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A B S T R A C T   

Background: Nonalcoholic fatty liver disease (NAFLD) is common among patients with type 2 diabetes mellitus 
(T2DM) and is associated with increased risk for coronary atherosclerosis and acute cardiovascular (CV) events. 
We employed the validated, non-invasive Angulo NAFLD fibrosis score (FS) in an intervention study in patients 
with T2DM and recent acute coronary syndrome (ACS) to determine the association of FS with CV risk and 
treatment response to apabetalone. Apabetalone is a novel selective inhibitor of the second bromodomain of 
bromodomain and extra-terminal (BET) proteins, epigenetic regulators of gene expression. 
Methods: The Phase 3 BETonMACE trial compared apabetalone with placebo in 2,425 patients with T2DM and 
recent ACS. In this post hoc analysis, we evaluated the impact of apabetalone therapy on CV risk, defined as a 
composite of major adverse cardiovascular events (MACE: CV death, non-fatal myocardial infarction [MI], or 
stroke) and hospitalization for heart failure (HHF) in two patient categories of FS that reflect the likelihood of 
underlying NAFLD. Patients were initially classified into three mutually exclusive categories according to a 
baseline Angulo FS <-1.455 (F0-F2), -1.455 to 0.675 (indeterminant), and >0.675 (F3-F4), where F0 through F4 
connote fibrosis severity none, mild, moderate, severe, and cirrhosis, respectively. The composite of ischemic 
MACE and HHF in the placebo group was higher in indeterminant and F3-F4 categories compared to the F0-F2 
category (17.2% vs 15.0% vs 9.7%). Therefore, for the present analysis, the former two categories were com-
bined into an elevated NAFLD CVD risk group (FS+) that was compared with the F0-F2 group (lower NAFLD risk, 
FS0-2). 
Results: In 73.7% of patients, FS was elevated and consistent with a moderate-to-high likelihood of advanced liver 
fibrosis (FS+); 26.3% of patients had a lower FS (FS0-2). In the placebo group, FS+ patients had a higher 
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incidence of ischemic MACE and HHF (15.4%) than FS0-2 patients (9.7%). In FS+ patients, addition of apabet-
alone to standard of care treatment lowered the rate of ischemic MACE compared with placebo (HR = 0.79; 95% 
CI 0.60-1.05; p=0.10), HHF (HR = 0.53; 95% CI 0.33-0.86; p=0.01), and the composite of ischemic MACE and 
HHF (HR = 0.76; 95% CI 0.59-0.98; p=0.03). In contrast, there was no apparent benefit of apabetalone in FS0-2 
patients (HR 1.24; 95% CI 0.75-2.07; p=0.40; HR 1.12; 95% CI 0.30-4.14; p=0.87; and HR 1.13; 95% CI 0.69- 
1.86; p=0.62, respectively). Over a median duration of 26.5 months, FS increased from baseline in both treat-
ment groups, but the increase was smaller in patients assigned to apabetalone than to placebo (p=0.04). 
Conclusions: Amongst patients with T2DM, recent ACS, and a moderate-to-high likelihood of advanced liver 
fibrosis, apabetalone was associated with a significantly lower rate of ischemic MACE and HHF and attenuated 
the increase in hepatic FS over time.   

1. Introduction 

Nonalcoholic fatty liver disease (NAFLD) is associated with a 2.26- 
fold higher rate of incident coronary artery disease and a 1.42-fold 
higher risk of cardiovascular (CV) mortality, but the reasons for the 
increased cardiovascular disease (CVD) morbidity and mortality are 
poorly understood as are optimal pharmacological targets for reducing 
NAFLD associated CVD [1]. Patients with NAFLD have increased risk for 
coronary artery calcification as well as development of peripheral 
arterial and cerebrovascular disease [2,3]. NAFLD is highly correlated 
with multiple CV risk factors, including increased visceral adiposity, 
insulin resistance, endothelial dysfunction, atherogenic dyslipidemia 
(increased serum levels of triglyceride-enriched remnant lipoproteins, 
low high-density lipoprotein (HDL), and elevations in small, dense 
low-density lipoproteins (LDL)), as well as heightened inflammatory 
tone and a pro-oxidative and prothrombotic state [4–6]. NAFLD is 
highly prevalent in patients who are obese or have metabolic syndrome 
and/or type 2 diabetes mellitus (T2DM) [7,8]. NAFLD is estimated to 
affect 25-30% of the populations of Western nations and its impact on 
the risk for CV events tends to be underestimated [9]. 

Insulin resistance predisposes patients to the development of NAFLD. 
Progressive hepatic steatosis leads sequentially to increased intrahepatic 
inflammation, steatosis, fibrosis, and ultimately can result in cirrhosis 
and end-stage liver disease. It has been shown that inflammation and 
steatosis in the liver correlate with progression of coronary atheroscle-
rosis and increase risk for acute CV events [10]. Hepatic steatosis is 
frequently accompanied by other forms of visceral steatosis, such as 
epicardial fat pad expansion which may act directly and adversely on the 
coronary arteries and myocardium [11]. 

The gold standard for diagnosis of NAFLD is liver biopsy. Non- 
invasive diagnostic techniques include imaging and mechanical testing 
for liver stiffness (Fibroscan), reflecting fibrosis. However, these tech-
niques are not ordinarily incorporated in the design of large CV out-
comes trials. The Angulo fibrosis score (FS) uses 6 readily available 
variables (age, body mass index [BMI], hyperglycemia/diabetes, 
aspartate aminotransferase/alanine aminotransferase [AST/ALT] ratio, 
platelet count, and albumin) to calculate a score using an empiric for-
mula [12]. The score was validated in patients with biopsy-verified 
NAFLD and shown to predict histologically-determined liver fibrosis 
severity with high negative and positive predictive value. These findings 
suggest that the Angulo FS is a useful non-invasive tool to distinguish 
patients with or without advanced fibrosis [12]. 

Apabetalone is a novel selective bromodomain (BD) 2-inhibitor of 
bromodomain and extra-terminal (BET) proteins, epigenetic regulators 
of gene expression. There is evidence in humans that apabetalone 
beneficially impacts the lipid profile, endothelial dysfunction, and fac-
tors that regulate vascular calcification, inflammation, oxidative tone, 
and thrombotic status [13–15]. In vitro, apabetalone increases hepato-
cyte Apolipoprotein A-I (ApoA1), while decreasing the expression of 
genes that populate pro-inflammatory, pro-atherosclerotic, and 
pro-thrombotic pathways, including alkaline phosphatase (ALP) and 
acute phase response (APR) proteins [13,16–18]. Strikingly, chimeric 
mice with humanized livers respond to apabetalone treatment with less 
expression of human hepatocyte APR genes [18], supporting the 

possibility that apabetalone would have favorable effects in patients 
with NAFLD. 

