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ABSTRACT 

Exposure to toxic metals impacts obesity and type 2 diabetes (T2DM) risk. Yet, the 

underlying mechanisms remain largely unknown. Gut microbiota has been strongly associated 

with progression of cardiometabolic risk. To determine whether high metal exposures and gut 

dysbiosis interact to promote metabolic dysregulation and cardiometabolic risk, we assessed 

relationships between these factors. We analyzed cross-sectional associations between 

arsenic, lead, mercury, cadmium, and cardiometabolic health markers in 178 randomly 

selected African-origin adults (52% female, 51% obese, mean age=43.0±6.4 years) from 

Ghana, South Africa, Seychelles, Jamaica, and USA. Metal levels were dichotomized to high 

or low at the median level of each metal. We analyzed associations between gut microbiome 

taxa, metal levels, clinical measures (BMI, fasting blood glucose, and blood pressure) and 

diagnoses (hypertension, obesity, and diabetes status). High vs. low lead and arsenic 

exposures had a significant effect on beta diversity (p <0.05). 71 taxa were associated with 

high lead levels: 30 with elevated BMI, 22 with T2DM, and 23 with elevated fasting blood 

glucose (p<0.05). 115 taxa were associated with high arsenic levels: 32 with elevated BMI, 33 

with T2DM, and 26 with elevated blood glucose (p<0.05). Of the taxa associated with high lead 

and arsenic exposure and either elevated BMI or fasting blood glucose, porphyrin metabolism 

was the most enriched metabolic pathway. These data collectively provide the first findings in a 

human study that the gut microbiome may drive the association between lead and arsenic 

exposure and obesity and T2DM risk.  
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INTRODUCTION 

Type 2 diabetes mellitus (T2DM) and obesity are increasing worldwide health 

challenges associated with a large disease burden, comorbidities, and healthcare costs.(1-3) 

Globally, it is projected that 2.7 billion adults will be overweight or obese by 2025, and between 

2025 and 2045, people with T2DM will increase by 212 million to 783 million.(1,3) By 2045, 

Northern Africa, currently highest in regional T2DM prevalence at 16.2%, is expected to 

increase to 136 million people, while sub-Saharan Africa is expected to have the highest T2DM 

prevalence increase of 129% to 55 million people.(1) Black Americans are disproportionately 

affected by obesity and T2DM, contributing to significant health disparities in the US.(4) While 

obesity is a main cause of T2DM, both obesity and T2DM also increase the risk of other highly 

prevalent cardiometabolic diseases (CMDs).(5) Successful strategies for management and 

treatment of obesity and T2DM require a more complete understanding of the risk factors that 

drive the complex heterogeneous etiopathology of these diseases.  

Mounting evidence suggests environmental exposures, including toxic metals/metalloids 

(hereafter, “metals”) may contribute to CMD risk.(2-3,6-12) Metals (arsenic, cadmium, lead, 

and mercury) exposures come from food, water, and airborne sources.(2-3,8-13) For example, 

gold mining in Ghana has polluted river water with metals.(14) Arsenic, lead, and cadmium 

have been linked to increased risk of elevated fasting blood glucose (FBG), and arsenic has 

been linked to increased diabetes prevalence.(10-11) Although multiple mechanisms have 

been proposed, especially for arsenic, no specific mechanism has been well-defined.(2-3) 

Gut microbiota, including their composition and microbially produced metabolites, are 

increasingly thought to be a significant player in the development and progression of obesity 

and T2DM.(15-22) The degree of dysbiosis appears to be associated with both obesity and 

T2DM disease severity.(15-21) In animal models, fecal microbiota transfer from individuals 

with T2DM or obesity can replicate the disease phenotype.(15,18-21) Overall, gut microbiota 
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has been linked to metabolic disease development by multiple different mechanisms, including 

inflammation, gut barrier integrity, and microbial metabolites that act as signaling 

molecules.(22)  

Recent evidence in animal models indicates that metals exposure may be linked to gut 

microbiome dysfunction with little data from human studies.(23) In the animal studies, metals 

have been suggested to drive dysbiosis through altered microbial composition subsequently 

impacting host physiologic processes and metabolic functions of the gut microbiome.(9,24-26) 

Lead, cadmium, and arsenic exposure have each been associated with decreased microbial 

diversity and specific differentially altered genera.(13,24-26) Metal exposures are also linked to 

altered metabolism of vitamins, bile acids, and other biomolecules and cofactors, where key 

steps in production of active biomolecules occur through microbial metabolism impacting host 

metabolism.(13,25-26) Understanding metals exposure impact on the human gut microbiome 

and critically, how this influences cardiometabolic health is needed.  

To our knowledge, this study explores for the first time the association between toxic 

metals exposures, gut microbiome, and CMD in adults of African descent from five countries 

across the epidemiologic transition. We analyzed the difference between individuals with high 

versus low metals exposures across all sites as well as within sites. We hypothesized that high 

metals exposures and gut dysbiosis interact to promote metabolic dysregulation and increase 

CMD risk. These data reveal firsthand evidence of important associations between metals 

exposures and the gut microbiome and, in turn, associations with the prevalence of obesity 

and T2DM in critically impacted human populations.  

METHODS  

Study population 

The main study population consists of an international cohort of 2,506 African-origin 

adults with ~500 participants from each site: Ghana, South Africa, Seychelles, Jamaica, and 
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USA. Participants are followed through the Modelling the Epidemiologic Transition Study 

(METS) (NIH R01-DK080763) and the currently funded METS-Microbiome study (NIH R01-

DK111848). (27-28) METS-Microbiome explores the relationship between gut microbiota and 

T2DM and obesity risk.(27) The study collects urine samples, stool for gut microbiota 

sequencing, and clinical labs for measures of cardiometabolic health, which include T2DM risk 

(fasting insulin and glucose levels), metabolic health (lipids), and kidney function (urine 

creatinine).(27-28)  

METS sites were selected as representative of the epidemiologic transition continuum, 

which is a model that captures the transition from predominantly infectious diseases to non-

communicable diseases that accompanies increasing economic development.(27-29) The 

epidemiologic transition framework is defined using the United Nations Human Development 

Index (HDI) to study health outcomes across all sites with Ghana representing lower-middle-

income, South Africa representing middle-income, Jamaica and Seychelles representing high-

income, and the US representing very high-income. 

