
RESEARCH ARTICLE

Redesign and validation of a computer

programming course using Inductive

Teaching Method

Iftikhar Ahmed Khan, Mehreen Iftikhar, Syed Sajid HussainID*, Attiqa Rehman,

Nosheen Gul, Waqas Jadoon, Babar Nazir

Department of Computer Science, COMSATS University Islamabad, Abbottabad, Pakistan

* sajidhussain@cuiatd.edu.pk

Abstract

Inductive Teaching Method (ITM) promotes effective learning in technological education

(Felder & Silverman, 1988). Students prefer ITM more as it makes the subject easily under-

standable (Goltermann, 2011). The ITM motivates the students to actively participate in

class activities and therefore could be considered a better approach to teach computer pro-

gramming. There has been little research on implementing ITM in computer science courses

despite its potential to improve effective learning. In this research, an existing computer pro-

gramming lab course is taught using a traditional Deductive Teaching Method (DTM). The

course is redesigned and taught by adopting the ITM instead. Furthermore, a comprehen-

sive plan has been devised to deliver the course content in computer labs. The course was

evaluated in an experiment consisting of 81 undergraduate students. The students in the

Experimental Group (EG) (N = 45) were taught using the redesigned ITM course, whereas

the students in the Control Group (CG) (N = 36) were taught using the DTM course. The per-

formance of both groups was compared in terms of the marks obtained by them. A pre-test

conducted to compare pre-course mathematical and analytical abilities showed that CG

was better in analytical reasoning with no significant differences in mathematical abilities.

Three post-tests were used to evaluate the groups theoretical and practical competence in

programming and showed EG improved performance with large, medium, and small effect

sizes as compared to CG. The results of this research could help computer programming

educators to implement inductive strategies that could improve the learning of the computer

programming.

Introduction

With the steady growth in automation and digitalization, there is a shortage of Computer Sci-

ence (CS) graduates [1]. The Forbes Technology Council [2] identified 13 technology skills

needed in the job market in 2018, and 11 of these skills directly or indirectly involve computer

programming. This shows a greater employability potential of CS graduates. At the same time,

ironically many CS graduates are unemployed [3]. One of the reasons for the unemployability

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0233716 June 4, 2020 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Khan IA, Iftikhar M, Hussain SS, Rehman

A, Gul N, Jadoon W, et al. (2020) Redesign and

validation of a computer programming course

using Inductive Teaching Method. PLoS ONE 15

(6): e0233716. https://doi.org/10.1371/journal.

pone.0233716

Editor: Juan Cristobal Castro-Alonso, Universidad

de Chile, CHILE

Received: November 21, 2019

Accepted: May 11, 2020

Published: June 4, 2020

Copyright: © 2020 Khan et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-4212-8817
https://doi.org/10.1371/journal.pone.0233716
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233716&domain=pdf&date_stamp=2020-06-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233716&domain=pdf&date_stamp=2020-06-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233716&domain=pdf&date_stamp=2020-06-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233716&domain=pdf&date_stamp=2020-06-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233716&domain=pdf&date_stamp=2020-06-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233716&domain=pdf&date_stamp=2020-06-04
https://doi.org/10.1371/journal.pone.0233716
https://doi.org/10.1371/journal.pone.0233716
http://creativecommons.org/licenses/by/4.0/

of CS graduates (despite the potential shortage of skilled workers) could be that they are not

able to learn critical programming skills. However, programming is an important course in

the CS curricula, and it is a pre-requisite of most of the CS courses [4]. Since computer pro-

gramming is a challenging logical task [5], programming courses are commonly regarded as

difficult and often have the highest dropout rates [6]. Many researchers have studied the fac-

tors that cause difficulties for students in learning programming. Some of the reported factors

are students’ lack of computing experience and lack of computing background [7]. Linden &

Lederman [8] report that the students were unable to grasp memory-related concepts most of

the times. Students were not able to create a clear mental model of memory allocations and de-

allocations during program execution. Other causes of problems faced by the students were:

(a) ineffective use of representation techniques for problem-solving (b) students’ inability of

analyzing problems (c) inability to master the programming constructs and syntax and (d)

ineffective use of teaching strategies for problem-solving and coding [9].

The Deductive Teaching Methodology (DTM) is predominantly used to teach program-

ming at universities. Tarsoly & Valijärvi [10] define the DTM as a rule-driven, top-down

teaching approach in which the teachers first introduce and explain the concepts relating to a

subject matter and then encourage students to practically apply the concepts. Lecturing is the

most prevalent approach in the DTM [11]. It encourages memorization and the students feel

overwhelmed by it [10]. Also, it reduces curiosity, excitement and independent inquiry [10],

which are required for creative work like programming. Since lecturing limits the students’

engagement to the learning material, therefore they are unable to develop a deeper under-

standing of the concepts [12]. As science and technology education requires the students to

use the concepts towards problem-solving, and lecturing may not be suitable in this context

[13]. Therefore, the DTM may not be an effective approach to teach an applied course like pro-

gramming, and there is a research gap to explore alternative teaching methods.

The Inductive Teaching Method (ITM) is defined as an example-driven, bottom-up teach-

ing approach in which the teacher provides students with a set of data and allows them to draw

their own conclusions. The students observe that how the concept is used in the provided data,

figure out the rule therefrom, and then verbalize it [10]. The ITM promotes effective learning

in technological education as compared to the DTM [14]. Also, the students appreciate the

ITM because it provides them with a better grasp of the course contents and makes it easier for

them to understand the teacher [15]. The ITM motivates the students to actively follow the

class activities, and therefore, it may be a better approach to teach programming.

The ITM has been used to teach CS courses like Software Engineering (SE) [16]. Also, the

ITM is used to teach the Oracle tool to the students who already knew the basics of program-

ming [17]. Both studies report promising results of the ITM. However, both studies assume

that students should have basic programming skills. Since building basic programming skills

itself is a challenge. Therefore, in this research, we aim to implement the ITM to teach the

basic concepts of computer programming.

The teacher could afford little time in a semester system to select and organize the learning

material by using an ITM approach. The additional challenge is to plan the execution of the

contents as well as to deliver these contents [18]. Therefore, designing an ITM based course is

highly challenging. In this research, we have designed the course contents for an introductory

computer programming course based on an ITM approach. The learning content and the

examples of a computer programming course used in the DTM courses are modified for the

ITM course. In addition, a plan was chalked out for the teachers to deliver the designed course

contents. The designed contents and the approach were evaluated by implementing the ITM

course in an undergraduate computer science program at a university. Since considerable

research showed the effectiveness of ITM, we have formulated the following hypotheses:

PLOS ONE Redesign and validation of a computer programming course using Inductive Teaching Method

PLOS ONE | https://doi.org/10.1371/journal.pone.0233716 June 4, 2020 2 / 21

https://doi.org/10.1371/journal.pone.0233716

H1: Teaching a programming course using the ITM improves the students’ performance as

compared to the traditional DTM course.