The Phase 3 BETonMACE trial compared apabetalone with placebo 
in 2,425 patients with T2DM and recent acute coronary syndrome 
(ACS). Treatment with apabetalone resulted in hazard ratios (HR) of 
0.82 (p=0.11) for the primary endpoint of ischemic MACE (CV death, 
non-fatal myocardial infarction [MI], or stroke) and 0.59 (p=0.03) for 
the secondary endpoint of hospitalization for heart failure (HHF) [19]. 
In this post hoc analysis of BETonMACE, we evaluated the association of 
the Angulo FS with CVD risk and the effect of apabetalone on the 
composite outcome of ischemic MACE and HHF. 

2. Methods 

2.1. Study design 

The design and primary CVD results of the phase 3 BETonMACE trial 
(https://www.clinicaltrials.gov NCT02586155) have been reported 
[19–24]. The protocol was approved by the responsible institutional 
review board or ethics committee at each participating site. In brief, 
eligible participants had an ACS within 7–90 days prior to randomiza-
tion, a low high-density lipoprotein cholesterol (HDL-C) level, and a 
diagnosis of type 2 diabetes. Exclusion criteria included any condition 
which, in the opinion of the investigator, was likely to prevent the 
subject from complying with the requirements of or completing the 
study. Qualifying patients who provided written, informed consent were 
randomized in a 1:1 ratio to receive apabetalone 100 mg orally twice 
daily or matching placebo, in addition to high-intensity statin therapy 
with atorvastatin or rosuvastatin and other clinically defined standard of 
care. The primary outcome was time to the first occurrence of ischemic 
MACE, defined as a composite of CV death, non-fatal MI, and stroke. The 
incidence and time to first occurrence of HHF were secondary outcomes. 

The analysis population for the previously reported primary results 
was applied to the current analyses, consisting of all randomized pa-
tients who received any amount of study therapy. 

2.2. FS measurements 

The Angulo FS is calculated as FS = -1.675 + (0.037*age [years]) +
(0.094*BMI [kg/m2]) + (1.13*hyperglycemia/diabetes [yes=1, no=0]) 
+ (0.99*AST/ALT ratio) – (0.013*platelet count [×109/L]) – (0.66*al-
bumin [g/dl]) [12]. Height was measured at baseline. Weight was 
measured at baseline, week 100, and last visit on treatment. For the 
purpose of calculating BMI, the last observations for height and weight 
were carried forward until the next scheduled measurements were ob-
tained. Liver function tests including AST, ALT, and ALP were obtained 
at baseline and every 2 weeks until week 12, then every 4 weeks until 
week 28, then every 12 weeks until last visit on treatment. Other 
biochemical measurements including platelet count and albumin were 
obtained at baseline, week 24, week 52, and every 24 weeks until last 
visit on treatment. All parameter measurements were performed by a 
central laboratory (ICON, Farmingdale, New York). FS scores were 
consequently assigned to windows corresponding to baseline (last score 
prior to randomization) and 0.5 (13 to <39 weeks), 1 (39 to <65 weeks), 
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1.5 (65 to <91 weeks), 2 (91 to <117 weeks) and 2.5 years (≥117 
weeks) after randomization; if a patient had multiple values within a 
given post-baseline window, the first score was included in the analyses. 

Patients were initially classified into three mutually exclusive cate-
gories according to a baseline Angulo FS <-1.455 (F0-F2), -1.455 to 
0.675 (indeterminant), and >0.675 (F3-F4), where F0 through F4 
connote fibrosis severity none, mild, moderate, severe, and cirrhosis, 
respectively. The composite of ischemic MACE and HHF in the placebo 
group was higher in indeterminant and F3-F4 categories compared to 
the F0-F2 category (17.2% vs 15.0% vs 9.7%). Therefore, for the present 
analysis, the former two categories were combined into an elevated 
NAFLD CVD risk group (FS+) that was compared with the F0-F2 group 
(lower NAFLD risk, FS0-2). 

2.3. Statistical analysis 

Baseline characteristics were summarized for all patients who had FS 
data at baseline by FS category (FS+ vs. FS0-2) and further by assigned 
treatment group. Data were expressed as counts and percentages for 
categorical variables, mean (standard deviation [SD]) for approximately 
normal data, or median (interquartile range [IQR]) for non-normal 

continuous variables. Group comparisons were performed by chi- 
square tests for categorical variables, z-tests for normal continuous 
variables, and non-parametric Mann Whitney Wilcoxon tests for non- 
normal continuous variables. 

Change in FS over time was analyzed by a repeated-measures mixed- 
effects model with absolute change from baseline as the outcome, 
random effects for intercept and baseline FS score, and fixed effects for 
treatment group and time, yielding least square (LS) means and corre-
sponding 95% confidence intervals (CIs) for each treatment group and p- 
values for treatment group differences. Change in FS score was also 
modeled jointly with time to all-cause death as a sensitivity analysis to 
account for competing risk. LS means and p-values at each timepoint 
(0.5, 1, 1.5, 2, and 2.5 years after randomization) were determined by 
interaction terms between treatment and time. Results were also 
generated for subgroups defined by baseline FS category. 

Possible heterogeneity in relative and absolute effects of apabetalone 
treatment on ischemic MACE and HHF end points were assessed ac-
cording to baseline FS category. We constructed a Cox proportional 
hazards model with risk group, treatment, and their interaction as pre-
dictors. Absolute risk reductions (ARRs) were calculated in terms of 
events per 100 patient-years of follow-up, with a test for quantitative 

Fig. 1. Patient Flow in the FS subgroups of the BETonMACE trial comparing apabetalone versus placebo.  
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interaction between risk group and treatment. Changes in biochemical 
parameters from baseline to each individual measured time point were 
analyzed using analysis of covariance models (ANCOVA) with baseline 
measurements serving as covariates. Results from the ANCOVA analyses 
are reported as least squares (LS) means with standard error. Analyses 
were performed with R software, version 3.5.1 or higher (R Foundation 

for Statistical Computing). P-values less than 0.05 were considered 
statistically significant without adjustment for multiplicity in this post- 
hoc analysis. 

Table 1 
Demographics, clinical, pharmacologic, and laboratory characteristics of the BETonMACE trial participants at baseline, according to assigned treatment group, and FS 
category.   