Individuals were excluded from participating in the original METS study if they self-

reported being persons with an infectious disease, including HIV, being pregnant, 

breastfeeding, or having any condition that prevented the individual from participating in 

normal physical activities.(27-28) Participants were further excluded from METS-Microbiome if 

they self-reported using antibiotics in the preceding 3 months. A description of both the METS 

and METS-Microbiome protocols for data collection, measurement, and laboratory procedures 

has been published.(27-28) Both METS and METS-Microbiome studies were individually 

approved by the Institutional Review Board of Loyola University Chicago, IL, US, which is the 

coordinating center.(27-28) For international sites, the protocols were approved by their 

respective institutions.(27-28) All study procedures were explained to participants in their 

native languages, and participants were provided written informed consent after being given 
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the opportunity to ask any questions and compensated for their participation. 

Patient and public involvement 

 Patients and/or the public were not involved in the design, conduct, reporting, or 

dissemination plans of this research. 

Urinary metals and microbiome assessments 

Urine samples were obtained in 2019 from 178 METS-Microbiome participants 

randomly selected and analyzed for metals levels (Table 1). Urine samples were tested to 

determine concentrations of arsenic, cadmium, lead, and mercury. To assess metals exposure 

impact on the microbiota in this subset, we accessed the 16S rRNA sequence data from 2019 

and the measured clinical phenotypes to evaluate the most significant associations.  

Anthropometry, sociodemographic, and biochemical measurements 

METS visits were conducted at community-based research clinics within the respective 

communities, early in the morning following an overnight fast. Weight measurements were 

captured, BMI calculated, and obesity defined as BMI >30. FBG was measured; insulin, leptin, 

and adiponectin were measured in fasting plasma samples using radioimmunoassay kits 

(Linco Research, Inc., St. Charles, MO). T2DM was defined as FBG >125 mg/dL or by current 

treatment; except for Ghana, where not all participants fasted overnight, T2DM was defined as 

glucose ≥140�mg/dL or current treatment following American Diabetes Association guidelines 

for random glucose testing.(23-24) Blood pressure (BP) was measured in triplicate at two 

timepoints during each examination using an automatic digital monitor (model HEM-747Ic, 

Omron Healthcare, Bannockburn, IL USA). Spot urine samples were assayed for urinary 

albumin and creatinine levels.  

Urinary metals quantification 

Urine samples were analyzed for arsenic, cadmium, lead, and mercury using inductively 

coupled plasma-mass spectrometry (ICP-MS). Urinary creatinine was measured using a 
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method based on the Jaffe reaction for standardizing metal concentrations to control for kidney 

function and hydration status.(30) The core laboratory participates in the Quebec Multielement 

External Quality Assessment Scheme of the Institut National de Santé Publique du Québec, 

Canada for external accuracy assessment of biological samples. To assess the metals effect, 

each metal was stratified by median metals level per site for a within-site metals exposure 

label and by median metals level across all sites (the study population median) for a between-

site metals exposure level.  

DNA extraction and amplicon sequencing 

Fecal samples were sent to the Microbiome Core sequencing facility (University of 

California, San Diego, UCSD) and randomized for 16S rRNA gene processing to extract DNA 

with MagAttract Power Microbiome kit using blank controls and ZymoBIOMICS mock controls 

(Cat. No. D6300) in each extraction plate.(15,27) The V4 region of 16S rRNA gene was 

amplified from extracted DNA with 515F-806R region-specific primers according to the Earth 

Microbiome Project.(31) Purified amplicon libraries were sequenced on the Illumina eq 

platform to produce 150 bp forward and reverse reads (IGM Genomics Center at 

UCSD).(15,27) 

Bioinformatic analysis 

We analyzed microbiota amplicon data using existing pipelines to identify taxonomic 

markers for all samples. In Qiita, generated raw sequence data was demultiplexed, quality 

filtered, and trimmed.(15,27,32) Amplicon Sequence Variants (ASVs) were defined using 

DeBlur, and taxonomy was assigned using a Naïve-Bayes classifier compared against a 

SILVA (version 138) reference database.(15,33) Microbiota samples were matched to study 

participants for whom clinical and urine metals metadata were available. The resulting ASV 

abundance count table, taxonomy data, and sample metadata were exported and merged into 

a phyloseq object in R (R Foundation for Statistical Computing, Vienna, Austria) for 
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downstream analysis.(15) The phyloseq object was then used for quality control to remove: 1) 

ASVs with less than ten reads in the entire dataset and samples with fewer than 5000 reads; 

2) ASVs that were unassigned at the phylum level; and 3) ASVs with fewer than 50 reads 

across all samples or were in less than 2% of samples. Quality control resulted in 16399 ASVs 

with 9264 genus-level taxa across 178 participants. 

Alpha and beta diversity analysis 

Microbial alpha diversity was measured using the Shannon index via the microbiome 

library.(15) Beta diversity was calculated with pairwise Bray-Curtis dissimilarity, and 

significance was calculated with permutational multivariate analysis of variance 

(PERMANOVA) using phyloseq.(15) Univariate comparisons were performed in two-sample 

two-tailed t-tests when we could assume normality, and Wilcoxon Signed Rank tests when we 

could not. Benjamini-Hochberg (BH) adjusted p-values of less than 0.05 were considered 

statistically significant.  

Linear discriminant analysis 

Linear discriminant analysis (LDA) effect size was performed on per-sample normalized 

relative abundances.(34) This algorithm estimates microbial taxa that contribute to observed 

differences by metals exposure.(34) We evaluated differences by coupling a univariate non-

parametric test (Wilcoxon rank-sum, α = 0.05) with LDA scores (threshold for discriminative 

features > 3.0) to calculate effect size of identified differentially abundant taxa stratified by 

each individual categorical metal exposure metadata.  

