantyre Prophage “BTP” 1 through 5, and one 
prophage remnant (77). Okoro et al. highlighted that this set of 
prophage sequences is present in all ST313 isolates belonging to 
lineage I and II (79). Among the five full-length prophages, three 
of them were already well-characterized, and commonly found 
in S. Typhimurium genomes: Gifsy-2D23580 (BTP2), ST64BD23580 
(BTP3), and Gifsy-1D23580 (BTP4) that are all defective in ST313. 
The two remaining, BTP1 and BTP5, are novel prophages that are 
found only in the ST313 genome. BTP1 contains three virulence-
related genes: st313-td, gtrCc, and gtrAc (81). st313-td was 
reported to play a role in survival within murine macrophages 
and in virulence in a mouse model of bacterial infection (82). 
The gtrAC operon encodes an O-glycosyltransferase that modi-
fies the composition and the length of O-antigen of the bacterial 
lipopolysaccharide (83). Further, the LPS of D23580 (ST313) pre-
sent particular O-polysaccharide chains (84), which have been 
used to design glycoconjugate vaccines against invasive African 
S. enterica serovar Typhimurium (85, 86).

The D23580 isolate has four plasmids including one virulence-
associated plasmid. This plasmid contains an insertion that 
resembles a composite Tn21-like mobile element encoding mul-
tiple drug resistance genes (77). Before the appearance of MDR 
S. Typhimurium, ST313 strains of lineage I were susceptible to 
chloramphenicol. The selection of this virulence-associated 
plasmid explains the emergence of MDR S. Typhimurium, such 
as D23580 (lineage II), associated with the epidemic increase in 
the inci dence of iNTS in Malawi after chloramphenicol treatment 
(74).

After an analysis of 129 ST313 isolates, Yang et  al. demon-
strated that these exhibit a distinct metabolic signature compared 
with non-ST313 S. Typhimurium. For instance, D23580 seems to 
be more resistant to acid stress than non-ST313 S. Typhimurium 
(87). Among the differences in metabolic pathways, ST313 strains 
present two loss-of-function mutations that impair multicel-
lular stress resistance associated with survival outside the host.  

Hence, ST313 bacteria are less resistant to oxidative stress than 
ST19 (87, 88), due to mutations causing inactivation of KatE 
catalase in ST313. Catalase converts hydrogen peroxide (H2O2) 
to oxygen and water and this H2O2 detoxification protects high-
density bacterial communities from oxidative stress. Another 
loss-of-function mutation in the bcsG gene in D23580 induces an 
inactivation of the BcsG cellulose biosynthetic enzyme required 
for the RDAR (red, dry, and rough) colonial phenotype (88). 
RDAR colonies represent a form of multicellular behavior that 
enhances Salmonella stress resistance in the environment and 
allows biofilm formation (89). A comparative analysis of biofilm-
forming ability and long-term survival has shown that ST19 
strains, that are strong biofilm producers, can survive desiccation 
better than ST313 that form weak biofilms and survive poorly fol-
lowing desiccation (90). In addition, several ST313 strains express 
less flagellin, a component of the flagellum appendage responsible 
for bacterial motility (91, 92). Indeed, ST313 strains (D65, Q55, 
S11, S12, D23580, and A130) were reported to be less motile than 
ST19 strains (I77, I89, I41, S52, and SL1344) (91, 93), although 
some variability among the strains was observed (87). These data 
suggest that, like Salmonella Typhi, Salmonella Typhimurium 
ST313 lack some of the mechanisms that allow transmission  
and/or survival in the environment.