Full Study Cohort According to Assigned Treatment Group(n = 2,347) Full Study Cohort According to FS Category(n = 2,347) 
Placebo Apabetalone p-value FS0-2 Patients FS+ Patients p-value 

Number of Participants 1,167 1,180 – 618 1,729 – 
Fibrosis Score -0.72 (1.29) -0.81 (1.33) 0.10 -2.40 (0.97) -0.17 (0.83) <0.0001 
F0 – F2 290 (24.9%) 328 (27.8%) 0.12 618 (100%) – – 
Indeterminant range 732 (62.7%) 708 (60.0%) 0.19 – 1,440 (83.3%) – 
F3 – F4 145 (12.4%) 144 (12.2%) 0.92 – 289 (16.7%) – 
Demographics   
Age, years 62 (55.5 – 68) 62 (55 – 68) 0.07 57 (49 – 62) 63 (57 – 69) <0.0001 
Female, n (%) 301 (25.8%) 295 (25.0%) 0.69 148 (23.9%) 448 (25.9%) 0.36 
White, n (%) 1,018 (87.2%) 1,036 (87.8%) 0.73 513 (83.0%) 1,541 (89.1%) 0.0001 
Asian, n (%) 19 (1.6%) 20 (1.7%) 0.97 14 (2.3%) 25 (1.4%) 0.24 
Other race, n (%) 130 (11.1%) 124 (10.5%) 0.67 91 (14.7%) 163 (9.4%) 0.0004 
Body mass index, kg/m2 30.3 (5.0) 30.2 (4.8) 0.53 28.6 (4.2) 30.8 (5.0) <0.0001 
Hypertension history, n (%) 1,059 (90.7%) 1,083 (91.8%) 0.42 510 (82.5%) 1,566 (90.6%) <0.0001 
Smoking status, n (%) 125 (10.7%) 147 (12.5%) 0.21 89 (14.4%) 176 (10.2%) 0.006 
Diabetes duration, years 8.7 (7.6) 8.4 (7.6) 0.45 7.3 (6.9) 9.0 (7.8) <0.0001 
Blood Pressure, mm Hg   
Systolic 130 (120 – 140) 130 (120 – 140) 0.57 125 (116 – 135) 130 (120 – 140) <0.0001 
Diastolic 77 (70 – 82) 78 (70 – 82) 0.62 76 (70 – 81) 78 (70 – 82) 0.09 
Index ACS   
Myocardial infarction, n (%) 865 (74.8%) 862 (73.2%) 0.41 506 (82.4%) 1,221 (71.0%) <0.0001 
NSTEMI, n (%) 403 (46.8%) 401 (46.8%) 0.97 189 (37.4%) 615 (50.7%) <0.0001 
STEMI, n (%) 458 (53.2%) 456 (53.2%) 0.97 317 (62.6%) 597 (49.3%) <0.0001 
Unstable angina, n (%) 291 (25.2%) 315 (26.8%) 0.41 108 (17.6%) 498 (29.0%) <0.0001 
Time from index ACS, days 38 (25 – 62) 38 (25 – 63) 0.48 31 (23 – 56) 40 (26 – 64) <0.0001 
Cardiovascular Medications   
Atorvastatin, n (%) 599 (51.3%) 600 (50.8%) 0.85 299 (48.4%) 900 (52.1%) 0.13 
Rosuvastatin, n (%) 568 (48.7%) 580 (49.2%) 0.85 319 (51.6%) 829 (47.9%) 0.13 
Intensive statin therapy, n (%) 1,067 (91.4%) 1,067 (90.4%) 0.44 561 (90.8%) 1,573 (91.0%) 0.95 
Ezetimibe, n (%) 30 (2.6%) 32 (2.7%) 0.93 18 (2.9%) 44 (2.5%) 0.73 
ACE inhibitors or ARB, n (%) 1,073 (91.9%) 1,089 (92.3%) 0.82 557 (90.1%) 1,605 (92.8%) 0.04 
Beta-blockers, n (%) 1,052 (90.1%) 1,076 (91.2%) 0.43 549 (88.8%) 1,579 (91.3%) 0.08 
Antiplatelet agents, n (%) 1,156 (99.1%) 1,164 (98.6%) 0.46 612 (99.0%) 1,708 (98.8%) 0.79 
Diabetes Medications   
Metformin, n (%) 958 (82.1%) 981 (83.1%) 0.54 530 (85.8%) 1,409 (81.5%) 0.02 
Insulin, n (%) 446 (38.2%) 437 (37.0%) 0.58 237 (38.3%) 646 (37.4%) 0.70 
Sulfonylureas, n (%) 332 (28.4%) 359 (30.4%) 0.32 163 (26.4%) 528 (30.5%) 0.06 
DPP4 inhibitors, n (%) 170 (14.6%) 177 (15.0%) 0.81 98 (15.9%) 249 (14.4%) 0.42 
SGLT2 inhibitors, n (%) 142 (12.2%) 146 (12.4%) 0.93 82 (13.3%) 206 (11.9%) 0.42 
GLP1 receptor agonists, n (%) 43 (3.7%) 40 (3.4%) 0.78 25 (4.0%) 58 (3.4%) 0.50 
Biochemical Parameters   
eGFR, mL/min/1.73 m2 97.3 (75.2 – 125.1) 99.8 (77.3 – 127.1) 0.08 106.4 (79.5 – 133.9) 95.8 (74.5 – 123.3) <0.0001 
HbA1c, % 7.3 (6.4 – 8.6) 7.4 (6.4 – 8.7) 0.36 7.6 (6.5 – 9.0) 7.3 (6.4 – 8.5) 0.0001 
Serum glucose, mg/dL 132.9 (109.9 – 174.2) 136.4 (110.6 – 175.3) 0.33 133.1 (109.3 – 172.9) 135.7 (110.8 – 175.5) 0.32 
Total cholesterol, mg/dL 129.9 (111.9 – 155.6) 128.4 (109.4 – 155.2) 0.33 129.2 (112.5 – 153.8) 129.5 (109.8 – 157.0) 0.83 
LDL cholesterol, mg/dL 65.0 (48.6 – 85.5) 65.0 (49.1 – 85.1) 0.89 65.0 (50.3 – 82.0) 65.2 (48.3 – 86.2) 0.97 
HDL cholesterol, mg/dL 33.6 (30.2 – 37.1) 33.3 (29.8 – 37.1) 0.78 32.9 (29.8 – 36.7) 33.6 (30.2 – 37.1) 0.008 
Triglycerides, mg/dL 150.6 (115.1 – 201.9) 147.0 (111.6 – 198.4) 0.14 150.1 (113.6 – 205.5) 147.5 (112.5 – 198.4) 0.25 
Alkaline phosphatase, U/L 77.0 (64.0 – 93.0) 78.0 (64.0 – 95.0) 0.38 82.0 (68.0 – 101.8) 76.0 (63.0 – 92.0) <0.0001 
Alanine aminotransferase, U/L 22.0 (17.0 – 30.0) 22.0 (17.0 – 31.0) 0.58 25.0 (18.0 – 34.0) 21.0 (16.0 – 29.0) <0.0001 
Aspartate aminotransferase, U/L 19.0 (15.0 – 23.0) 19.0 (15.0 – 23.0) 0.61 18.0 (15.0 – 22.8) 19.0 (15.0 – 23.0) 0.07 
AST / ALT, ratio 0.82 (0.69 – 1.00) 0.82 (0.69 – 1.00) 0.73 0.73 (0.62 – 0.88) 0.86 (0.71 – 1.06) <0.0001 
Albumin, g/L 43.0 (41.0 – 45.0) 43.0 (41.0 – 45.0) 0.58 43.0 (41.0 – 45.0) 43.0 (41.0 – 44.0) <0.0001 
Platelets, 109/L 246.0 (206.0 – 296.5) 252.0 (209.0 – 306.0) 0.10 337.5 (295.0 – 385.0) 228.0 (194.0 – 262.0) <0.0001 
Total bilirubin, umol/L 9.2 (6.9 – 12.1) 9.1 (6.8 – 11.9) 0.53 8.3 (6.4 – 11.0) 9.4 (7.1 – 12.4) <0.0001 
hsCRP, mg/L 2.7 (1.1 – 6.1) 