Association analysis of microbial taxa 

To identify multivariable associations within these data, four linear mixed effect models 

were used with individual taxa, urinary metal levels, and cardiometabolic risk profiles with 

MaAsLin2.(35) The ASV abundance table was transformed with trimmed mean of m values 

and run with a negative binomial model.(35) For each metal, a model measured individual 
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associations {taxa ~ metal + cardiometabolic variables + confounders}. A final model included 

all metal variables {taxa ~ arsenic + lead + cadmium + mercury + cardiometabolic variables + 

confounders}. The cardiometabolic variables include obesity, T2DM, and hypertension 

diagnosis, with FBG levels, systolic and diastolic BP, and BMI. Each model controlled for site, 

sex, and age as confounders. From these four models, associations are calculated between 

taxonomic relative abundance at the genus level, metal exposures, and cardiometabolic 

variables. P-values were corrected for multiple comparisons using the BH correction, α=0.05. 

Predicted metabolic gene pathway analysis 

Genera significantly associated with metals exposure were used to predict (q-value 

<0.05 to reduce false discovery rate) functional metabolic pathways. We utilized The 

Phylogenetic Investigation of Communities by Reconstruction of Unobserved Species 2 

(PICRUSt2) v2.5.1.(36) Normalized ASV abundance table and weighted nearest-sequenced 

taxon index values per sample were used for predicting Enzyme Commission numbers and 

annotated using the MetaCyc database to identify enriched metabolic pathways.(36) The 

resulting enriched metabolic pathway abundances were visualized.29 P-values were adjusted 

for multiple comparisons using the BH correction, α=0.05. 

RESULTS 

We analyzed data from 178 METS Microbiome study participants (median age = 

43.0±6.4 years, 52% women) (Table 1). Median (IQR) BMI was lowest in Ghana, 20.82 kg/m2 

(19.08, 38.36), and highest in the US, 30.12 kg/m2 (22.63, 49.26). 14.3% of the total study 

population had T2DM, with the highest (20%) in the US and Seychelles and the lowest (5%) in 

Jamaica. The highest lead levels were in Ghana, median (IQR) = 1.36 µg/g (1.11, 1.76) (83% 

had elevated levels), and lowest in US, 0.53 µg/g (0.38, 0.75) (22% had elevated levels). 

Arsenic levels were highest on average in Ghana; however, more participants had high arsenic 

exposure in Seychelles. In Ghana, median (IQR) arsenic level was 72.96 µg/g (39.5, 108.09) 
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(80% had elevated levels) and in Seychelles, median (IQR) arsenic level was 61.71 µg/g 

(41.15, 97.0) (82% had elevated levels). Arsenic levels were lowest in the US at 7.99 µg/g 

(6.01, 12.66) (8% had elevated levels). Cadmium levels were highest in Jamaica, 0.508 µg/g 

(0.29, 0.90) (61% had elevated levels), and lowest in South Africa, 0.25 µg/g (0.16, 0.41) (32% 

had elevated levels). Mercury levels were highest in Seychelles, 1.98 µg/g (1.38, 2.54), (98% 

had elevated levels) and lowest in South Africa, 0.064 µg/g (0.007, 0.18), (18% had elevated 

levels) (Table 1). 

Alpha diversity 

Gut bacterial diversity and richness measured by the Shannon alpha diversity index 

varied by country of origin, being higher in Ghana and South Africa, and lower in Seychelles, 

Jamaica, and the US (Fig. 1E). However, microbial diversity and richness between high versus 

low metal levels were only significant for high lead exposure in Seychelles and high cadmium 

exposure in the US (Fig. 1A-D). Overall, metals in our cohort had a minimal effect on alpha 

diversity. 

Beta diversity 

Differences in bacterial composition or beta diversity demonstrated Ghana and the US 

were both significantly different from all other sites and Seychelles was significantly different 

from South Africa and Jamaica (Fig. 1N). Comparing high to low metal exposure groups, beta 

diversity was significant for lead and arsenic (Fig. 1J-M). By site, beta diversity significantly 

decreased in the high lead exposure group in South Africa, Jamaica, and Seychelles and 

increased in the US (Fig. 1F). In the high arsenic exposure group, beta diversity decreased in 

Ghana and Seychelles and increased in Jamaica (Fig. 1G). For the high cadmium group, beta 

diversity decreased in Seychelles and increased in the US (Fig. 1H). For the high mercury 

group, beta diversity decreased in South Africa (Fig. 1I).  

Linear discriminant analysis 
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With high lead exposure, Clostridium, Subdoligranulum, Ruminococcus, and 

Peptostreptococcales were the most differentially abundant taxa (Fig. 2A). With low lead 

exposure, no taxa were differentially abundant (Fig. 2A). Firmicutes and Proteobacteria were 

the primary phyla differentially abundant in high arsenic exposed microbial communities (Fig. 

2B). The taxa overrepresented with high arsenic exposure include Prevotella, Proteobacteria, 

Gammaproteobacteria, Enterobacterales, Christensenellaceae, Alloprevotella, and Clostridales 

(Fig. 5B). With low arsenic exposure, differentially abundant taxa included Anaerostipes, 

Erysiplatoclostridiaceae, Fusicatenbacter, and Ruminococcus (Fig. 2B). Mercury-exposed 

microbial communities were only differentially characterized by Anaerostipes (Fig. 2C). High 

lead and both low and high arsenic drive differential regulation of associated taxa. 