The existing literature on the ITM relates its effectiveness to increase student motivation

and improve the perception of a course [18]. Since the ITM is a learner-centered teaching

approach, the students may find it helpful. The students of a learner-centric algebra course

were able to achieve the learning outcomes at a better rate. However, their perception of the

course was not favorable [19]. So, student motivation of the ITM is an interesting research

topic. Therefore, in this research, we also considered students’ perception of the ITM course.

Thus, we formulated another hypothesis as follows:

H2: The student perceives inductive teaching approach easier to follow and comprehendible as

compared to the deductive teaching approach.

The rest of the paper is organized as follows: Section 2 discusses the previous literature on

the ITM. Section 3 discusses the process of designing the course contents of an introductory

computer programming course using the ITM. Section 4 describes the experiment conducted

to evaluate the effectiveness of the designed ITM course for computer programming, and sec-

tion 5 presents the results of the experiment. Section 6 concludes the paper by summarizing

the main findings, listing the limitations of this research, and pointing to some future

directions.

Literature review

This section presents a research background on ITM and its use in designing courses. The first

sub-section describes the theoretical foundations of the ITM approach with an aim to under-

line the cognitive processes used by the ITM as compared to the DTM. The purpose of this dis-

cussion is to compare the two approaches using a theoretical lens and highlight their

differences. The second sub-section describes the previous approaches of using ITM to teach

CS subjects.

Theoretical foundations of ITM

Traditional DTM uses lecturing to teach engineering and science. A lecture presents theoreti-

cal concepts followed by examples and practical activities to teach the application of these con-

cepts. This way the students learn by applying general principles and theories to specific

situations. Theoretically, this approach is based on positivism. According to this philosophical

stance, engineering concepts exist as absolute knowledge and the purpose of a lecture is to let

students absorb and consequently apply this knowledge.

The ITM is theoretically grounded in constructivism, which involves constructing general

principles from specific examples [20]. The idea behind constructivism is that learners con-

struct and reconstruct knowledge by using their experiences and by making sense of those

experiences. The ITM presents new engineering knowledge as a continuation of prior knowl-

edge and help in making new knowledge easy to relate and retain [20]. Further, since the ITM

is based on a deep exploration of new knowledge, it may increase the motivation of students

and discourage rote memorization with illogical thinking.

Another key difference between ITM and DTM is based on the roles of teacher and student

in the learning process. In the DTM, the teacher is seen as an expert of a subject whose job is

to deliver knowledge to the students, whereas the student is seen as a consumer of the knowl-

edge. In the ITM, the students take an active role in learning and the teacher acts as a facilitator

guiding the learning process towards success [21]. The active student participation can be

achieved by restructuring the learning contents around questions and problems. The students

PLOS ONE Redesign and validation of a computer programming course using Inductive Teaching Method

PLOS ONE | https://doi.org/10.1371/journal.pone.0233716 June 4, 2020 3 / 21

https://doi.org/10.1371/journal.pone.0233716

are encouraged to collaborate for answering questions and solving problems to discover

knowledge. The teacher can fill the gaps in the knowledge discovered by students using just-

in-time teaching approach of the ITM [21].

Since the ITM is a learner-centric approach, it helps the students to learn creativity and

problem-solving skills, which are essential for engineering disciplines [22]. Therefore, the ITM

has a significant potential of success for teaching subjects in applied disciplines like CS. The

following sub-section presents the ITM approaches to teach CS subjects.

ITM in teaching CS subjects

According to Prince & Felder [20], the ITM is a broader term for many learner-centered

approaches including:

a. inquiry-based learning centered at answering open-ended questions,

b. discovery learning involving self-directed discovery of knowledge,

c. problem/project-based learning centered around solving problems and/or executing

projects,

d. case-based learning involving case studies and

e. just-in-time teaching after exploratory assignments.

Some of these approaches are implemented by restructuring the learning design (like online

learning, studio-based design workshops and student projects). Other approaches are imple-

mented in a semester environment and a traditional classroom setting. The following para-

graphs describe various approaches implementing the ITM in CS.

Köppe & Rodin [17] presented Guided Exploration (GE) as an inductive approach to teach

tool-related concepts and techniques. The authors used it to design a course on the develop-

ment of administration systems using Oracle APEX. The authors report that in general GE as

instructional material was well perceived by the students. The learning objectives were

achieved in a better way as compared to the old course. The results show that the ITM can be

used to teach a tool, however, this cannot be generalized to teaching programming concepts.

In teaching a tool, examples of the tool are either available via the help option of the tool or

from the documentation of the tool. The student needs to follow the steps and understand the

concepts. In addition, students with previous CS education found the GE more helpful [17].

Sedelmaier & Landes [16] used an inductive didactical approach to teach the concepts of

SE. Particularly, they focused on the concepts like: the need of SE, software process models,

requirement analysis and software design. The students were aware of Java programming lan-

guage and of other CS concepts. However, this was their first exposure to the SE techniques.

Jaime et al. [23] used a project-based approach to teach a project management course. The stu-

dents developed four group-projects in a semester. These projects involved milestones and

deliverables which are evaluated using peer assessment by group members. The authors

reported a gain in the quality of the projects measured in the grades assigned by the instructor.

This course was taught later in the curriculum, when the students were already familiar with

the basics of SE. Teiniker et al. [24] used two inductive approaches to train the software engi-

neers in software security, namely: a) an enquiry-based approach implemented to teach soft-

ware vulnerabilities at code level and b) a project-based approach implemented to teach risk

analysis at the level of software architecture. In the enquiry-based learning approach, the stu-

dents were presented with snippets of source code containing software vulnerabilities. Addi-

tionally, automated attacks were implemented in the software repository. Firstly, the students

PLOS ONE Redesign and validation of a computer programming course using Inductive Teaching Method

PLOS ONE | https://doi.org/10.1371/journal.pone.0233716 June 4, 2020 4 / 21

https://doi.org/10.1371/journal.pone.0233716

performed code review and debugged the code to unearth the software vulnerabilities and to

identify attacks. Secondly, the students fixed the identified software vulnerabilities and wrote

test cases to verify the vulnerabilities’ successful removal. The authors also implemented a

project-based learning approach, where the students were presented with application frag-

ments and they were required to identify architectural risks in the fragments. Again, the stu-

dents fixed the problems in the application fragments and tested them with penetration

testing. The qualitative evaluation of both inductive learning approaches showed that the stu-

dents found these approaches beneficial.

The learners involved in all the above narrated ITM approaches had prior knowledge of CS

and programming. Since these learners were familiar with the computational thinking, they

were able to explore the learning content presented as problems, examples, or projects. How-

ever, developing the motivation and interest of fresh CS students is essential to retain them in

introductory as well as in advance CS courses [25]. Because the ITM may be helpful in moti-

vating students [18], developing an ITM-based introductory course in CS is important. Dȩbiec

[25] redesigned an introductory course to teach digital systems using the ITM. In this course,

the author used demonstrations using Python interpreter followed by a lecture. The students

took more interest in the lecture due to the demonstrations. The author evaluated the course

qualitatively using student surveys and quantitively in terms of students’ attendance and

grades. The results showed that students were motivated in the course and their attendance

and grades improved.