[n = 238] 
3.0 (1.3 – 6.2) 
[n = 237] 

0.52 3.7 (1.3 – 7.0) 
[n = 124] 

2.7 (1.2 – 5.7) 
[n = 351] 

0.16 

NLR, ratio 2.6 (2.0 – 3.3) 2.5 (2.0 – 3.3) 0.09 2.6 (2.0 – 3.3) 2.5 (2.0 – 3.4) 0.21 

Abbreviations: FS, fibrosis score; FS0-2, F0 – F2 fibrosis; FS+, indeterminant range or F3 – F4 fibrosis; NSTEMI, non-ST segment elevation myocardial infarction; STEMI, 
ST-segment elevation myocardial infarction; ACS, acute coronary syndrome; ACE, angiotensin-converting enzyme; ARB, Angiotensin II receptor blocker; DPP4, 
dipeptidyl peptidase 4; SGLT2, sodium-glucose cotransporter 2; GLP1, glucagon-like peptide 1; HbA1c, hemoglobin A1C; LDL, low-density lipoprotein; HDL, high- 
density lipoprotein; AST, aspartate aminotransferase; ALT, alanine aminotransferase; hsCRP, high-sensitivity C-reactive protein; NLR, neutrophil-lymphocyte ratio. 
Categorical variables are presented as n (%). Continuous variables are presented as mean (SD) for normal data or median (quartile 1–quartile 3) for non-normal data. 
P-values comparing groups at baseline were calculated using chi-square test for categorical variables, z-test for normal continuous variables, and Mann-Whitney 
Wilcoxon test for non-normal continuous variables. P-values of <0.05 are considered statistically significant and are highlighted in bold. 
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3. Results 

3.1. Demographic features 

The BETonMACE trial randomized 2,425 patients to either apabet-
alone or placebo at 190 sites in 13 countries between November 2015 

and July 2018. As shown in Fig. 1, after excluding 7 participants who 
were randomized in error and an additional 71 participants for whom FS 
could not be calculated, 2,347 participants were included in this anal-
ysis. These participants received at minimum one dose of study drug and 
were followed for a median of 26.5 months. The analysis cohort included 
1,729 (73.7%) patients categorized as FS+ with a mean (SD) FS -0.17 

Table 2 
Demographics, clinical, pharmacologic, and laboratory characteristics of the BETonMACE trial participants at baseline, according to FS category and assigned 
treatment group.   

FS0-2 Patients According to Assigned Treatment Group (n = 618) FS+ Patients According to Assigned Treatment Group (n = 1,729) 
Placebo Apabetalone p-value Placebo Apabetalone p-value 