Lead exposure 

71 genera were significantly associated with high lead exposure: 30 strongly associated 

with BMI, 23 with FBG, and 22 with T2DM. Of these genera, 33 were significantly increased 

and 34 were significantly decreased in abundance with high lead exposure. High lead 

exposure increased phyla Bacteroides and decreased Firmicutes. At the genus level, high lead 

exposure was significantly associated with Paraprevotella, Clostridium, Tyzzerella, 

Haemophilus, and Lachnospiracae (Fig. 3A). High lead exposure was associated with changes 

in BMI (Fig. 3A) and increased obesity and T2DM incidence (Fig. 4A). For lead-associated 

taxa, BMI positively associated with Clostridium, Lachnospiracae, Tyzzerella, Alloprevotella 

and Dialister, and negatively associated with Haemophilus, Neisseria, Rothia, Streptococcus, 

and Family XIII AD3011 group. Lead-associated taxa positively associated with T2DM included 

Clostridium, Haemophilus, Neisseria, Streptococcus, Family XIII AD3011 group, and 

Pediococcus (Fig. 2D). Significant associations were found between high lead exposure, BMI, 

and hypertension for all lead-associated taxa, excluding Haemophilus, which associated only 

with high lead exposure and T2DM (Fig. 3A).  
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21% of taxa were positively associated with the high lead group and an obesity 

diagnosis, compared to 18% associated with a lean phenotype. 21% of lead-associated taxa 

also associated with T2DM diagnosis compared to 12% with a non-diabetic phenotype (Fig. 

4A). For taxa with a lower abundance in the high lead exposed group, 41% were associated 

with a non-obese phenotype (vs. 12% with obesity) and 29% were associated with non-

diabetic phenotype (vs. 9% with T2DM) (Fig. 4A). Thus, high lead exposure resulted in an 

increased abundance in taxa associated with obesity and T2DM, and decreased abundance of 

taxa associated with nonobese and non-diabetic traits (Fig. 4A). 

Arsenic exposure 

115 taxa were significantly associated with high arsenic exposure: 32 with BMI, 26 with 

FBG, and 33 with T2DM. Of these genera, 63 were significantly increased, and 49 were 

significantly decreased. High arsenic exposure increased abundance of taxa associated with 

T2DM (Fig. 3B and 4B). Genera that had the most significant positive association with high 

arsenic exposure were Libanicoccus, Agathobacter, Haemophilus, Neisseria, Alloprevotella, 

Succinivibrio, and Rothia. Arsenic was significantly associated with T2DM, and both high 

arsenic exposure, and T2DM were significantly associated with multiple taxa, but most 

significantly with Peptococcus, Libanicoccus, Agathobacter, Clostridium, Prevotellaceae, 

Haemophilus, Syntrophococcus, Neisseria, and Rothia (Fig. 3B). Clostridium, Prevotellaceae, 

and Alloprevotella were positively associated with both T2DM and BMI. Neisseria, 

Haemophilus, and Rothia were positively associated with T2DM and negatively associated 

with BMI. Finally, Agathobacter was shown to be positively associated with BMI and FBG, 

while negatively associated with T2DM (Fig. 3B).  

Cadmium exposure 

48 genera were significantly associated with high cadmium exposure, with 26 positively 

associated and 22 negatively associated with exposure. Of the cadmium-associated genera, 
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14 were associated with BMI, 15 with FBG, and 15 with T2DM. The top genera that had the 

most positive association were Intestinimonas, and negative associations were Peptococcus, 

Clostridium, Blautia, Collinsella, Enterorhabdus, Howardella, and Syntrophococus.  

High cadmium exposure decreased abundance of taxa associated with a nonobese or 

nondiabetic phenotype. Thus, high cadmium exposure was associated with obesity and T2DM 

(Fig. 4C). Of the top cadmium-associated genera, Peptococcus and Clostridium were 

positively associated with BMI while the rest were negatively correlated. Clostridium, Blautia, 

Intestinimonas, and Collinsella were positively correlated with T2DM, and Peptococcus and 

Syntrophococcus were negatively associated. High cadmium exposure and T2DM were 

significantly positively associated with Intestinimonas, Rothia, and Family XIII AD3011 group; 

the high cadmium group and T2DM were negatively associated with Pepotcoccus, 

Pediococcus, Clolindextribactor, Enterorhabdus, and Syntrophococcus (Fig. 3C).  

Mercury exposure 

12 taxa were significantly associated with high mercury exposure, though none were 

jointly associated with any cardiometabolic variables (Fig. 3D).  

Comparing exposures and outcomes 

To understand how each metal exposure interacts and associates with obesity and 

T2DM, we next ran a linear mixed model to identify microbial taxa associated with high metal 

exposures and clinical metabolic variables. Peptococcus, Leuconostoc, Erysipelatoclostridium, 

Haemophilus, Tyzzerella, and Neisseria significantly correlated with high lead exposure, high 

arsenic exposure, and T2DM. Additionally, high lead exposure alone positively correlated with 

BMI and had significant positive associations with Clostridium and Megasphaera 

micronuciformis. High arsenic exposure strongly correlated with 40% of the taxa significantly 

associated with T2DM. (Fig. 5A)  

The results of this model demonstrated multiple genera significantly associated with 
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high lead or high arsenic exposure are jointly associated with clinical measures of obesity and 

T2DM. High lead exposure was most strongly associated with abnormal FBG and elevated 

BMI, while high arsenic exposure was associated with T2DM and elevated diastolic BP. These 

results match with findings from previous mixed models for each individual metal (Fig. 3D-G), 

which showed high lead exposure associated most closely with obesity and high arsenic 

exposure associated with T2DM. (Fig. 5A) 

Metabolic pathways 

From the microbes associated with metal exposure, increased BMI, and increased FBG, 

we found that porphyrin metabolism was the most highly enriched metabolic pathway and most 

significant by p-value (p < 2.1*10-16). Steroid biosynthesis, nucleotide sugars metabolism, 

vitamin B6 metabolism, thiamine metabolism, and methionine metabolism were all significantly 

enriched in this group (adjusted p< 0.05). (Fig. 5B) 

DISCUSSION 

Lead and arsenic are known to be associated with obesity and T2DM, with high arsenic 

exposure associated with higher T2DM prevalence, as demonstrated in both human and 

animal studies.(2-3,6-12,23,37) Exposure to metals has previously been shown to have 

detrimental effects on the composition of the gut microbiota by both enhancing deleterious and 

suppressing beneficial taxa; however, most of these studies were done in mouse models. 