The results reported by Dȩbiec [25] showed that the ITM can be successfully used to teach

introductory courses in CS. Introduction to Computers & Programming (ITCP) is an impor-

tant course in CS curriculum. Therefore, the aim of this research is to teach the introductory

programming course to the students with little or no prior knowledge of CS. The next section

describes the materials and methods used to accomplish the aim of the study.

ITM course contents of ITCP

This section presents the proposed redesign of the DTM course of ITCP to an ITM course.

Firstly, this section describes the redesign of the DTM course to an ITM course. Secondly, the

ITM course contents are further described using an example ITM lecture and an ITM

handout.

Redesigning the DTM course to the ITM course

The contents of the programming course were already formulated by the National Curriculum

Review Committee (NCRC) following the guidelines of the ACM/IEEE curriculum [26]. The

title of the course was ITCP with two components namely: Introduction to Computers (ITC)

and Introduction to Programming (ITP). The course consisted of 4 credit hours and 6 contact

hours (3 contact hours theory and 3 contact hours of lab work per week). The existing DTM

methodology t teach a computer programming course consisted of the three parts: 1) lecturing

in the theory class describing the rules, 2) providing the examples and 3) practicing in com-

puter lab. The DTM course contents described above are provided as S1 Appendix. The ITM

course of ITCP was designed with the following three parts:

1. A handout for each lecture containing examples to be practiced by the students

2. Practicing the examples, observations, analysis, and extraction of rules by the students

themselves without any help

3. Explanation of the rules by the teacher already observed or possibly overlooked by the

students.

PLOS ONE Redesign and validation of a computer programming course using Inductive Teaching Method

PLOS ONE | https://doi.org/10.1371/journal.pone.0233716 June 4, 2020 5 / 21

https://doi.org/10.1371/journal.pone.0233716

To clarify the difference between the two teaching methodologies, an example is provided

below:

Example ITM lecture

In the DTM course, students are introduced to the variable naming rules in the first part of a

lecture, then some examples are provided for the rules in the second part of the lecture. In the

third part of the lecture, students must practice the rules in computer lab. For example, stu-

dents are taught that variable names in C/C++ programming languages cannot have space and

special characters other than ‘�’ and ‘_’. To improve students’ learning several valid and invalid

examples are provided by following variables naming conventions. Some students note them

down in their notebooks to practice later in the lab. The students are referred to textbooks for

further details on variable naming rules.

We changed this method of teaching using a discovery based ITM approach. Before learn-

ing to name variables correctly, a student must understand writing a correct programming

statement. Therefore, in the lesson on variable naming, we first introduced the students with

writing a correct programming statement. Then, we provided them with the prepared ITM

handout (c.f. Fig 1) containing 30 variable names. The students were required to practice each

of these variable names by using a variable declaration statement in an Integrated Develop-

ment Environment (IDE). We intuitively included some variable names that were not follow-

ing the correct naming convention to get failed compilation. The students were instructed to

find out the reasons for the failed compilation of statements using the compilation errors as

Fig 1. Example ITM handout. This handout contains variable names and corresponding spaces to write reasons if a

variable name is incorrect. It also contains a conclusion section to write the discovered variable naming rules.

https://doi.org/10.1371/journal.pone.0233716.g001

PLOS ONE Redesign and validation of a computer programming course using Inductive Teaching Method

PLOS ONE | https://doi.org/10.1371/journal.pone.0233716 June 4, 2020 6 / 21

https://doi.org/10.1371/journal.pone.0233716.g001
https://doi.org/10.1371/journal.pone.0233716

well as their intuition. They were required to write the reasons in the space provided against

the statement in the handout (c.f. Fig 1). Further, they were required to write the variable nam-

ing rules in the conclusion section of the handout. A time of 50 minutes was allocated to prac-

tice the variable names. The last 20–25 minutes of the lecture were utilized by the teacher to

discuss the handout’s examples on the board. The teacher wrote each variable name on the

whiteboard and asked the class whether the variable name was correct. The students read their

handouts and gave the reasons if a variable name was incorrect in their opinion. The teacher

explained the right reasons for the incorrect variable names where necessary to fill the knowl-

edge gaps in the variable naming rules discovered by the students. This process follows just-in-

time teaching approach of the ITM [20].

Thus, the changes were introduced in the selection of the experiences (practices) and the

organization of the learning experiences. Since the designed course contents were to be imple-

mented in the university, we decided not to change the evaluation process and to keep it with

the university schedule and methods as much as possible.

Experimental setup

To test the effectiveness of the designed contents various studies were planned. The following

sub-sections explain the study designs, the participants, methods, and data preparation.

Study design

The design of the study was a quasi-experimental and a between-subject design. The demerits

of the design as mentioned by Martyn [27] were considered and are recognized as follows. The

allocation of the students to experimental or control group sections was not in authors control.

Rather, the admission department of the university assigned the students to different sections

as per their admission order. The early admissions are allocated to Section-A while late admis-

sions to Section-B. The admission order, therefore, could also be a confounding factor. For

example, early admission getters could be more motivated. Therefore, a pre-test was planned

to accommodate the differences.

The decisions to deliver the designed ITM course to Section-A was made via the flip of the

coin. This section will be termed as Experimental Group (EG) in the rest of this paper. The

DTM course was used to teach the students of the Control Group (CG) of section B. As per the

university rules, a section should have only a maximum of 45 regular students. However,

repeaters could also join the sections, making the section size more than 45.

As the ITCP course was a 6-contact hour course, therefore, two different teachers were

assigned to teach the EG and CG sections again on the flip of a coin. This action was taken to

conform to the departmental rule that one teacher can teach a maximum of 9 contact hours.

This factor is another potential confounding variable of a quasi-experimental design. To cope

with the impact of this potential confounding variable, help from the administration was

taken. The teachers with almost equal experience (6 and 7 years of teaching experience) were

selected to teach the two groups. Furthermore, we have also considered the students’ feedback

of the teachers in the selection of the teachers, and each of them had 80–85% feedback in

teaching the programming courses. In addition, assigning the EG and CG to two different

teachers removed teachers’ potential bias towards the EG or CG.

This research involved teaching the course of ITCP to the EG using the proposed ITM

based course contents/design and to the CG using the existing DTM based course contents.

The study design, including the procedures of assigning the students to the EG and CG and

assigning teachers to the groups, was discussed, and approved by the Departmental Ethics

Committee–called as Project Research & Evaluation Committee (PREC). The students were

PLOS ONE Redesign and validation of a computer programming course using Inductive Teaching Method

PLOS ONE | https://doi.org/10.1371/journal.pone.0233716 June 4, 2020 7 / 21

https://doi.org/10.1371/journal.pone.0233716

informed about the study and they were asked to sign written consent forms. The procedure of

taking consent and the consent forms were approved by the PREC. Only after signing the con-

sent form, a student was included in the study. Further, the students had the option of drop-

ping out of the course at any time of the course, but no student dropped out.