SAlmonEllA TYPHiMURiUM AND  
HOST iNTeRACTiONS

Salmonella Typhimurium were reported to be quickly taken up 
by CD18+ cells in the blood after oral infection (94). Salmonella 
Typhimurium are also taken up by CCR6+ phagocytes located in 
the subepithelium dome of Peyer’s patches in the intestine, then 
carried to the mesenteric lymph node (95). In addition, dendritic 
cells were shown to be able to extend dendrites toward the intes-
tinal lumen, without perturbing the tight junctions of epithelial 
cells, to capture bacteria (96). Salmonella Typhimurium persist 
within macrophages in the mesenteric lymph nodes of chroni-
cally infected Nramp1 (natural resistance associated macrophage 
protein 1)+/+ mice (97). S. Typhimurium may be killed by the cell 
(98) or can hijack the host cell defenses to survive inside the cell 
(99–101). More recently, it has been recognized that macrophage 
polarization can influence bacterial infection. A macrophage 
population is heterogeneous in its susceptibility to the infection, 
potentially due to a mixture of type 1 and type 2 macrophages, as 
shown in vitro with mouse bone marrow-derived macrophages 
(102). S. Typhimurium cannot replicate in primary human 
monocyte-derived macrophages polarized into inflammatory M1 
macrophages, while M2 and M0 macrophages allowed bacterial 
replication (103). The tissue source of macrophages further deter-
mines the degree of growth or survival of bacteria. For example, 
S. Typhimurium seems to survive better in splenic macrophages 
than in peritoneal macrophages (104). This is consistent with the 
main reported site of Salmonella infection (105).

At the cellular level, S. Typhimurium can enter in macro phages 
by SPI1 (Salmonella pathogenicity island-1)-dependent invasion 
(106) or by host cell-mediated phagocytosis or macro pino-
cytosis, which occurs through either SPI-1-dependent or SPI-1-
independent mechanisms (107). After invasion, S. Typhimurium 
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FiGURe 2 | Stages of Salmonella Typhimurium infection with differential macrophage response to ST19 or ST313 infection. After macrophage invasion (A), 
Salmonella Typhimurium resides in vacuoles called Salmonella-containing vacuoles (SCV). The bacteria form this vacuole to prevent maturation of the phagosome 
into a phagolysosome (B). Bacterial products, such as flagellin, are released after membrane rupture, or secreted into the cytosol. This leads to inflammasome 
activation (C) and IL1β production, which are associated or not with cell death pathways (D). Other cytokines are released by the macrophage, and their secretions 
could be differentially regulated (e).
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resides in a spacious phagosomal compartment that evolves to 
form a specific compartment called Salmonella-containing vacuole 
(SCV) (108). It is important to note that Salmonella finely regulate 
virulence gene expression while replicating inside a macrophage 
(109). Thus, bacteria can survive within the SCV, despite partial 
fusion with the lysosomal compartment (110). Acidification of 
the compartment induces the transcription of virulence genes 
of S. Typhimurium to inhibit macrophage phagosome acidifica-
tion (111). In addition, the Salmonella pathogenicity island-2 
encodes proteins required for bacterial replication (112, 113) but 
does not have a major influence on resistance to killing (114). 
Intracellular bacteria can exhibit large heterogeneity in growth 
rate inside the vacuolar environment of host cells. A segment 
of the bacterial population does not replicate inside the cell but 
instead appears to enter a dormant-like state, perhaps providing 
a reservoir for relapsing infection (114, 115). Recent transcrip-
tomic analysis demonstrated that macrophages containing non-
growing bacteria are in a pro-inflammatory state of polarization. 
By contrast, macrophages containing growing bacteria exist in 
an anti-inflammatory, M2-like state. Thus, the growth arrest of 

Salmonella seems to facilitate immune evasion and the establish-
ment of a long-term niche, while macrophages with replicating 
bacteria allow Salmonella to escape intracellular antimicrobial 
activity and proliferate (116). The heterogeneous activity of 
bacterial factors in individual infecting bacteria determines the 
heterogeneity of immune responses of individual-infected host 
cells (117). Macrophage infection induces the production of 
pro-inflammatory mediators (118) but also leads to macrophage 
cell death (119), an essential virulence mechanism of Salmonella 
Typhimurium (120). One form of cell death, pyroptosis, occurs 
either via a rapid caspase-1-mediated SPI-1-dependent pathway 
or a delayed SPI-2-dependent caspase-1-mediated pathway. 
Caspase-1, a central effector of pyroptosis, is activated in the 
inflammasome complex during Salmonella infection and has a 
protective role during Salmonella infection in vivo (121).

HOST–PATHOGeN iNTeRACTiON OF iNTS

In several studies, gentamicin protection assays were used to 
assess the invasion properties of the ST19 and ST313 strains 
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in vitro (Figure 2A). Two studies found that ST313 invades less 
Hep2 and HeLa cells than ST19 (79, 92). By contrast, Herrero-
Fresno et al. observed no difference in invasion of another human 
cell line (human epithelial Int407 cells) with ST19 (4/74) and 
ST313 (02-03/002) (82). In the final study, ST313 (D23580) was 
shown to be more invasive than ST19 (14028) in HeLa cells (88). 
Studies pertaining to macrophages have also generated conflict-
ing data. J774 mouse macrophages phagocytose ST313 (D65, 
Q55, S11, S12, and A13) more efficiently than ST19 (I77, I41, S52, 
and I89) (91). Bone marrow-derived C57BL/6 macrophages are 
highly phagocytic of both ST19 (SL1344 and DT104) and ST313 
(D23580, A130, 5597, and 5579) (92). Taken together, these 
results do not indicate major differences in the invasive capacity 
of the two strains.