(9,13,24-26,38-40) A limited number of observational and retrospective studies have examined 

either arsenic or lead effects on the human gut microbiome, though none looked at 

cardiometabolic outcomes.(38,40) In mice, lead and arsenic have been shown to disturb gut 

microbiota by decreasing diversity.(25) As gut microbiota has been associated with metabolic 

risk, we assessed the linkage between toxic metals exposures and cardiometabolic outcomes 

in a diverse African-origin cohort. We found that two metals, lead and arsenic, are substantially 

associated with bacterial composition and impact T2DM and obesity. This study suggests that 
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this increased risk is via changes to the gut microbiome possibly through the bacterial 

porphyrin pathway.  

Regarding possible mechanisms for these associations, we found that arsenic depletes 

commensal bacteria in Firmicutes, including Ruminococcus and Erysiplatoclostridiaceae, both 

of which exhibit reduced abundance in the high arsenic exposure group and greater 

abundance in the low arsenic group. High-arsenic exposed microbiota show greater 

abundance of Prevotella, Christensenella, and Clostridium. In the high lead-exposed group, 

Clostridium and Peptostreptococcales, Subdoligranulum, and Ruminococcus had greater 

abundance. In sum, arsenic and lead exposure seem to differentially impact taxa, where these 

findings suggest that metals may increase the risk of obesity and T2DM by removing 

commensal taxa, possibly impacting metabolic protection provided through metabolites 

produced by the microbiota, and enriching taxa with pathogenic potential.29 The changes 

observed in the composition of the microbiota suggest that high metal exposure is associated 

with gut dysbiosis which contributes to increased risks of obesity and T2DM.  

We found that the metabolism of the metal-associated microbial community is enriched 

in porphyrin metabolic pathways relative to taxa not associated with metals exposure. 

Porphyrin with an iron cofactor comprises heme and acts as an electron shuttle for the electron 

transport chain and as a molecule modulating redox signaling and stress, both critical in 

cellular respiration.(41-44) Notably, porphyrin metabolism plays a fundamental role in bacterial 

physiology as iron is a required cofactor for bacterial enzymes and proteins. Most bacteria 

have incomplete heme metabolic pathways and, therefore, take up available heme and iron via 

receptors and chelators.(43) Toxic metals exposure has been shown to affect heme synthesis 

through competition with iron by decreasing iron transport, reducing iron availability, and 

binding to proteins in place of iron.(44) Thus, exposure to toxic metals may impair heme 

synthesis and activity through a variety of mechanisms. With this impact on heme and iron 
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availability in the gut lumen due to metals effects, bacteria with porphyrin metabolic pathways 

are upregulated, a process important to bacterial metabolism.(45) Interestingly, alterations in 

porphyrin metabolism and increased porphyrin metabolites have been associated with the 

development of insulin resistance and metabolic syndrome. (46-47) These changes 

additionally serve to drive gut dysbiosis and may be an additional factor in the downstream 

effects of gut dysbiosis on obesity and T2DM risk profiles.(48)  

Limitations 

In this study, we have a single urinary estimate of toxic metal exposures, which may not 

reflect chronic exposures. For most metals, urinary measurements are well accepted for 

exposure evaluation.(49) While blood is generally utilized for evaluation of lead exposures, 

studies with blood and urine lead levels correlate with each other and urinary lead levels are 

considered a reasonable assessment for epidemiological studies.(50) Further, metal levels 

were binarized for a high vs. low comparison in our study, which will not capture any dose 

response to metals exposure or non-monotonic dose responses. For multiple analyses, we 

controlled for several potential confounders, but other measured and unmeasured variables 

may act as confounders for this data. 

CONCLUSION 

Toxic metals exposures have been associated with obesity and T2DM previously, and, 

in animal models, these associations have been suggested to be partly driven by the gut 

microbiome. Our study of African-origin individuals has demonstrated for the first time, to our 

knowledge, that this could occur through changes in the gut microbiota. These metals effects 

may act by up-regulating taxa that are positively associated with obesity and T2DM and by 

down-regulating taxa that are negatively associated with obesity and T2DM. These data are 

critical as many countries are heavily impacted by deterioration in environmental quality. These 

results may inform strategies targeting the microbiome as a potential means of mitigating 
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adverse metabolic effects of toxic metals, which may decrease the risk of obesity and T2DM, 

particularly in populations that are highly exposed to these metals. While reduction in 

exposures to detrimental substances is the cornerstone of environmental health interventions, 

interventions that can modulate the gut microbiome may help address the impact of 

unavoidable exposures. These observations provide new insight but warrant further validation 

and exploration.  

ETHICS STATEMENTS 

Ethics Approval. Both METS (IRB: LU200038) and METS-Microbiome (IRB: LU209537) 

studies were individually approved by the Institutional Review Board of Loyola University 

Chicago, IL, US, which also served as the coordinating center. For the international sites, the 

protocols were approved by the respective institutions and included the Committee on Human 

Research Publication and Ethics of Kwame Nkrumah University of Science and Technology, 

Kumasi, Ghana; the Research Ethics Committee of the University of Cape Town, South Africa; 

the Board for Ethics and Clinical Research of the University of Lausanne, Switzerland; the 

Health Research and Ethics Committee of the Ministry of Health of Seychelles; and the Ethics 

Committee of the University of the West Indies, Kingston, Jamaica. All study procedures were 

explained to participants in their native languages, and participants were provided written 

informed consent after being given the opportunity to ask any questions and compensated for 

their participation. 

ACKNOWLEDGEMENTS 

We would like to thank the staff and participants of the METS and METS-Microbiome 

study for their important contributions. 