Number of Participants 290 328 – 877 852 – 
Fibrosis Score -2.39 (0.98) -2.42 (0.96) 0.72 -0.16 (0.82) -0.19 (0.84) 0.57 
F0 – F2 290 (100%) 328 (100%) – – – – 
Indeterminant range – – – 732 (83.5%) 708 (83.1%) – 
F3 – F4 – – – 145 (16.5%) 144 (16.9%) – 
Demographics   
Age, years 56 (50 – 62) 57 (49 – 62) 0.97 64 (58 – 70) 63 (57 – 69) 0.12 
Female, n (%) 69 (23.8%) 79 (24.1%) 0.99 232 (26.5%) 216 (25.4%) 0.64 
White, n (%) 231 (79.7%) 282 (86.0%) 0.048 787 (89.7%) 754 (88.5%) 0.45 
Asian, n (%) 9 (3.1%) 5 (1.5%) 0.30 10 (1.1%) 15 (1.8%) 0.38 
Other race, n (%) 50 (17.2%) 41 (12.5%) 0.12 80 (9.1%) 83 (9.7%) 0.72 
Body mass index, kg/m2 28.5 (4.3) 28.7 (4.1) 0.65 30.9 (5.1) 30.7 (4.9) 0.57 
Hypertension history, n (%) 238 (82.1%) 272 (82.9%) 0.86 782 (89.2%) 784 (92.0%) 0.052 
Smoking status, n (%) 36 (12.4%) 53 (16.2%) 0.23 84 (9.6%) 92 (10.8%) 0.45 
Diabetes duration, years 7.3 (7.1) 7.4 (6.7) 0.90 9.1 (7.8) 8.8 (7.9) 0.45 
Blood Pressure, mm Hg   
Systolic 125 (116 – 136) 124 (115 – 134) 0.28 130 (120 – 140) 130 (120 – 140) 0.70 
Diastolic 75 (70 – 80) 77 (70 – 81) 0.43 78 (70 – 82) 78 (70 – 82) 0.89 
Index ACS   
Myocardial infarction, n (%) 242 (84.6%) 264 (80.5%) 0.22 623 (71.6%) 598 (70.4%) 0.63 
NSTEMI, n (%) 92 (38.0%) 97 (36.7%) 0.84 311 (50.2%) 304 (51.3%) 0.77 
STEMI, n (%) 150 (62.0%) 167 (63.3%) 0.84 308 (49.8%) 289 (48.7%) 0.77 
Unstable angina, n (%) 44 (15.4%) 64 (19.5%) 0.22 247 (28.4%) 251 (29.6%) 0.63 
Time from index ACS, days 32 (24 – 56) 31 (23 – 56) 0.64 41 (27 – 63) 40 (26 – 65) 0.67 
Cardiovascular Medications   
Atorvastatin, n (%) 146 (50.3%) 153 (46.6%) 0.40 453 (51.7%) 447 (52.5%) 0.77 
Rosuvastatin, n (%) 144 (49.7%) 175 (53.4%) 0.40 424 (48.3%) 405 (47.5%) 0.77 
Intensive statin therapy, n (%) 265 (91.4%) 296 (90.2%) 0.73 802 (91.4%) 771 (90.5%) 0.54 
Ezetimibe, n (%) 6 (2.1%) 12 (3.7%) 0.35 24 (2.7%) 20 (2.3%) 0.72 
ACE inhibitors or ARB, n (%) 261 (90.0%) 296 (90.2%) 0.97 812 (92.6%) 793 (93.1%) 0.76 
Beta-blockers, n (%) 248 (85.5%) 301 (91.8%) 0.02 804 (91.7%) 775 (91.0%) 0.66 
Antiplatelet agents, n (%) 288 (99.3%) 324 (98.8%) 0.80 868 (99.0%) 840 (98.6%) 0.61 
Diabetes Medications   
Metformin, n (%) 243 (83.8%) 287 (87.5%) 0.23 715 (81.5%) 694 (81.5%) 0.98 
Insulin, n (%) 107 (36.9%) 130 (39.6%) 0.54 339 (38.7%) 307 (36.0%) 0.28 
Sulfonylureas, n (%) 77 (26.6%) 86 (26.2%) 1.00 255 (29.1%) 273 (32.0%) 0.20 
DPP4 inhibitors, n (%) 50 (17.2%) 48 (14.6%) 0.44 120 (13.7%) 129 (15.1%) 0.43 
SGLT2 inhibitors, n (%) 40 (13.8%) 42 (12.8%) 0.81 102 (11.6%) 104 (12.2%) 0.77 
GLP1 receptor agonists, n (%) 10 (3.4%) 15 (4.6%) 0.61 33 (3.8%) 25 (2.9%) 0.41 
Biochemical Parameters   
eGFR, mL/min/1.73 m2 105.2 (78.7 – 135.7) 107.6 (80.3 – 132.5) 0.80 94.6 (72.5 – 122.1) 97.1 (75.8 – 125.1) 0.09 
HbA1c, % 7.6 (6.5 – 9.0) 7.7 (6.5 – 9.1) 0.77 7.2 (6.4 – 8.5) 7.3 (6.4 – 8.5) 0.49 
Serum glucose, mg/dL 131.4 (110.6 – 177.5) 134.1 (108.3 – 168.9) 0.92 133.5 (109.9 – 173.5) 136.9 (111.5 – 176.9) 0.20 
Total cholesterol, mg/dL 127.8 (114.2 – 152.8) 130.9 (110.1 – 154.3) 0.75 130.7 (110.6 – 157.8) 127.4 (109.4 – 155.5) 0.20 
LDL cholesterol, mg/dL 63.8 (50.0 – 78.9) 66.1 (50.7 – 84.1) 0.31 65.4 (48.0 – 86.5) 65.0 (48.3 – 86.2) 0.47 
HDL cholesterol, mg/dL 32.5 (29.4 – 37.0) 32.9 (29.8 – 36.3) 0.76 33.6 (30.2 – 37.1) 33.6 (29.8 – 37.1) 0.71 
Triglycerides, mg/dL 149.7 (119.6 – 206.6) 151.0 (111.4 – 205.5) 0.68 150.6 (114.3 – 200.4) 145.3 (111.6 – 195.7) 0.13 
Alkaline phosphatase, U/L 82.5 (69.0 – 102.0) 81.0 (67.8 – 101.0) 0.55 76.0 (62.0 – 91.0) 77.0 (63.0 – 93.0) 0.22 
Alanine aminotransferase, U/L 25.0 (18.0 – 34.0) 25.0 (18.0 – 34.0) 0.95 22.0 (16.0 – 29.0) 21.0 (16.0 – 29.0) 0.32 
Aspartate aminotransferase, U/L 18.0 (15.0 – 22.0) 19.0 (15.0 – 23.0) 0.41 19.0 (15.0 – 23.0) 19.0 (15.0 – 23.0) 0.88 
AST / ALT, ratio 0.73 (0.62 – 0.88) 0.73 (0.62 – 0.89) 0.69 0.86 (0.71 – 1.06) 0.87 (0.72 – 1.07) 0.53 
Albumin, g/L 43.0 (41.0 – 46.0) 43.0 (41.0 – 45.0) 0.95 43.0 (41.0 – 44.0) 43.0 (41.0 – 44.0) 0.42 
Platelets, 109/L 332.0 (293.0 – 384.8) 340.5 (299.8 – 385.0) 0.34 228.0 (189.0 – 262.0) 228.0 (196.0 – 262.0) 0.73 
Total bilirubin, umol/L 8.0 (6.4 – 11.0) 8.6 (6.4 – 10.9) 0.38 9.5 (7.1 – 12.4) 9.3 (7.0 – 12.3) 0.34 
hsCRP, mg/L 4.0 (1.3 – 7.4) 

[n = 61] 
3.7 (1.3 – 6.8) 
[n = 63] 

0.77 2.3 (1.1 – 5.6) 
[n = 177] 

3.0 (1.3 – 5.7) 
[n = 174] 

0.38 

NLR, ratio 2.7 (2.1 – 3.5) 2.4 (1.9 – 3.2) 0.001 2.5 (1.9 – 3.3) 2.6 (2.0 – 3.4) 0.79 

Abbreviations: FS, fibrosis score; FS0-2, F0 – F2 fibrosis; FS+, indeterminant range or F3 – F4 fibrosis; NSTEMI, non-ST segment elevation myocardial infarction; STEMI, 
ST-segment elevation myocardial infarction; ACS, acute coronary syndrome; ACE, angiotensin-converting enzyme; ARB, Angiotensin II receptor blocker; DPP4, 
dipeptidyl peptidase 4; SGLT2, sodium-glucose cotransporter 2; GLP1, glucagon-like peptide 1; HbA1c, hemoglobin A1C; LDL, low-density lipoprotein; HDL, high- 
density lipoprotein; AST, aspartate aminotransferase; ALT, alanine aminotransferase; hsCRP, high-sensitivity C-reactive protein; NLR, neutrophil-lymphocyte ratio. 
Categorical variables are presented as n (%). Continuous variables are presented as mean (SD) for normal data or median (quartile 1–quartile 3) for non-normal data. 
P-values comparing groups at baseline were calculated using chi-square test for categorical variables, z-test for normal continuous variables, and Mann-Whitney 
Wilcoxon test for non-normal continuous variables. P-values of <0.05 are considered statistically significant and are highlighted in bold. 
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(0.83), and 618 (26.3%) patients categorized as FS0-2 with FS -2.40 
(0.97). Patient flow through the trial by FS category and treatment 
assignment is depicted in Fig. 1. 