Participants

The EG consisted of 53 students and the CG consisted of 42 students. The repeater students

were also part of the class. They were either improving their grades or they failed the course

previously and were retaking the course. The repeaters, therefore, were not included in the fol-

lowing analysis. There were 8 repeaters in the EG and 6 in the CG reducing the sample size to

45 in the EG and 36 in the CG. The mean age of the students was 19 years in both the groups.

Methods

The course was taught as per the university schedule. In a week, two lectures each of 1 hour

and 30 minutes and two consecutive labs each of 1 hour and 30 minutes with a 15-minute

break were scheduled. The course contents corresponding to the programming language were

delivered to the EG in computer labs only. The CG classes were conducted in the traditional

way. ITC contents comprised 20% of the course and were introduced to the CG students in

the first two weeks. The remaining ITP contents were taught in the rest of the lectures and

computer labs. The theory was introduced in the class before the practical in the lab.

For the EG, ITC contents were introduced only in the theory classes and the ITP contents

only in the labs. The brief contents of ITC were fully covered in the theory classes till 5th weeks

of the semester. Therefore, from the 6th week, the ITP contents were taught in the theory clas-

ses as well as in the labs. However, it was ensured that every new concept is introduced in the

lab using the ITM approach and the topic is further elaborated in the following theory class.

Students’ performance measurement

The students’ performance in the ITM course was measured in terms of obtained marks.

There were two term exams and a final exam in the semester. The post-test 1 was taken as 1st

term exam and post-test 2 as a 2nd term exam. As per the university schedule, there was a

requirement to conduct the exams of all academic departments in the same week. However,

the exam department did not administer the term exams. Therefore, the CG and the EG were

evaluated in the post-test 1 and post-test 2 with the same question paper. However, using the

same question paper was not possible for the final exam because of the control mechanisms of

the exam department. Moreover, we must eliminate the possible influence of teacher as a con-

founding variable on the students’ performance. Therefore, a programming competition

(called post-test 3) was planned before the final exam. The conduct of post-test 3 also ensured

comparison of the two groups independent of the teachers’ influence on the results. The sum-

mary of the tests planned to compare the two groups as per the university schedule is given in

the Table 1 below.

The remaining part of this section describes the procedures of the tests listed in Table 1.

Pre-test. We conducted the pre-test to establish a baseline of the students’ competency

level in basic mathematics and analytical logic. It was important to have the baseline compe-

tency level for each student so that we could measure the differences of the DTM course and

the ITM course in developing the theoretical knowledge and programming skills of the

students.

Since the DTM and the ITM courses were offered to the students of first semester, we could

potentially use the results of the university entrance exam as a baseline. However, these results

PLOS ONE Redesign and validation of a computer programming course using Inductive Teaching Method

PLOS ONE | https://doi.org/10.1371/journal.pone.0233716 June 4, 2020 8 / 21

https://doi.org/10.1371/journal.pone.0233716

were not available to us at the time of the experiment because of the students’ privacy. Hence,

we had to prepare another test comprising of 30 questions, where 15 questions were from

basic mathematics and 15 questions were from analytical reasoning.

A set of instructions were given to the students before starting the test. The students were

prohibited to communicate with each other, to erase, to cut, to overwrite or, to shade multiple

circles against answers to a question. It was communicated that doing so will result in zero

marks for that question.

Post-test 1 (theory and lab). Since CG followed the traditional approach, therefore, stu-

dents in this group were introduced to the theory first and then practical implementation in

the lab. However, for EG, the lab teaching plan was changed. In the first lab, basic concepts

about a programming language were given. A metaphor example of natural languages was

equated with that of the computer programming concepts, which highlighted the importance

of computer programing. They were given a clear understanding of the tools required

throughout the course for the practical part of the subject. Several basic examples were given

to the students that allowed them to build familiarization with the IDE.

As discussed earlier, each lab for EG was divided into three parts. The first part consisted of

15 minutes, where the teacher presented examples of the planned lecture topics. The second

part consisted of 50 minutes, in which handouts (discussed in designing the curriculum part)

were given to the students. The students were required to follow the instructions given in the

handouts and complete the provided tasks using their computers. They were required to fill in

the blank spaces after observing the results of the practical work they completed. Finally, the

third part reserved 20–25 minutes for discussion on the given topics. The teacher was required

to discuss the results of the handouts, highlighting the relevant rules, and any other implica-

tions relevant to topics.

After 5 weeks of the course progress, post-test 1 (theory and lab) was conducted in the sixth

week. The tests were prepared by the teachers of both groups collaboratively. There were three

parts in the post-test 1 theory. Part A consisted of multiple-choice questions, part B consisted

of programming problems having short answers and part C consisted of some lengthy pro-

gramming problems. All the topics taught in the labs were included in the test. However, ITC

part taught to EG and CG was not a part of the exam. Both the teachers agreed to cover the

ITC part in the assignments and quizzes only. The lab post-test 1 was conducted in a two-hour

lab session.

Table 1. Summary of student exams. This table presents a summary of all the exams by describing the test name, type of test (theory, lab), the week of the semester in

which the test was taken and the reason to conduct the test.

S.

No

Test

Name

Test Type Week of the

semester

Reason

1 Pre-test -- 1st This test was planned to assess the logical and mathematical competency level of the students of the two groups

before the actual experiment. It acted as a baseline to find differences between the two groups if there are any.

2 Post-test

1

1st term

theory

6th The 1st term and 2nd term theory exams were taken in the written form to probe a student’s conceptual

understanding of the programming skills.

3 Post-test

2

2nd term

theory

11th

4 Post-test

1

1st term lab 6th The 1st term and 2nd term lab exams, consisting of computer programming tasks were taken to measure the

students’ programming and problem-solving skills.

5 Post-test

2

2nd term lab 11th

6 Post-test

3

Lab 15th This exam was conducted to evaluate the students’ performance after eliminating out the confounding variable

like the influence of the teacher.

https://doi.org/10.1371/journal.pone.0233716.t001

PLOS ONE Redesign and validation of a computer programming course using Inductive Teaching Method

PLOS ONE | https://doi.org/10.1371/journal.pone.0233716 June 4, 2020 9 / 21

https://doi.org/10.1371/journal.pone.0233716.t001
https://doi.org/10.1371/journal.pone.0233716

Post-test 2 (theory and lab). The post-test 2 (theory and lab) was conducted in the 11th

week. The contents of the Post-test 2 included all the programming related contents that were

used to examine students in Post-test 1. In addition, new contents taught during the 7th week

to 11th week were also included in the Post-test 2. Like Post-test 1, Post-test 2 also consisted of

a theory part and a lab part. Similarly, the format of the post-test 2 (theory and lab) exams was

like the format of the post-test 1 (theory and lab) exams.

