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The mammalian intestinal epithelial stem cell (IESC) niche is comprised of diverse epithelial, immune, and stromal cells, which
together respond to environmental changes within the lumen and exert coordinated regulation of IESC behavior. There is
growing appreciation for the role of the gut microbiota in modulating intestinal proliferation and differentiation, as well as other
aspects of intestinal physiology. In this review, we evaluate the diverse roles of known niche cells in responding to gut
microbiota and supporting IESCs. Furthermore, we discuss the potential mechanisms by which microbiota may exert their
influence on niche cells and possibly on IESCs directly. Finally, we present an overview of the benefits and limitations of
available tools to study niche-microbe interactions and provide our recommendations regarding their use and standardization.
The study of host-microbe interactions in the gut is a rapidly growing field, and the IESC niche is at the forefront of host-
microbe activity to control nutrient absorption, endocrine signaling, energy homeostasis, immune response, and systemic health.

1. Introduction

The gastrointestinal (GI) tract is the primary site of nutrient
absorption and digestion, a barrier to harmful toxins and
pathogens, and the largest endocrine organ of the body
involved in the maintenance of metabolic homeostasis. The
intestinal epithelium comprises the innermost monolayer of
cells in the GI tract that directly interfaces with the gut lumen
and is replaced every 2-3 days in mice and 3–5 days in
humans [1–3]. The monolayer is organized by units of villi
(projections into the lumen) and crypts (invaginations into
the lamina propria—connective tissue and immune cells that
reside beneath the epithelial layer; see Figure 1). The villi
contain specialized, differentiated cell types including cells
of the absorptive lineage (e.g., enterocytes) and of the secre-
tory lineage (e.g., enteroendocrine cells and goblet cells) [4].
The rapid renewal of these cells is driven by actively prolifer-
ating intestinal epithelial stem cells (IESCs) that reside at the
base of the crypt in a functionally defined niche that includes
epithelial Paneth cells as well as nearby nonepithelial cell

types including immune cells of the lamina propria and stro-
mal cells. The delicate balance in IESCs between self-renewal
and differentiation controls intestinal epithelial homeostasis
and regeneration, particularly in response to injury, inflam-
mation, or altered microenvironment. The niche in which
IESCs are embedded helps maintain this balance. In addition
to the cell types mentioned above, microbiota residing in the
intestinal lumen are key members of the IESC niche.

The intestine is a suitable environment for the habitation
of a high density of microbes (>100 trillion bacteria, viruses,
fungi, archaea, and protists) [5–9]. These resident microbes
take part in a complex triangular ecological niche involv-
ing nutrients and host cells [5–7]. It is important to note,
however, that the niche, much like the overall cellular
composition, is nonuniform across different anatomical and
functionally-distinct regions of the intestine, including the
duodenum, jejunum, ileum, caecum, and colon. These differ-
ent intestinal segments exhibit varying microbial density and
composition and are subject to different nutritional and
environmental exposures [8, 9]. Together with neighboring
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host cells, the microbiota influence niche functions, and
thereby modulate IESC behavior differently across the length
of the intestine [10]. As such, it is important to consider
regional differences in microbial composition that may con-
tribute to different functions when studying the IESC niche.
In what follows, we will provide an overview of the major cell
types in the IESC niche and then a more detailed description
of the known contributions of resident microbiota.

2. The Cell Types of the Intestinal Epithelial
Stem Cell Niche

2.1. Intestinal Epithelial Stem Cells. The intestinal crypt in
which IESCs reside harbors some IESCs-derived cell
populations, including transit-amplifying progenitor cells,
enteroendocrine cells (EECs), and Paneth cells [3, 11]. Under
normal conditions, IESCs predominantly divide symmetri-
cally [12, 13]. Certain stress contexts can trigger asymmetric
division in order to prevent the hyperabundance of IESCs
[14]. IESCs produce transit-amplifying progenitor cells that
divide very rapidly (approximately every 12 hours) and com-
prise two-thirds of the base of the crypt. They progressively
differentiate into various specialized intestinal epithelial cells
(e.g., enterocytes) that generally migrate up the crypt-villus
axis [12]. Once these differentiated cells reach the apex of
the villus, they undergo anoikis (a form of programmed cell
death, where cells detach from the extracellular matrix) and

are released into the lumen of the intestine [15, 16]. Paneth
cells and a subset of EECs represent exceptions to this
pattern, as these cells can migrate downward toward the base
of the crypt where IESCs reside, forming a part of the IESC
niche. Paneth cells also have an increased lifespan relative
to other differentiated cell lineages, estimated to be greater
than 3-4 weeks before undergoing anoikis [17, 18]. And,
while there are conflicting reports, some types of enteroen-
docrine cells may also survive longer than absorptive
enterocytes [19, 20].