Patients with FS+ scores compared to those with FS0-2 scores were 
older by approximately 6 years, more likely to be White (89.1 vs 83.0%), 
had higher BMI (30.8 vs 28.6), were more likely to be hypertensive (90.6 
vs 82.5%), had higher systolic blood pressure (5 mm Hg between group 
difference), were less likely to smoke (10.2 vs 14.7%), and had longer 
duration of T2DM (7.8 vs 6.9 years from diagnosis) (Table 1). There 
were no clinically meaningful differences between FS categories for 
cardiovascular or diabetes medication usage. Although there were some 
statistically significant between-group differences in specific blood 
chemistries (glycated hemoglobin (HbA1c), HDL-C, ALP, ALT, and total 
bilirubin), these differences were small and unlikely to be clinically 
significant. Among FS0-2 participants considered by treatment alloca-
tion, there were small but significant imbalances in percentage who 
were White and among those using beta-blockers (Table 2). Among FS+
participants, there were no discernible baseline differences by treatment 
allocation. 

3.2. Impact of apabetalone on cardiovascular outcomes in FS+ and FS0-2 
participants 

In the placebo group, the incidence of ischemic MACE and HHF was 
greater among patients categorized as FS+ (15.4%) compared to those 
categorized as FS0-2 (9.7%) (Table 3). As shown in Table 3 and Figs. 2–4, 
the addition of apabetalone to standard of care treatment lowered the 
rate of ischemic MACE in FS+ patients (HR = 0.79; 95% CI 0.60-1.05; 
p=0.10) (Fig. 2), HHF (HR = 0.53; 95% CI 0.33-0.86; p=0.01) 
(Fig. 3), and the composite of ischemic MACE and HHF (HR = 0.76; 95% 
CI 0.59-0.98; p=0.03) (Fig. 4). In contrast, there was no apparent benefit 
of apabetalone in FS0-2 patients [HR 1.24, 95% CI 0.75-2.07, p=0.40; HR 
1.12, 95% CI 0.30-4.14, p=0.87; and HR 1.13, 95% CI 0.69-1.86, 
p=0.62 for ischemic MACE (Fig. 2), HHF (Fig. 3), and the composite 
of ischemic MACE and HHF (Fig. 4), respectively]. The interaction p- 
values of treatment and FS category on risk of ischemic MACE, HHF, and 
the composite of ischemic MACE and HHF were 0.14, 0.28, and 0.16, 
respectively (Table 3). 

3.3. Changes in FS over time 

At baseline, there were no significant differences in FS score between 
patients assigned to apapbetalone or placebo in either FS category 

(Table 2). We followed change in FS over time to explore if and how 
apabetalone influences the score and whether FS associates with the 
clinical efficacy of apabetalone. Among the patients with a baseline 
score, 2,142 had at least one post-baseline score and were therefore 
included in the analyses of change. The LS mean change in FS from 
baseline to 2.5 years are summarized in Fig. 5A for the full analysis 
cohort, and in Fig. 5B and 5C for the FS+ and FS0-2 categories respec-
tively. At 0.5-years, participants in both treatment groups of both FS 
categories showed increases in FS that were primarily attributable to 
increased AST (Supplementary Tables S1-S4). The increase from base-
line was smaller in the FS+ category than in the FS0-2 category. After the 
0.5-year timepoint, FS remained relatively stable in both treatment 
groups of both FS categories. However, over the course of the trial, 
considering the full study cohort, the increase in FS from baseline was 
significantly smaller in patients assigned to apabetalone treatment than 
in those assigned to placebo (p=0.04, Fig. 5A). This reflected a signifi-
cantly smaller increase in FS from baseline with apabetalone than with 
placebo in the FS+ category (p=0.02, Fig. 5B), with no difference be-
tween treatment groups in the change in FS from baseline in the FS0-2 
category (p=0.62, Fig. 5C). The factor that primarily accounted for 
smaller increases in FS from baseline with apabetalone than placebo in 
the full analysis cohort and in the FS+ category was a smaller increase in 
AST/ALT ratio (Supplementary Tables S1-S4). 

3.4. Safety 

Overall, 68% of the analysis cohort reported at least one adverse 
event, and 28% reported at least one serious adverse event. There were 
no discernible imbalances between FS categories or treatment groups 
(Table 4). Slightly more patients in the FS+ and FS0-2 categories dis-
continued apabetalone than placebo (Table 5). There was a small excess 
in the number of patients with alanine aminotransferase elevations in 
the apabetalone group apparent in both FS categories (Table 5). There 
was no apparent imbalance in aspartate aminotransferase or gamma- 
glutamyltransferase elevations. Apabetalone therapy did not correlate 
with increased risk for diabetes, hypertension, diarrhea, or any type of 
chest pain. 

4. Discussion 

In this post hoc analysis of the BETonMACE trial we calculated the 
Angulo FS, originally developed as a non-invasive surrogate for histo-
logic liver fibrosis changes in NAFLD, based on the rationale that post- 

Table 3 
Kaplan-Meier estimates of time to first occurrence of ischemic MACE (CV death, non-fatal MI, or stroke), HHF, and the composite of ischemic MACE and HHF, ac-
cording to FS category and assigned treatment group. A log-rank test was used for the formal hypothesis testing and a Cox proportional hazards model to estimate the 
HR with 95% CI. P-values of <0.05 are considered statistically significant.   

FS0-2 Patients According to Assigned Treatment 
Group (n = 618) 

FS+ Patients According to Assigned Treatment 
Group (n = 1,729) 

Cox Model Interaction p- 
valueof HR 

Placebo 
(n=290) 

Apabetalone 
(n=328) 

p- 
value 

Placebo 
(n=877) 

Apabetalone 
(n=852) 

p- 
value 

Ischemic MACE 
(CV Death, 
Non-Fatal MI, or 
Stroke) 

No. of Events 
(%) 

25 (8.6%) 34 (10.4%) – 114 (13.0%) 90 (10.6%) – – 

HR (95% CI) 1.24 (0.75 – 2.07) 0.40 0.79 (0.60 – 1.05) 0.10 0.14 

HHF No. of Events 
(%) 

4 (1.4%) 5 (1.5%) – 43 (4.9%) 22 (2.6%) – – 

HR (95% CI) 1.12 (0.30 – 4.14) 0.87 0.53 (0.33 – 0.86) 0.01 0.28 
Composite of Ischemic 