Post-test 3. The DTM course and the ITM course were taught by different teachers. A

uniform evaluation of the students in Post-test 1 and Post-test 2 was carefully planned by set-

ting the same question papers for the students of the DTM course and the ITM course. None-

theless, the effect of teachers was a confounding factor for the student evaluations. To account

for the effect of the teachers, we have decided to conduct Post-test 3, which was a program-

ming competition evaluated by a third teacher. We selected an equal number of regular stu-

dents from both the groups. We selected 6 students with high scores, 6 students with scores

nearest to lab average scores and 6 lowest scorers from both the EG and CG for the test. The

total sample size was 36, and the test was designed by the teachers of both the groups collabora-

tively. Three programs of simple, average, and high complexity were part of the test. It was

made sure that each successful program should have at least five statements including declar-

ing variables and implementing logic. The test question paper was re-checked for ambiguities

and errors by another teacher (not involved in teaching the two groups). Students were allo-

cated one hour to complete the test. It was announced that the best programmer will be

awarded a gift of 8GB USB drive. On the test day, 33 out of 36 students participated in the test.

This included 17 students from EG and 16 students from CG. We requested an independent

reviewer, who was not involved in the study, to evaluate the results. He was provided with the

following marking criteria:

If the program compiles successfully with no errors and has at least five statements then

allocate 7 marks, if logic is correct resulting into a correct output then allocate 10 marks,

and if only the output is correct then allocate 3 marks. Each program was of worth 20

marks. The evaluator could give any marks between the minimum and maximum marks

deciding on the accuracy of the results. The results from the peer were averaged to get final

marks and their percentage out of 100 was calculated.

Analyses and results

The previous section discussed the procedures of four tests conducted to evaluate the students’

performance (c.f. Table 1). This section describes the statistical analysis on the students’ marks

acquired in these tests and the results obtained from the analyses (c.f. subsections pre-test 1,

post-test 1, post-test 2 and post-test 3). The general implications of the ITM on the students’

performance are discussed in the subsection “Implications of the ITM on students’ perfor-

mance”. The second hypothesis relates to the effect of the ITM and the DTM on the students’

perception. Therefore, we have conducted a survey using a questionnaire as described in the

subsection “Students’ perceptions about the ITM”.

As per design, the first appropriate analysis considered was a Mixed Repeated Measure

ANVOA (MRMA). Therefore, a MRMA was conducted by taking Pre-test, Post-test 1, Post-

test 2, and Post-test 3 marks converted into percentages as within subject variables and Groups

(EG, CG) as between subject factors. Due to significant Mauchly’s test of sphericity, Green-

house-Geisser repeated measure ANOVA model was considered. Though the ANOVA model

appeared to be significant (F (3, 23) = 12.75, p< 0.01), but between subject main effect

PLOS ONE Redesign and validation of a computer programming course using Inductive Teaching Method

PLOS ONE | https://doi.org/10.1371/journal.pone.0233716 June 4, 2020 10 / 21

https://doi.org/10.1371/journal.pone.0233716

computed to measure differences between EG and CG was not significant (F (1, 25) = 0.014,

p = 0.9) with an effect size showing 10% of variance of the model can be explained by the

group differences. Therefore, as per recommendation by Brambor, Clark and Golder [28], we

conducted the simple effect analysis in the form of ANOVAS’ and ANCOVAS’. Following

sub-sections describe analyses for each of the test conducted.

Pre-test

The analysis was conducted to find the differences between the logical and mathematical com-

petencies of the two groups. The students’ correct answers in the analytical and the mathemati-

cal part were recorded separately, converted into a percentage out of 100 and were added to

get total marks. A one-way ANOVA was conducted by taking marks of the mathematical, ana-

lytical as well as the sum of both as dependent variables separately. The groups (EG, CG) were

taken as a fixed factor. The groups, EG and CG also represent a confounding variable in the

admission order and therefore was not analyzed separately via an ANCOVA.

The results revealed no significant differences between the groups’ total marks and no sig-

nificant differences between groups mathematical part. However, the groups differed signifi-

cantly in their analytical competency level as CG being better in the analytical skills (F (2, 58) =

9.34, p = .003) with (μ = 39.38%) as compared to EG with (μ = 27.37%). The effect size (η2 =

0.12) had a large effect as per Cohen [29], who demonstrated that η2 of 0.01 is small, 0.059 is

medium and 0.138 is a large effect size (c.f. Fig 2).

Post-test 1

A one-way ANOVA was conducted considering post-test 1 theory and lab marks percentages

as dependent variables and groups (EG, CG) as fixed factors. In addition, attendance of the

students was not a controllable factor over 5 weeks of the study. Therefore, ANCOVAs was

also conducted by taking post-test 1 theory and lab marks percentages as dependent variables,

the groups (CG, EG) as fixed factors, and theory and lab attendance converted into percent-

ages as a covariate.

Fig 2. Marks acquired in the analytical portion of the pre-test. This bar chart shows the marks acquired by EG and CG in the analytical portion of the pre-

test with 95% CI.

https://doi.org/10.1371/journal.pone.0233716.g002

PLOS ONE Redesign and validation of a computer programming course using Inductive Teaching Method

PLOS ONE | https://doi.org/10.1371/journal.pone.0233716 June 4, 2020 11 / 21

https://doi.org/10.1371/journal.pone.0233716.g002
https://doi.org/10.1371/journal.pone.0233716

The results of theory marks showed no significant differences between the two groups with

a simple ANOVA analysis. However, when attendance was considered as a covariate, the

results revealed a significant difference between the means of the two groups F (2, 73) = 6.60,

p = 0.012. The results show EG having better-adjusted marks (adj M= 74) as compared to CG

(adj M= 72.9) with an effect size (η2 = 0.08) which falls between medium and large as per

Cohens’ distribution (c.f. Fig 3A).

The results of the lab marks also showed no significant differences between the two groups

with an ANOVA analysis. However, when lab attendance was considered as a covariate, the

results revealed a significant difference between the means of the two groups F (2, 73) = 3.96,

p = 0.05. The EG showed improved adjusted marks (adj M = 64.3) as compared to CG (adj

M = 55.9) with a medium effect size (η2 = 0.05) as per Cohens’ distribution (c.f. Fig 3B).

An ANCOVA was also conducted by taking theory and lab marks percentage as dependent

variables, groups (EG, CG) as fixed factors and percentage of pre-test analytical marks as

covariate. The results showed no significant differences even after adjusting analytical marks

differences.

Post-test 2

A one-way ANOVA was conducted considering post-test 2 theory and lab marks percentages as

dependent variables and groups (EG, CG) as fixed factors. Furthermore, ANCOVAs was con-

ducted by taking post-test 2 theory and lab marks percentages as dependent variables, the groups

(CG, EG) as fixed factors, and theory and lab attendance converted into percentages as a covariate.

The ANOVA showed no significant differences between the two groups theory marks. An

ANCOVA conducted on theory marks again revealed no significant difference between the

groups. However, ANOVA showed a significant difference in the lab marks (F (2, 72) = 14.6,

p = 0.0003) with a very large effect size (η2 = 0.16) in EG favor. The mean marks of EG (μ =

79.19%) were better than CG (μ = 62.58%) (c.f. Fig 4A). An ANCOVA also showed a signifi-

cant difference between the groups’ lab marks (F (2, 70) = 3.9, p = 0.05). The EG showed

improved adjusted marks (adj M = 73.47%) as compared to CG (adj M = 70.51%) with a

medium effect size (η2 = 0.05) as per Cohens’ distribution (c.f. Fig 4B).