Funding. This work was supported by the National Institutes of Health (R01 DK070853 and 

R01 DK111848 supporting AL and LRD; P30 ES027792 supporting RMS and MA; R01 

ES028879 and R21 ES030884 supporting RMS; R01 DK104927 supporting BTL), the United 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.10.07.24315016doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.07.24315016
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

States Department of Veterans Affairs (I01 BX00382 supporting BTL and I01 BX006108 

supporting RMS), and the United States Department of Defense (TX220140 supporting RMS). 

Sequence data generated at the UC San Diego IGM Genomics Center with an Illumina 

NovaSeq 6000 was purchased with funding from a National Institutes of Health SIG grant 

under Award Number S10 OD026929 (J.A.G.). 

Competing Interests. No potential conflicts of interest relevant to this article were reported. 

Author Contributorship Statement. J.A.J conducted the analyses and wrote the initial 

manuscript. C.C-K, A.L., K.B-A., T.F., P.B., E.V.L., D.R., and L.R.D. managed the METS-

Microbiome study, sites, and sample collection. L.W. conducted metal quantification and 

contributed to drafting the methods. L.I. contributed to drafting the manuscript. J.A.G and 

G.E.M contributed to microbiome samples processing. C.C-K., J.A.G., G.E-M, A.L., P.B., 

E.V.L., D.R., T.K., M.A., L.R.D., R.M.S, Y.D., and B.T.L provided substantial contributions to 

the interpretation of the data and made critical revisions to the manuscript. All authors 

approved the final manuscript. Y.D. and B.T.L. contributed equally.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.10.07.24315016doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.07.24315016
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

References: 

1. International Diabetes Federation. IDF Diabetes Atlas, 10th edn. Brussels, 

Belgium: International Diabetes Federation, 2021. 

2. Ettinger AS, Bovet P, Plange-Rhule J, et al. Distribution of metals exposure and 

associations with cardiometabolic risk factors in the "Modeling the Epidemiologic 

Transition Study". Environ Health. 2014;13:90. 

3. Sargis, R.M., Simmons, R.A. Environmental neglect: endocrine disruptors as 

underappreciated but potentially modifiable diabetes risk factors. Diabetologia 

2019;62:1811–1822. 

4. Abraham PA, Kazman JB, Zeno SA, Deuster PA. Obesity and African Americans ISRN 

Obes. 2013;314295. 

5. Gouda, H. N. et al. Burden of non-communicable diseases in sub-Saharan Africa, 1990-

2017: results from the Global Burden of Disease Study 2017. Lancet Glob. Health. 

2019;7:e1375–e1387. 

6. Neel BA. Sargis RM. The paradox of progress: Environmental disruption of metabolism 

and the diabetes epidemic. Diabetes. 2011;60(7)1838-48. 

7. Schulz MC, Sargis RM. Inappropriately sweet: Environmental endocrine-disrupting 

chemcicals and the diabetes pandemic. Adv. Pharmacol. 2021;91:419-456. 

8. Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, Nadal A, 

Palanza P, Panzica G, Sargis R, Vandenberg LN, Vom Saal F. Metabolism disrupting 

chemicals and metabolic disorders. Reprod. Toxicol. 2017;68:3-33. 

9. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity 

mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7(2):60. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.10.07.24315016doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.07.24315016
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

10. Ji JH, Jin MH, Kang J, et al. Relationship between heavy metal exposure and type 2 

diabetes: a large-scale retrospective cohort study using occupational health 

examinations. BMJ Open. 2021;11:e039541. 

11. Weiss MC, et al. Arsenic metabolism, diabetes prevalence, and insulin resistance 

among Mexican Americans: A mendelian randomization approach. Environmental 

Advances. 2023; 12. 

12. Thayer KA, Heindel JJ, Bucher JR, Gallo MA. Role of environmental chemicals in 

diabetes and obesity: a National Toxicology Program workshop review. Environ Health 

Perspect. 2012;120:779–789. 

13. Liu Y, Li Y, Liu K, Shen J. Exposing to cadmium stress cause profound toxic effect on 

the microbiota of the mice intestinal tract. PloS One. 2014;9(2):e85323. 

14. Barenblitt A, Payton A, Lagomasino D, Fatoyinbo L, Asare K, Aidoo K, Pigott H, Som 

CK, Smeets L, Seidu O, Wood D. The large footprint of small-scale artisanal gold 

mining in Ghana. Sci Total Envi. 2021;781:146644. 

15. Ecklu-Mensah, G., et al. Gut microbiota and fecal short-chain fatty acids differ with 

adiposity and country of origin: the METS-microbiome study. Nat Commun 

2023;14:5160. 

16. Iatcu CO, Steen A, Covasa M. Gut Microbiota and Complications of Type-2 Diabetes. 

Nutrients. 2021;14(1):166.  

17. Dugas LR, et al. Decreased microbial co-occurrence network stability and SCFA 

receptor level correlates with obesity in African-origin women. Sci. Rep. 2018;8:17135. 

18. Le Chatelier E, et al. Richness of human gut microbiome correlates with metabolic 

markers. Nature. 2013;500:541–546. 

19. Turnbaugh PJ, et al. A core gut microbiome in obese and lean twins. Nature. 

2009;457:480–484. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.10.07.24315016doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.07.24315016
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

20. Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked 

but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 

2008;3:213–223. 

21. Ridaura VK, et al. Gut microbiota from twins discordant for obesity modulate 

metabolism in mice. Science. 2013;341:1241214. 

22. Gabriel CL, Ferguson JF. Gut microbiota and microbial metabolism in early risk of 

cardiometabolic disease. Circulation Research. 2023;132:1674-1691. 

23. Duan, H., Yu, L., Tian, F., Zhai, Q., Fan, L., Chen, W. Gut microbiota: A target for heavy 

metal toxicity and a probiotic protective strategy. Science of The Total Environment. 

2020;742:140429. 

24. Assefa S, Köhler G. Intestinal Microbiome and Metal Toxicity. Curr Opin Toxicol. 

2020;19:21-27. 