MACE 
and HHF 

No. of Events 
(%) 

28 (9.7%) 35 (10.7%) – 135 (15.4%) 102 (12.0%) – – 

HR (95% CI) 1.13 (0.69 – 1.86) 0.62 0.76 (0.59 – 0.98) 0.03 0.16 

Abbreviations: MACE, major adverse cardiovascular events; CV, cardiovascular; HHF, hospitalization for heart failure; FS, fibrosis score; FS0-2, F0 – F2 fibrosis; 
FS+, indeterminant range or F3 – F4 fibrosis; HR, hazard ratio; CI, confidence interval. 
Cox model interaction p-values of HR indicate differences by FS category in the effect of apabetalone on HR. 
Categorical variables are presented as n (%). 
P-values for categorical variables were calculated using chi-square test. 
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ACS T2DM patients are likely to have NAFLD. Strikingly, 73.7% of pa-
tients with T2DM and recent ACS had scores consistent with a moderate 
to high likelihood of advanced liver fibrosis, while only 26.3% had 
scores consistent with a low likelihood of advanced fibrosis [12]. 
Moreover, the baseline Angulo FS identified patients who were at high 
risk for further CV events despite proven, standard-of-care therapies. 
Importantly, patients with an elevated baseline FS were at a higher risk 
of ischemic MACE and HHF and showed a CV benefit from treatment 
with apabetalone, while no such benefit was apparent among those with 
lower baseline FS. 

With recognition that the interaction of treatment and FS category on 
the composite of ischemic MACE and HHF was not statistically signifi-
cant, a greater treatment benefit of apabetalone in FS+ patients is 
plausible because FS+ patients were older, had a higher prevalence of 
hypertension, and had a longer duration of diabetes. Each of these 
characteristics is associated both with elevated CV risk and with 
increased BET dysregulation and heightened response to BET-inhibition 
treatment [25–30]. 

Several studies have found that high FS associates with incidence of 
coronary heart disease [31,32] as well as the angiographic complexity 
[33–35], risk of MACE [34,36], and death [37] in patients with 

established coronary heart disease. In an analysis of the IMPROVE-IT 
trial that compared ezetimibe with placebo in patients with ACS 
treated with simvastatin [36], high FS (>0.67, n=2,106) vs low FS 
(<-1.455, n=5,440) was associated with 30% increased risk of MACE. 
Analogous to the findings for apabetalone in the current analysis, the 
data from IMPROVE-IT suggested that high FS was an effect modifier for 
the benefit of ezetimibe. In patients with high FS, ezetimibe conferred a 
3.7% absolute reduction in risk of MACE compared to placebo (HR 0.85 
[0.74-0.98]), while no benefit of ezetimibe was evident in the low FS 
group (HR 1.01 [0.91-1.12]; p-interaction = 0.053) [36]. 

The observed benefit of apabetalone in patients with high FS, serving 
as a surrogate for NAFLD, may be important as the already-high prev-
alence of NAFLD is predicted to increase across populations in the 
future, augmenting the need for effective, targeted treatments [38–43]. 
Although no drugs are currently approved for treating NAFLD, PPAR 
activators, which may also favorably influence a dysregulated tran-
scriptional profile, have shown promise [44,45]. In addition, exercise, 
weight loss, and bariatric surgery have been shown to regress steatosis 
or even resolve distorted hepatic cellular architecture [46–50]. 
Considerable investigation is ongoing worldwide to find safe and effi-
cacious therapies to treat NAFLD so as to prevent hepatic injury and 

Fig. 2. Kaplan-Meier estimate of time to first occurrence of ischemic MACE (CV death, non-fatal MI, or stroke) in (A): FS+ patients; and, (B): FS0-2 patients. A log- 
rank test was used for the formal hypothesis testing. A Cox proportional hazards model was used to estimate the HR with 95% CI. P-values of <0.05 are considered 
statistically significant. 

Fig. 3. Kaplan-Meier estimate of time to first occurrence of HHF in (A): FS+ patients; and, (B): FS0-2 patients. A log-rank test was used for the formal hypothesis 
testing. A Cox proportional hazards model was used to estimate the HR with 95% CI. P-values of <0.05 are considered statistically significant. 
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Fig. 4. Kaplan-Meier estimate of time to first occurrence of the composite of ischemic MACE (CV death, non-fatal MI, or stroke) and HHF in (A): FS+ patients; and, 
(B): FS0-2 patients. A log-rank test was used for the formal hypothesis testing. A Cox proportional hazards model was used to estimate the HR with 95% CI. P-values of 
<0.05 are considered statistically significant. 

Fig. 5. Change in FS over time in (A): the full study cohort, according to assigned treatment group; (B): FS+ patients, according to assigned treatment group; and, 
(C): FS0-2 patients, according to assigned treatment group. Change in FS over was analyzed using a repeated-measures mixed-effects model with absolute change from 
baseline as the outcome, random effects for intercept and baseline FS score, and fixed effects for treatment group and time, modeled jointly with time to all-cause 
death as a sensitivity to account for competing risk. Data are presented as least squares (LS) means with 95% confidence intervals (CI). LS means and p-values at each 
timepoint were determined by interaction terms between treatment and time. P-values of <0.05 are considered statistically significant. 
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attenuate risk for CVD. Many classes of drugs are being tested for effi-
cacy and safety [51–53]. 

The observation that FS was lower under treatment with the BET 
protein inhibitor apabetalone compared with placebo in FS+ patients is 
novel. However, the difference in FS between treatment groups was 
small. Further studies are needed to determine if a favorable effect of 
apabetalone on FS is accompanied by favorable changes in hepatic im-
aging, mechanical properties, or histology, whether parallel reductions 
in steatosis are observed in extra-hepatic tissues including the heart [54, 
55], in turn whether reducing steatosis-driven inflammation attenuates 
the risk of CVD events [56,57]. 