An ANCOVA was again conducted to test the effect of pre-test analytical marks on the

course theory and lab marks. Theory and lab marks percentage was taken as dependent vari-

ables, groups (EG, CG) as fixed factors and percentage of pre-test analytical marks as covariate.

The results showed no significant differences between groups theory marks. However, there

were significant differences between the groups’ lab marks (F (2, 64) = 7.66, p = 0.001). The

EG showed improved adjusted marks (adj M = 80.14%) as compared to CG (adj M = 61.81%)

Post-test 3

A one-way ANOVA was conducted considering post-test 3 marks percentages as dependent

variables and groups (EG, CG) as fixed factors. Furthermore, ANCOVAs was conducted by

taking post-test 3 marks percentages as dependent variables, the groups (CG, EG) as fixed fac-

tors, and an average of the students’ lab attendance in percentage up to week 10 as a covariate.

The results of post-test 3 showed no significant differences between the two groups even

after adjusting for attendance. However, the mean adjusted score of EG was 47.45% and that

of CG was 41.87% having a 5.58% difference of marks with an effect size between small and

medium (c.f. Fig 5). According to researchers like [30], in education research, a difference of 5

or above (1 Grade) could be categorized as “quite substantial”. This is also evident from the

effect size η2 which is between small and medium effect sizes. In addition, no significance

could also be attributed to the small sample size. However small sample size was not in the

PLOS ONE Redesign and validation of a computer programming course using Inductive Teaching Method

PLOS ONE | https://doi.org/10.1371/journal.pone.0233716 June 4, 2020 12 / 21

https://doi.org/10.1371/journal.pone.0233716

Fig 3. Results of the post-test 1 (theory and lab). a) This bar chart shows the adjusted marks in percentage of post-test 1 (theory) with 95% CI. b)

This bar chart shows the adjusted marks in percentage of post-test 1 (lab) with 95% CI.

https://doi.org/10.1371/journal.pone.0233716.g003

PLOS ONE Redesign and validation of a computer programming course using Inductive Teaching Method

PLOS ONE | https://doi.org/10.1371/journal.pone.0233716 June 4, 2020 13 / 21

https://doi.org/10.1371/journal.pone.0233716.g003
https://doi.org/10.1371/journal.pone.0233716

control of the authors due to the design of the study and availability of the lab space. The lab

space could accommodate only 35–40 students.

Fig 4. Results of the post-test 2 (lab). a) This bar chart shows the marks in percentage of post-test 2 (lab) with 95% CI. b) This bar chart shows the adjusted marks in

percentage of post-test 2 (lab) with 95% CI.

https://doi.org/10.1371/journal.pone.0233716.g004

PLOS ONE Redesign and validation of a computer programming course using Inductive Teaching Method

PLOS ONE | https://doi.org/10.1371/journal.pone.0233716 June 4, 2020 14 / 21

https://doi.org/10.1371/journal.pone.0233716.g004
https://doi.org/10.1371/journal.pone.0233716

Furthermore, an ANCOVA was conducted by taking theory and lab marks percentage as

dependent variables, groups (EG, CG) as fixed factors and percentage of pre-test analytical

marks as covariate. The results showed no significant differences even after adjusting analytical

marks differences.

Implications of the ITM on students’ performance

A pre-test showed no significant differences between the groups. However, the portions (Ana-

lytical, Mathematical) analysis showed significant differences between the groups in analytical

portion with EG students less fluent in the analytical portion. As analytical reasoning is closely

related to programming capabilities, therefore, it could be concluded that EG programming

like abilities were lesser than the CG. However, after introducing the EG to ITM, the analytical

abilities were observed to be improving along with the time as depicted by the decreasing

group differences visualized in Fig 6 below:

Fig 7 shows the differences between the groups’ pre-test score, 1st term and 2nd term lab

scores and post-test 3 scores (considered as a lab because of its close resemblance to the lab

exam). As is clear from Fig 7, the control group pre-test scores were better. In the 1st term, the

experimental group improved, and in 2nd term it showed significantly better performance as

compared to the control group. Although EG did not show any significant improvement in

post-test 3, yet their improvement was between small to medium effect size. The inductive

method application to teach the course is possibly a major contributing factor.

Students’ perceptions about the ITM

To test the hypothesis H2, we collected data from the EG students about their perception of the

course. In the past, all the student in EG completed their degrees which were based on DTM.

Fig 5. Adjusted marks in percentage of post-test 3 with 95% CI.

https://doi.org/10.1371/journal.pone.0233716.g005

PLOS ONE Redesign and validation of a computer programming course using Inductive Teaching Method

PLOS ONE | https://doi.org/10.1371/journal.pone.0233716 June 4, 2020 15 / 21

https://doi.org/10.1371/journal.pone.0233716.g005
https://doi.org/10.1371/journal.pone.0233716

Therefore, their perception of the course taught by a new method was considered a crucial fac-

tor. To find out students’ perception related to the ITM, we conducted a qualitative analysis. A

questionnaire was designed to get information about students’ perception of ITM. There were

five questions in the questionnaire as shown in Table 2. The answering choices were: ‘strongly

agree’, ‘agree’, ‘neutral’, ‘disagree’ and ‘strongly disagree’ ranging from 5 to 1. The question-

naire was distributed among the students after the final exam to ensure the feedback from all

the potential students. Answering the questionnaire was optional. Out of the 45 regular stu-

dents, 42 students submitted their feedback. The data was stored in an excel file and exported

to SPSS for analysis.

Internal consistency of survey. An internal consistency analysis was conducted on the

ITM satisfaction survey (c.f. Table 2) comprising 5 items. Cronbach’s alpha showed reliability

alpha value equals to 0.65. Taber (2018) in his review cited studies related to science education

that considered alpha level above 0.6 as acceptable. Various other studies and statisticians con-

sider an alpha value of above 0.7 as acceptable (Taber, 2018). A further analysis revealed that

the most items are worthy to be retained in the scale as the alpha decreases if any of them

deleted from the scale. The exception is item 4 (Q4), whose deletion would increase the alpha

to 0.67 which still less than 0.7. This item (asking about importance of programming) seems to

be unrelated to the other questions which are all asking about ITM methods. Due to closeness

to the acceptable alpha value, a further detailed analysis is conducted as explain below in the

“Results” sub-section.

Results. A parametric t-test, as well as non-parametric one sample Wilcoxon’s signed rank

test, were conducted by using the data from all the questions given in Table 2 as test variables.

The test value was chosen to be 2.5 the mean value of the Likert scale. Student satisfied with a

variable would have the value over 2.5, whereas unsatisfied students would rank the value below

2.5. The results indicated that the students strongly agreed that ITM clarifies programming

Fig 6. Results of pre-test, post-test 1 (theory) and post-test 2 (theory) without repeaters data.

https://doi.org/10.1371/journal.pone.0233716.g006

PLOS ONE Redesign and validation of a computer programming course using Inductive Teaching Method

PLOS ONE | https://doi.org/10.1371/journal.pone.0233716 June 4, 2020 16 / 21

https://doi.org/10.1371/journal.pone.0233716.g006
https://doi.org/10.1371/journal.pone.0233716

(Q1). They believed that the inductive methodology should be implemented in other subjects as

well (Q2). A significant number of students think that the course they learned via ITM was dif-

ferent from their earlier 12 years of education (Q3). This methodology also helped the students

to understand the importance of programming in SE (Q4) as well as helped to actively

Table 2. Survey questions.