25. Gao B, Chi L, Mahbub R, Bian X, Tu P, Ru H, Lu K. Multi-Omics Reveals that Lead 

Exposure Disturbs Gut Microbiome Development, Key Metabolites, and Metabolic 

Pathways. Chem Res Toxicol. 2017;30(4):996-1005. 

26. Dahan D, Jude BA, Lamendella R, Keesing F, Perron GG. Exposure to arsenic alters 

the microbiome of larval zebrafish. Front Microbiol. 2018;9:1323. 

27. Dugas LR, Lie L, Plange-Rhule J, Bedu-Addo K, Bovet P, Lambert EV, Forrester TE, 

Luke A, Gilbert JA, Layden BT. Gut microbiota, short chain fatty acids, and obesity 

across the epidemiologic transition: the METS-Microbiome study protocol. BMC Public 

Health. 2018;6;18(1):978. 

28. Luke A, Bovet P, Forrester TE, Lambert EV, Plange-Rhule J, Schoeller DA, Dugas LR, 

Durazo-Arvizu RA, Shoham D, Cooper RS, Brage S, Ekelund U, Steyn NP. Protocol for 

the modeling the epidemiologic transition study: a longitudinal observational study of 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.10.07.24315016doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.07.24315016
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

energy balance and change in body weight, diabetes and cardiovascular disease risk. 

BMC Public Health. 2011;14(11):927. 

29. Omran AR. The epidemiologic transition: a theory of the epidemiology of population 

change. 1971. Milbank Q. 2005;83(4):731-57.  

30. Slot C. Plasma creatinine determination. A new and specific Jaffe reaction method. 

Scand J Clin Lab Invest. 1965;17(4):381-7. 

31. Thompson LR, Sanders JG, McDonald D, Amir A. A communal catalogue reveals 

Earth’s multiscale microbial diversity. Nature. 2017;551:457–463. 

32. Gonzalez A, et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat. Methods. 

2018;15:796–798. 

33. McLaren, M. R. Silva SSU taxonomic training data formatted for DADA2 (Silva version 

138). 10.5281/zenodo.3731176 (2020). 

34. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. 

Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. 

35. Mallick H, Rahnavard A, McIver LJ, Ma S, Zhang Y, Nguyen LH, Tickle TL, Weingart G, 

Ren B, Schwager EH, Chatterjee S, Thompson KN, Wilkinson JE, Subramanian A, Lu 

Y, Waldron L, Paulson JN, Franzosa EA, Bravo HC, Huttenhower C. Multivariable 

Association Discovery in Population-scale Meta-omics Studies. PLoS Computational 

Biology. 2021;17(11):e1009442. 

36. Douglas GM, Maffei VJ, Zaneveld JR, et al. PICRUSt2 for prediction of metagenome 

functions. Nat Biotechnol. 2020;38:685–688. 

37. Weiss MC, Shih YH, Bryan MS, Jackson BP, Aguilar D, Hanis CL, Argos M, Sargis RM. 

Relationships Between Urinary Metals and Diabetes Traits Among Mexican Americans 

in Starr County, Texas, USA. Biol Trace Elem Res. 2023;201(2):529-538. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.10.07.24315016doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.07.24315016
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

38. Dheer R., Patterson J., Dudash M., Stachler E.N., Bibby K.J., Stolz D.B., Shiva S., 

Wang Z., Hazen S.L., Barchowsky A., Stolz J.F. Arsenic induces structural and 

compositional colonic microbiome change and promotes host nitrogen and amino acid 

metabolism. Toxicol. Appl. Pharmacol. 2015;289:397–408.  

39. Lu K., Abo R.P., Schlieper K.A., Graffam M.E., Levine S., Wishnok J.S., Swenberg J.A., 

Tannenbaum S.R., Fox J.G. Arsenic exposure perturbs the gut microbiome and its 

metabolic profile in mice: an integrated metagenomics and metabolomics 

analysis. Environ. Health Perspect. 2014;122:284–291. 

40. Brabec JL, Wright J, Ly T, Wong HT, McClimans CJ, Tokarev V, Lamendella R, 

Sherchand S, Shrestha D, Uprety S, Dangol B, Tandukar S, Sherchand JB, Sherchan 

SP. Arsenic disturbs the gut microbiome of individuals in a disadvantaged community in 

Nepal. Heliyon. 2020 Jan 31;6(1):e03313. 

41. Krivosheev AB, Kuimov AD, Kondratova, MA, Tuguleva TA. Porphyrin metabolism in 

women with metabolic syndrome. 2014;92(12):49-54. 

42. Choby JE, Skaar EP. Heme Synthesis and Acquisition in Bacterial Pathogens. J Mol 

Biol. 2016;428(17):3408-28. 

43. Frankenberg L, Brugna M, Hederstedt L. Enterococcus faecalis heme-dependent 

catalase. J Bacteriol. 2002;184:6351–6356. 

44. Schauder A, Avital A, Malik Z. Regulation and gene expression of heme synthesis 

under heavy metal exposure--review. J Environ Pathol Toxicol Oncol. 2010;29(2):137-

58. 

45. Daisley BA, Koenig D, Engelbrecht K, Doney L, Hards K, Al KF, Reid G, Burton JP. 

Emerging connections between gut microbiome bioenergetics and chronic metabolic 

diseases. Cell Rep. 2021;37(10):110087. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.10.07.24315016doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.07.24315016
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

46. Wittenbecher C, Guasch-Ferré M, Haslam D, Dennis C, Li J, Bhupathiraju SN, Lee CH, 

Qi Q, Liming L, Eliassen AH, Clish C, Sun Q, Hu FB. Changes in metabolomics profiles 

over ten years and subsequent risk of developing type 2 diabetes: Results from the 

Nurses’ Health Study. eBioMed. 2022;75:103799. 

47. Freidrich N. Metabolomics in diabetes research. Journal of Endocrinology. 

2012;215(1):29-42. 

48. Bao W, Rong Y, Rong S, Liu L. Dietary iron intake, body iron stores, and the risk of type 

2 diabetes: a systematic review and meta-analysis. BMC Med. 2012;10:119. 