Epigenetic BET-inhibition by apabetalone may constitute a novel 
approach to slow or even stop the progression of hepatic steatosis and 
fibrosis, and may explain the CVD reduction by apabetalone observed in 
the FS+ category. Inflammatory stimuli drive human hepatocyte over-
expression of acute phase reactants in vitro, creating a positive feedback 
loop that can promote local liver and systemic inflammation. By pre-
venting BET protein – chromatin associations at specific translational 
start sites, apabetalone can reduce the transcription of multiple induced 
APR genes [18]. Additionally, it has been shown that the expression of 
key APR genes is lower in the liver of endotoxemic mice and in the 
plasma of coronary artery disease (CAD) patients following apabetalone 
treatment [18]. Furthermore, the abundance of pro-inflammatory me-
diators in the plasma of patients from multiple phase 2 clinical studies, is 
significantly lower in CAD patients treated with apabetalone [14,15,18, 
58]. Plasma ALP, sourced primarily from the liver, is a robust and in-
dependent predictor of all-cause mortality, as it promotes vascular 
calcification and arterial stiffness, vascular inflammation, 

destabilization of atherosclerotic plaques, and oxidative stress. Apa-
betalone has also been shown to reduce hepatocyte ALP in vitro [13], and 
ALP protein levels are reduced in CAD and chronic kidney disease (CKD) 
patient plasma following apabetalone treatment [58,59]. Finally, the 
BETi I-BET151 has been shown to improve NASH and liver fibrosis in the 
STAM mouse NASH model [60]. Thus, precedence exists for BETi effi-
cacy in NASH, and apabetalone itself is predicted to benefit liver func-
tion through its epigenetic regulation of dysfunctional transcription that 
arises in NAFLD and CAD. 

There are several limitations to this study. First, we used a validated 
scoring system based on six demographic and laboratory parameters 
that has been shown to associate with the prevalence of NAFLD deter-
mined by biopsy, imaging, or non-invasive biomechanical properties 
[12]. Based on a validation group of 253 subjects with NAFLD and 
advanced fibrosis, the Angulo model has a positive predictive value of 
82% to diagnose fibrosis and a negative predictive value of 88% to 
exclude fibrosis [12]. However, we did not obtain imaging or biome-
chanical data to indicate whether the FS categories defined in this cohort 
corresponded to differences in measures of liver fibrosis or steatosis. 
Second, substantial data associate FS with the prevalence of NAFLD, but 
it is less clear whether changes in FS reflect changes in the clinical course 
of NAFLD. Accordingly, it is uncertain whether the acute improvement 
in FS with apabetalone compared with placebo reflects modulation of 
the underlying pathologic processes leading to NAFLD and its progres-
sion, or simply modulation of the biochemical contributors to FS. To 
make this distinction would require correlation of FS with concurrent 
hepatic histology, imaging, or biomechanics. Third, the number of pa-
tients with FS score consistent with low likelihood of NAFLD was rela-
tively small and the assessment of treatment effect by apabetalone vs. 
placebo in this group may therefore have been underpowered. Finally, 

Table 4 
Adverse events (AEs) according to assigned treatment group, and FS category. 
Data are presented as n (%).   

Full Study Cohort According 
to Assigned Treatment 
Group 

Full Study Cohort 
According to FS 
Category  

Placebo 
(n=1,167) 

Apabetalone 
(n=1,180) 

FS0-2 

Patients 
(n=618) 

FS+
Patients 
(n=1,729) 

Patients with at least 
one adverse event* 

792 (68%) 813 (69%) 428 
(69%) 

1,177 
(68%) 

Patients with at least 
one serious adverse 
event* 

324 (28%) 346 (29%) 158 
(26%) 

512 (30%) 

Patients with at least 
one adverse event 
leading to study 
drug 
discontinuation* 

65 (5.6%) 110 (9.3%) 42 
(6.8%) 

133 (7.7%) 

Frequent adverse 
events*,y

Alanine 
aminotransferase 
increased 

17 (1.5%) 63 (5.3%) 23 
(3.7%) 

57 (3.3%) 

Angina pectoris 72 (6.2%) 72 (6.1%) 35 
(5.7%) 

109 (6.3%) 

Aspartate 
aminotransferase 
increased 

8 (0.7%) 20 (1.7%) 5 (0.8%) 23 (1.3%) 

Diabetes mellitus 58 (5.0%) 75 (6.4%) 35 
(5.7%) 

98 (5.7%) 

Diarrhea 41 (3.5%) 42 (3.6%) 31 
(5.0%) 

52 (3.0%) 

Gamma- 
glutamyltransferase 
increased 

12 (1.0%) 10 (0.8%) 4 (0.6%) 18 (1.0%) 

Hypertension 70 (6.0%) 68 (5.8%) 32 
(5.2%) 

106 (6.1%)  

* Includes treatment-emergent adverse events only, defined as those occurring 
after the first dose and within 14 days of the last dose of the study drug. 

† Defined as occurring with a frequency of 5% or more in any of the FS cate-
gories or treatment groups. 

Table 5 
Adverse events (AEs) according to FS category and assigned treatment group. 
Data are presented as n (%).   

FS0-2 Patients According to 
Assigned Treatment Group 

FS+ Patients According to 
Assigned Treatment Group  

Placebo 
(n=290) 

Apabetalone 
(n=328) 

Placebo 
(n=877) 

Apabetalone 
(n=852) 

Patients with at least 
one adverse event* 

205 
(71%) 

223 (68%) 587 
(67%) 

590 (69%) 

Patients with at least 
one serious adverse 
event* 

72 
(25%) 

86 (26%) 252 
(29%) 

260 (31%) 

Patients with at least 
one adverse event 
leading to study 
drug 
discontinuation* 

13 
(4.5%) 

29 (8.8%) 52 
(5.9%) 

81 (9.5%) 

Frequent adverse 
events*,†

Alanine 
aminotransferase 
increased 

4 (1.4%) 19 (5.8%) 13 
(1.5%) 

44 (5.2%) 

Angina pectoris 21 
(7.2%) 

14 (4.3%) 51 
(5.8%) 

58 (6.8%) 

Angina unstable 6 (2.1%) 18 (5.5%) 33 
(3.8%) 

38 (4.5%) 

Aspartate 
aminotransferase 
increased 

2 (0.7%) 3 (0.9%) 6 (0.7%) 17 (2.0%) 

Diabetes mellitus 16 
(5.5%) 

19 (5.8%) 42 
(4.8%) 

56 (6.6%) 

Diarrhea 13 
(4.5%) 

18 (5.5%) 28 
(3.2%) 

24 (2.8%) 

Gamma- 
glutamyltransferase 
increased 

2 (0.7%) 2 (0.6%) 10 
(1.1%) 

8 (0.9%)  

* Includes treatment-emergent adverse events only, defined as those occurring 
after the first dose and within 14 days of the last dose of the study drug. 

† Defined as occurring with a frequency of 5% or more in any of the FS cate-
gories or treatment groups. 
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this analysis is post-hoc and therefore should be considered 
hypothesis-generating. The primary clinical outcome of the BETon-
MACE trial did not attain statistical significance, so any inference of 
efficacy in a subgroup must be viewed as exploratory. Notwithstanding 
these limitations, the CVD reduction observed in the FS+ category is 
consistent with apabetalone’s BET-inhibition mode of action. A pro-
spective, placebo-controlled evaluation of hepatic and CV effects of 
apabetalone in patients with NAFLD is warranted. 
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