Q.

Id

Questions Likert Scale

Options

1 Do you agree that the teaching method (ITM) employed in this course clarifies more as

compared to methods employed earlier to teach you?

1. Strongly

disagree --

5. Strongly agree

2 Do you feel that ITM should be implemented in other subjects? 1. Strongly

disagree --

5. Strongly agree

3 There is a difference between your earlier 12 years of learning and the learning of lab

component in this course?

1. Strongly

disagree --

5. Strongly agree

4 Do you realize that programming is important in software engineering? 1. Strongly

disagree --

5. Strongly agree

5 Does the teaching method help you to actively participate in the class? 1. Strongly

disagree --

5. Strongly agree

https://doi.org/10.1371/journal.pone.0233716.t002

Fig 7. Results of pre-test, post-test 1 (lab) and post-test 2 (lab) without repeaters data.

https://doi.org/10.1371/journal.pone.0233716.g007

PLOS ONE Redesign and validation of a computer programming course using Inductive Teaching Method

PLOS ONE | https://doi.org/10.1371/journal.pone.0233716 June 4, 2020 17 / 21

https://doi.org/10.1371/journal.pone.0233716.t002
https://doi.org/10.1371/journal.pone.0233716.g007
https://doi.org/10.1371/journal.pone.0233716

participate in the class (Q5). The overall outcome of the questionnaire resulted in the acceptance

of our hypothesis H2, which states that students perceive a course taught via ITM easier to fol-

low as compared to the course taught via traditional teaching method (DTM). The distribution

of the answers as histograms with means and standard deviations are illustrated in Fig 8 below.

The N = 42, and p< 0.01 is constant for all the distributions.

Conclusions and discussion

This research was conducted to study the implementation of an Inductive Teaching Method

(ITM) course on computer programing. For this purpose, we have designed the course con-

tents of an introductory course in computer programing at the undergraduate level. The effec-

tiveness of the designed ITM course was validated by implementing it in a regular semester

and comparing it with a Deductive Teaching Method (DTM) course using an Experimental

Group (EG) and a Control Group (CG) respectively. The students’ performance was measured

in terms of their marks (H1) and students’ perception of the ITM course (H2). To test H1, the

students’ performance was evaluated using the pre-test, the post-test 1, the post-test 2 and the

post-test 3. The analytical portion of the pre-test revealed that the CG was significantly better

in analytical reasoning as compared to the EG. However, these differences appeared to be

reduced in the groups in the subsequent evaluations (post-test 1 and post-test 2). To test the

H2, a questionnaire was designed to collect subjective data on the students’ perception of the

ITM and DTM. The results indicate that the students agreed that the ITM clarifies the pro-

gramming concepts. They perceived that the ITM course also helped them to realize the

importance of programming in Software Engineering (SE) and it should be implemented in

other subjects as well. Moreover, a significant number of students believe that the ITM course

was different in terms of learning and allowed active class participation as compared to their

earlier 12-years learning using the DTM.

The improvement in the students’ performance when using ITM is aligned with the related

literature. For example, Sedelmaier and Landes [16] found that the students had a better grasp

of the SE concepts when they were taught using the ITM. Similarly, Koppe and Rodin (2013)

reported promising results of the ITM. They found an increase in understanding of the Oracle

tool when taught via the ITM. Other studies have also found promising results of the ITM but

all of them assume that the students should have Computer Science (CS) knowledge and pro-

gramming skills. The results of this research showed with small to medium effect size that the

ITM can also improve the performance of the students having no prior knowledge of CS.

The previous research on the ITM has reported contradictory results on students’ percep-

tion of the ITM courses. For example, the DTM was found to improve students’ perception

and student motivation [18; 25]. However, studies like Van Sickle [19] found that the students

were less motivated in an ITM course. The results reported in this research showed better stu-

dents’ perception of the ITM course as compared to their previous experience of the DTM.

This research implies that the educational institutions could introduce the ITM in the SE and

CS departments. However, before implementing this approach on students with no prior knowl-

edge of CS, more research is needed with bigger sample sizes and by eliminating possible con-

founding factors. This research could be considered as a foundation for the purpose as this

research introduced the designed contents and a plan which could be further tested in another

part of the world as well. The limitations like change in computer lab time (90 minutes) could

invalidate the findings. The designed course contents for ITM can be further refined. Missing

constructs not included in the designed could be included. For example, there could be a new lec-

ture on the use of logical and combination of logical operators. The lectures on looping and con-

trol can be enhanced by dividing them into syntax understanding and problem-solving parts.

PLOS ONE Redesign and validation of a computer programming course using Inductive Teaching Method

PLOS ONE | https://doi.org/10.1371/journal.pone.0233716 June 4, 2020 18 / 21

https://doi.org/10.1371/journal.pone.0233716

Some more limitations include a between-subject quasi-experimental design. There were

some inherent flaws of a between-subject design in the study. For example, the teachers and

the classroom environment were different for the EG and the CG. Random allocation of the

students to the EG and the CG was not controllable. Future studies may be conducted to

Fig 8. Distributions of response against Q1-Q5 as histograms.

https://doi.org/10.1371/journal.pone.0233716.g008

PLOS ONE Redesign and validation of a computer programming course using Inductive Teaching Method

PLOS ONE | https://doi.org/10.1371/journal.pone.0233716 June 4, 2020 19 / 21

https://doi.org/10.1371/journal.pone.0233716.g008
https://doi.org/10.1371/journal.pone.0233716

accommodate these factors. Furthermore, the perception of the DTM course was not mea-

sured and compared with the ITM course. The subjective students’ perception of the ITM

course may be biased because the urge of the students to provide socially desirable answers

that they thought the researchers wanted to hear. Another direction for future research may be

to compare the ITM with other pedagogic methods like Flipped classroom.

Supporting information

S1 Appendix. DTM course contents.

(DOC)

S2 Appendix. DTM handouts.

(DOCX)

Author Contributions

Conceptualization: Iftikhar Ahmed Khan, Mehreen Iftikhar, Syed Sajid Hussain.

Data curation: Mehreen Iftikhar.

Project administration: Iftikhar Ahmed Khan.

Supervision: Syed Sajid Hussain.

Validation: Syed Sajid Hussain.

Writing – original draft: Iftikhar Ahmed Khan, Mehreen Iftikhar, Syed Sajid Hussain.

Writing – review & editing: Syed Sajid Hussain, Attiqa Rehman, Nosheen Gul, Waqas

Jadoon, Babar Nazir.

References
1. Van Sickle J. R. (2016). Discrepancies between student perception and achievement of learning out-

comes in a flipped classroom. Journal of the Scholarship of Teaching and Learning, 16(2), 29–38.