The intracellular survival of the ST19 and ST313 strains was 
analyzed in various model systems, resulting in variable and con-
tradictory data (Figure 2B). Ramachandran et al. demonstrated 
that ST313 (D65, Q55, S11, S12, and A13) survives better than 
ST19 (I77, I41, S52, and I89) within macrophages using several 
cell lines and primary cells (U937 cells, THP-1 cells, peritoneal 
macrophages from BALB/c mice and CD-1 mice, human 
peripheral blood mononuclear cells) (91). Two other studies in 
murine cell lines (J774 mouse macrophages, RAW264.7 murine 
macrophages-like cells), however, have shown that there are no 
differences in survival between the two strains (82, 88). These 
differences could be due to the opsonization of the bacteria, 
their growth phase at the time of infection, and the degradative 
properties of the infected cells (82, 88, 91). To date, no precise 
characterization of the SCV has been performed to understand 
whether there is a difference in the intracellular survivability of 
two strains.

Initially, it was observed that both strains, ST19 (4/74) and 
ST313 (02-03/002) induce the same cytotoxicity toward J774 
mouse macrophages (82). By contrast, two studies on bone 
marrow-derived C57BL/6 macrophages (92) and THP-1 cells 
(91) have shown that ST313 (D65, D23580, A130, 5597, and 
5579) induces less macrophage death than ST19 (I77, SL1344, 
and DT104). Cytotoxicity appears to be dependent on the NLRC4 
inflammasome (92). However, a more recent study has suggested 
that ST313 (D23580) is more cytotoxic than ST19 (14028) toward 
the RAW264.7 murine macrophage cell line (88) (Figures 2C,D).

Cell activation was also compared in terms of cytokine pro-
duction. ST313 (D65, D23580, A130, 5597, and 5579) induced 
less cytokine production by macrophages compared with ST19 
(I77, SL1344, and DT104) for IL1β (91, 92), IL8, and TNFα 
(91). These studies were performed with the human THP-1 (91) 
and U937 cell lines (92), as well as with bone marrow-derived 
C57BL/6 macrophages (92) (Figure 2E).

To better understand NTS pathogenesis, different animal 
models can be used. The non-human primates, such as rhesus 
macaques, are especially useful for investigating coinfection with 
simian immunodeficiency virus (122). Calves can be used as 
infection models as their infection with S. Typhimurium results 
in a pathology similar to humans. Furthermore, S. Typhimurium 
is a natural pathogen of cattle, and beef is a common reservoir 
for human infection (123, 124). Poultry products are well known 
as a source of human infections (125). Interestingly, ST313 was 

reported to be more invasive than ST19 in experimentally infected 
chicken (126). Mice are not typically suitable as an adapted model 
for S. Typhimurium, as these bacteria induce a typhoid-like sys-
temic illness that leads to death of the animals. Although the 50% 
lethal dose (LD50) was not reported to be significantly different 
between ST313- and ST19-infected mice (87, 93). Further, there 
was no consistent difference in the inflammatory response (79, 88,  
93, 126) or in the ability of the bacteria to colonize the intesti nal 
tract and to disseminate in the body (79, 87, 88, 92, 93, 126).