49. Agency for Toxic Substances and Disease Registry (ATSDR). Atlanta, GA: U.S. 

Department of Health and Human Services, Public Health Service. Accessed: 2024. 

Available from: atsdr.cdc.gov 

50. Chiang WF, Yang HJ, Lung SC, et al. A comparison of elementary schoolchildren's 

exposure to arsenic and lead. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 

2008;26(3):237-255.  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.10.07.24315016doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.07.24315016
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure Legends 

Table 1. Characteristics of study participants for all sites. Aggregate data of metal 

exposure and cardiometabolic risk factors by site and across the dataset. Count and 

percentage of the population reported for categorical variables. Mean and standard deviation is 

reported for continuous variables. 

 

Figure 1. A-E) Shannon alpha diversity by metals exposure between countries of origin. 

Alpha diversity was significantly distinct by A) high lead exposure in Seychelles and C) high 

cadmium exposure in the US, but no significance existed by site with B) high arsenic exposure 

and D) high mercury exposure. E) Alpha diversity across sites. Alpha diversity is highest in 

Ghana and South Africa, and decreases in Jamaica, Seychelles, and USA. All associations are 

significant except between Jamaica and the US, Ghana and South Africa, and Jamaica and 

Seychelles. F-I) Beta diversity by metals exposure between countries of origin. F) high vs 

low lead exposure was significant for South Africa, Jamaica, Seychelles, and USA. G) High vs 

low arsenic exposure was significant for Ghana, Jamaica, and Seychelles. H) High cadmium 

exposure was significantly different from low exposure for Seychelles and USA. I) High vs low 

mercury exposure was significant for South Africa. Beta diversity was measured by the Bray 

Curtis dissimilarity metric. J-N) Beta diversity across all countries. Across all sites, J) high vs 

low lead exposure and K) high vs. low arsenic exposure were significantly different by 

PERMANOVA (p-value < 0.05) when controlling for country of origin. L) High vs. low cadmium 

exposure and M) mercury exposure were not significant by PERMANOVA (p-value < 0.05) 

when controlling for country of origin. N) Country beta diversity across sites. By 

PERMANOVA, there are significant differences (p-value <0.05) between Ghana and all other 

sites, South Africa and Seychelles, South Africa and USA, Seychelles and USA, Seychelles and 
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Jamaica, and USA and all other sites. **** adjusted p < 0.0001, *** adjusted p<0.001, ** 

adjusted p<0.01, * adjusted p <0.05, ns p >0.05, paired Wilcoxon test. 

 

Figure 2. Differential taxa by metal exposure. A) High lead exposure characterized by 

several taxa. Low lead exposure not characterized by any taxa. Lead denoted as “highpb_all” 

with high lead categorized as “1”; low as “0”. B) High arsenic-exposed communities are unique 

compared with lower exposure. Arsenic is “highas_all” with high arsenic categorized as “1”; 

low as “0”. C) Low mercury-exposed microbial communities were only differentially 

characterized by one taxon. High mercury exposure not characterized by any taxa. Mercury is 

“highhg” with high mercury categorized as “1”; low “0”. 

 

Figure 3. Differential taxa by individual metal exposure and cardiometabolic disease 

(CMD) factors. A) Lead and CMD factors, B) Arsenic and CMD factors, C) Cadmium and 

CMD factors, and D) Mercury and CMD factors. In each linear mixed model, taxa associated 

with metal exposure, diabetes diagnosis (diabetic), obesity diagnosis (obesity), hypertension 

diagnosis (htn), fasting glucose result (glucoseresult), BMI (bmi), systolic blood pressure (sbp), 

and diastolic blood pressure (dbp). Significance was calculated by -log(qval)*sign(coeff). 

 

Figure 4. Percentage of significant taxa jointly associated with individual high metal 

exposure and obesity or diabetes. A) Taxa positively associated with lead exposure jointly 

associated with obesity and diabetes. More lead-associated taxa positively associated with 

diabetes (21% of taxa) than negatively associated (12%) (dark blue). More lead-associated 

taxa also positively associated with obesity (21%) than negatively associated (18%) (dark 

blue). Taxa that decreased abundance with high lead exposure were positively associated with 

a healthy phenotype and negatively associated with obesity (41%) and diabetes (29%) (light 
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blue). B) More arsenic-associated taxa positively associated with diabetes (24%) than 

negatively (10%). 10% of taxa are positively associated with obesity and 14% negatively (dark 

green). Of the taxa that decreased with high arsenic exposure, more positively associated with 

a healthy phenotype and negatively associated with obesity (31%) and diabetes (24%) (light 

green). C) Of the taxa that increased with high cadmium; 4% positively associated with 

diabetes and 23% negatively associated (maroon). 12% of taxa positively associated with 

obesity and 11% negatively associated (maroon). Of the taxa that decreased with high 

cadmium; 23% negatively associated with diabetes and 27% negatively associated with 

obesity (pink). 

 

Figure 5. A) Top 50 taxa associated with all high metals exposures (lead, arsenic, 

cadmium, and mercury) and cardiometabolic factors, controlling for site, sex, and age. 

For the linear mixed model, taxa were associated with high lead exposure (highpb_all), high 

arsenic exposure (highas_all), high cadmium exposure (highcd_all), high mercury exposure 

(highhg), diabetes diagnosis (diabetic), obesity diagnosis (obesity), hypertension diagnosis 

(htn), fasting glucose result (glucoseresult), BMI (bmi), systolic blood pressure (sbp), and 

diastolic blood pressure (dbp), while controlling for sex, age, and site. Significance was 

calculated by -log(qval)*sign(coeff). B) Top functional metabolic pathways. Porphyrin 

metabolism is the most enriched metabolic pathway in the taxa associated with metal 

exposure. Steroid biosynthesis, nucleotide sugars metabolism, vitamin B6 metabolism, 

Thiamine metabolism, and methionine metabolism are all significantly enriched in this group 

(adjusted p value < 0.05). 
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