2. Forbes Technology Council. (2017). 13 Top Tech Skills In High Demand For 2018. Retrieved from

https://www.forbes.com/sites/forbestechcouncil/2017/12/21/13-top-tech-skills-in-high-demand-for-

2018/#15a888741e5c

3. Ismail M. N., Ngah N. A., & Umar I. N. (2010). Instructional strategy in the teaching of computer pro-

gramming: a need assessment analyses. TOJET: The Turkish Online Journal of Educational Technol-

ogy, 9(2).

4. ACM/IEEE. (2013b). Computer Science Curricula 2013: Curriculum Guidelines for Undergraduate

Degree Programs in Computer Science: ACM.

5. Blackwell A. F., Whitley K. N., Good J., & Petre M. (2001). Cognitive factors in programming with dia-

grams. Artificial Intelligence Review, 15(1–2), 95–114.

6. Robins A., Rountree J., & Rountree N. (2003). Learning and teaching programming: A review and dis-

cussion. Computer science education, 13(2), 137–172.

7. Milne I., & Rowe G. (2002). Difficulties in learning and teaching programming—views of students and

tutors. Education and Information Technologies, 7(1), 55–66.

8. Linden, T., & Lederman, R. (2011). Creating visualizations from multimedia building blocks: A simple

approach to teaching programming concepts. Paper presented at the In Proceedings of the Information

Systems Educators Conference, University of Melbourne, Australia.

9. Ismail M. N., Ngah N. A., & Umar I. N. (2010). Instructional strategy in the teaching of computer pro-

gramming: a need assessment analyses. TOJET: The Turkish Online Journal of Educational Technol-

ogy, 9(2).

10. Tatum B. C. (2010). Accelerated education: Learning on the fast track. Journal of Research in Innova-

tive Teaching, 3(1).

PLOS ONE Redesign and validation of a computer programming course using Inductive Teaching Method

PLOS ONE | https://doi.org/10.1371/journal.pone.0233716 June 4, 2020 20 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0233716.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0233716.s002
https://www.forbes.com/sites/forbestechcouncil/2017/12/21/13-top-tech-skills-in-high-demand-for-2018/#15a888741e5c
https://www.forbes.com/sites/forbestechcouncil/2017/12/21/13-top-tech-skills-in-high-demand-for-2018/#15a888741e5c
https://doi.org/10.1371/journal.pone.0233716

11. Smart K. L., Witt C., & Scott J. P. (2012). Toward learner-centered teaching: An inductive approach.

Business Communication Quarterly, 75(4), 392–403.

12. DeHaan R. L. (2005). The impending revolution in undergraduate science education. Journal of Science

Education and Technology, 14(2), 253–269.

13. Narjaikaew P., Emarat N., Arayathanitkul K., & Cowie B. (2010). Magnetism teaching sequences based

on an inductive approach for first-year Thai University science students. International Journal of Sci-

ence and Mathematics Education, 8(5), 891–910.

14. Felder R. M., & Silverman L. K. (1988). Learning and teaching styles in engineering education. Engi-

neering education, 78(7), 674–681.

15. Goltermann, P. (2011). Inductive teaching by interacting with CDIO-projects. Paper presented at the

7th International CDIO Conference, Technical University of Denmark (DTU), Denmark.

16. Shuttleworth, M. (Aug 27, 2018). Quasi-Experimental Design. Retrieved from https://explorable.com/

quasi-experimental-design

17. Köppe, C., & Rodin, R. (2013). Guided exploration: An inductive minimalist approach for teaching tool-

related concepts and techniques. Paper presented at the Proceedings of the 3rd Computer Science

Education Research Conference on Computer Science Education Research.

18. Teiniker, E., Seuchter G., & Farrelly, W (2019). Engaging part-time students in software security by

inductive learning. Paper presented at the Proceedings of the IEEE Global Engineering Education Con-

ference (EDUCON), Dubai, UAE.

19. Zhou C. (2012). Integrating creativity training into problem and project-based learning curriculum in

engineering education. European Journal of Engineering Education, 37(5), 488–499.

20. Prince M. J., & Felder R. M. (2006). Inductive teaching and learning methods: Definitions, comparisons,

and research bases. Journal of Engineering Education, 95(2), 123–138.

21. Tarsoly E., & Valijärvi R.-L. (2012). Exploring inductive and deductive methods in teaching reading skills

in Finnish and Hungarian. Sustaining a Global Society: Languages of the Wider World. SOAS—School

for Oriental and African Studies.

22. Jaime A., Blanco J. M., Domı́nguez C., Sánchez A., Heras J., & Usandizaga I. (2016). Spiral and proj-

ect-based learning with peer assessment in a computer science project management course. Journal

of Science Education and Technology, 25(3), 439–449.

23. Jaime A., Blanco J. M., Domı́nguez C., Sánchez A., Heras J., & Usandizaga I. (2016). Spiral and proj-

ect-based learning with peer assessment in a computer science project management course. Journal

of Science Education and Technology, 25(3), 439–449.

24. Torres, C. (2018). Demand for Programmers Hits Full Boil as U.S. Job Market Simmers. Bloomberg

Technology. Retrieved from https://www.bloomberg.com/news/articles/2018-03-08/demand-for-

programmers-hits-full-boil-as-u-s-job-market-simmers

25. Dȩbiec P. (2017). Effective learner-centered approach for teaching an introductory digital systems

course. IEEE Transactions on Education, 61(1), 38–45.

26. ACM/IEEE. (2013a). ACM/IEEE-CS Joint Task Force on Computing Curricula. Retrieved from https://

dl.acm.org/collections/acm-curriculum

27. Sibbald S. L., Speechley M., & Thind A. (2016). Adapting to the needs of the Public Health Workforce:

an integrated Case-Based training Program. Frontiers in public health, 4.

28. Brambor T., Clark W. R., & Golder M. (2006). Understanding interaction models: Improving empirical

analyses. Political analysis, 14(1), 63–82.

29. Coe, R. (2002). It’s the effect size, stupid: what ‘‘effect size” is and why it is important. Paper presented

at the Annual Conference of the British Educational Research Association, University of Exeter, Exeter,

Devon, England. http://www.leeds.ac.uk/educol/documents/00002182.htm

30. Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd Edition ed.). Hillsdale,

NJ: L Erlbaum.

PLOS ONE Redesign and validation of a computer programming course using Inductive Teaching Method

PLOS ONE | https://doi.org/10.1371/journal.pone.0233716 June 4, 2020 21 / 21

https://explorable.com/quasi-experimental-design
https://explorable.com/quasi-experimental-design
https://www.bloomberg.com/news/articles/2018-03-08/demand-for-programmers-hits-full-boil-as-u-s-job-market-simmers
https://www.bloomberg.com/news/articles/2018-03-08/demand-for-programmers-hits-full-boil-as-u-s-job-market-simmers
https://dl.acm.org/collections/acm-curriculum
https://dl.acm.org/collections/acm-curriculum
http://www.leeds.ac.uk/educol/documents/00002182.htm
https://doi.org/10.1371/journal.pone.0233716