wHAT iS KNOwN ABOUT THe 
COiNFeCTiONS wiTH Hiv AND 
SAlmonEllA

Non-typhoidal salmonellae have been identified early as HIV-
related pathogens in both adults and children in sub-Saharan 
Africa. Although HIV and Salmonella coinfections have been 
the focus of several studies, most of these aimed to character-
ize the intrinsic properties of the invasive Salmonella compared 
with reference strains, rather than study the co-evolution of the 
bacteria with the HIV epidemy. Some reports have pointed to 
the dysregulation of inflammation induced by HIV. During non-
typhoid Salmonella and HIV coinfection, human blood displays 
attenuated NFkB-mediated inflammation (127) (Figure  3). 
Cytokine changes in acute iNTS disease are correlated with 
cytokine signatures associated with macrophage functions and 
with sepsis. HIV–Salmonella coinfection had no major impact 
on the blood cytokines of patients (128). In one study, primary 
human alveolar macrophages from a small number of HIV-
infected adults did not display any differential internalization 
and killing of bacteria but showed a dysregulation of cytokine 
responses to Salmonella. Increased quantities of TNF, IL10, and 
IL12 were released in the HIV-positive samples in response to the 
bacterial challenge. This may underlie the susceptibility to severe 
salmonellosis of patients with AIDS (129). It is worth noting, 
however, that cytokine read-outs might represent the “tip of the 
iceberg” for other profoundly modified cell phenotypes that have 
recently received new attention, like imbalanced metabolic status, 
cell death, or survival pathway. All of these pathways should be 
further studied by global analysis of gene expression profiles in 
infected and coinfected cells.

The intracellular relationship between the VCC and the SCV 
could be also studied with high-resolution microscopy to deter-
mine if there are structural connections between the two types 
of compartments and to ascertain whether one strain of bacteria 
is better at exploiting the mechanisms described in Figure 1. For 
example (and as cited above), the analysis of phagocytic func-
tion in HIV-Salmonella coinfected individuals could be aided 
by novel assays such as the detection of defective superoxide 
burst by flow cytometry on whole blood samples, as for HIV/
tuberculosis-infected individuals (67).

Importantly, the dysregulated humoral immunity in HIV-
infected individuals is characterized by high titers of inhibitory 
antibodies against Salmonella LPS. This is associated with defec-
tive killing of the bacteria, which relies more on antibodies against 
the outer membrane proteins (130). Therefore, the HIV infection 
prevents efficient humoral immunity without blocking bacteria 
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FiGURe 3 | Stages of Salmonella Typhimurium infection that may benefit from an established human immunodeficiency virus type 1 (HIV-1)-infection of the host cell. 
Left panel—Primary human macrophages were infected with HIV-1ADA for 8 days before incubation with invasive Salmonella Typhimurium for 6 h at 37°C. They were 
fixed, permeabilized, and labeled with anti-p24 followed by Alexa488-anti-goat IgG (third line), anti-LPS followed by Cy5-anti-rabbit IgG (second line), and DAPI. 
Phase contrast image with DAPI (blue) is shown in the upper panel. Merged images (lower panel) show p24 in green (third line in gray), S. Typhimurium in red 
(second line in gray), and DAPI in blue. Z stacks of wide field fluorescent images were acquired, deconvoluted, and treated with ImageJ. Bar, 10 µm. Right 
panel—Intracellular bacteria may take advantage of arrested phagosome maturation in HIV-infected host cells, either (A) indirectly due to changes in intracellular 
trafficking or gene expression programs or (B) directly, through intracellular connections between Salmonella-containing vacuoles (SCV) and virus-containing 
compartment (VCC) that have neutral pH. The cell activation pathways and cytokine production were reported to be different between ST19 and ST313, although 
gene expression profiles are yet to be sufficiently dissected in the context of an HIV-infected host macrophage (C). The humoral immune responses are biased, and 
anti-LPS antibodies are produced that are non-neutralizing and do not appear to block entry of bacteria (D).
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from invading host cells. The bacteria can then remain hidden 
within host cells to disseminate throughout the body (Figure 3).

CONCLUSiON

The initial observation that macrophages are permissive to HIV 
infection was reported as early as in 1986. However, the effects of 
the viral infection on those phagocytic functions of macrophages 
and the emergence of opportunistic pathogens have been some-
what overlooked. One reason for that is that the reciprocal impact 
of the virus and the opportunistic pathogens on their common 
host is difficult to assess experimentally. Studying the cell biology 
of the Salmonella vacuole in HIV-infected hosts using tools devel-
oped recently for host–pathogen analysis, such as flow cytometry 

or advanced microscopy, may provide valuable information. In 
addition, the recent development of gene expression analysis, of 
both the bacteria and the host, in conjunction with single-cell 
analytical approaches, offers unprecedented opportunities for 
future studies to generate better understanding of the unique 
relationship between iNTS and the HIV-infected host. A better 
understanding of the interplay between HIV and these bacteria 
will have implications not only for treatment and management of 
Salmonella but also of other opportunistic pathogens.
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