Crypt size, proliferative index, and the distribution of
proliferative cells within the crypt are variable across the
intestinal tract (see Figure 2, [8]). This type of regional vari-
ability is not uncommon in other organ systems with adult
multipotent stem cells [21–23]. The actively cycling IESCs
of the small intestine are located in the crypt base and are
marked by high expression of several genes including Lgr5,
Olfm4, and Ascl2, as well as by low expression of Sox9 [24].
Slower cycling or reserve IESCs are marked by high expres-
sion of Bmi1, Tert, Hopx, Lrig1, and Sox9. However, these
markers are not specific, as several of them are also found
in actively cycling IESCs (e.g., Lrig1) or EECs (e.g., Sox9,
[25]). Particularly fascinating is the observation that some
secretory and absorptive progenitors exhibit plasticity; that
is, the potential to revert back to IESCs in response to
injury [26–29], suggesting that the reserve stem cell popula-
tion is broader and less defined than certain differentiated
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Figure 1: The intestinal stem cell niche. Intestinal stem cells have the capacity to generate, via a population of progenitor cells, all
differentiated cell types of the intestinal epithelium including enterocytes, goblet cells, Paneth cells, and enteroendocrine cells. Those cell
types that are known or suspected to comprise the intestinal stem cell niche include the adjoining Paneth cells of the small bowel, or the
deep crypt secretory cells of the colon, as well as myofibroblasts, dendritic cells, macrophages, muscle cells, and enteric glia and neurons
found in the subepithelial lamina propria and submucosal compartments of both small and large intestine.
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IEC populations (also see reviews [30, 31]). Recent single-cell
transcriptomic work has shown that there is heterogeneity
even among Lgr5+ actively cycling IESCs [32]. This molecu-
lar heterogeneity was also seen in earlier studies comparing
populations of CD24lo and side-population IESCs [33], as
well as in a very recent RNA-seq-based comparison of IESC
populations isolated by diverse methods [34].

The chromatin state, and many transcription factors and
signaling cascades, regulate IESC stemness. The position of
the IESC within the crypt is a major determining factor of
its self-renewal capacity, driven in part by Wnt and Delta-
Notch signaling [12, 35]. Transcription factors such as Klf5,
Gata4, Gata6, Ascl2, and Yy1 have been shown to control
intestinal stem cell fate, and their deficiency causes disrup-
tion of intestinal architecture [14, 36]. More recently, micro-
RNAs too have emerged as key regulators of the niche and
responders to environmental stimuli in IESCs [37, 38]. For
example, miR-375 in murine IESCs is highly sensitive to
the presence of microbes, and loss-of-function studies in
ex vivo mouse enteroid cultures suggest that it may be a
prominent regulator of intestinal epithelial proliferation
[38]. For further detailed review of IESCs, we refer the reader
to recent review article [39].

2.2. Paneth Cells. Paneth cells are epithelial cells of the small
intestine that are located between and around IESCs and take
part in shaping the crypt microenvironment and regulating
microbial interactions within the crypt by secreting antimi-
crobial peptides [40]. They are present throughout the entire
small intestinal tract, and they increase in number along the
proximal-distal axis. Unlike villus epithelial cells that get
replaced every 3–5 days, the life span of Paneth cells in the
crypt is about 30 days [40]. As part of their role in the niche,
they also release growth factors that directly influence the
neighboring IESCs [40], cementing their role in the niche.
Under environmental stress, Paneth cells act to protect and
stimulate IESCs. For example, under conditions of caloric
restriction, luminal cyclic adenosine diphosphate (cADP)

derived from Paneth cells induces IESC. Interestingly,
however, ablation of Paneth cells in vivo does not appear to
impact IESC proliferation and differentiation [41] or the
distribution of microbes within the gut [17], possibly due to
compensatory responses by other niche cells [41]. Loss of
Paneth cells has been shown to compromise the barrier
integrity of the intestinal epithelium [42]. Recent work has
suggested that the large intestine may also harbor Paneth
cell-like deep crypt secretory (DCS) cells [43]. More work is
needed however to evaluate these cells further and determine
the extent to which they contribute to colon IESC niche
functions [43]. For further detailed descriptions of Paneth
cells, we refer the reader to the following reviews [44, 45].

2.3. Enteroendocrine Cells. Enteroendocrine cells (EECs) are
occasionally located within the crypt and play a vital role in
gut physiology and may contribute to the IESC niche micro-
environment [46, 47]. Though EECs make up less than 1% of
all intestinal epithelial cells, they have an important function
in sensing the luminal environment (nutrients, bile acids,
microbes, etc.) and secreting hormones, including Glp-1,
Cck, Pyy, Gip, ghrelin, and neurotensin, in order to coordi-
nate systemic energy regulation [48, 49]. There are many
different subtypes of EECs based on the hormones that they
most readily express and secrete. For example, both I cells
and K cells are EEC subtypes that reside predominantly in
the proximal small intestine, but secrete the hormones CCK
and GIP, respectively, which have different endocrine
effects [50, 51]. The abundance and types of EECs vary
throughout the gastrointestinal tract; some EEC subtypes
are found throughout the small and large intestine (e.g.,
N cells: neurotensin-secreting EECs), whereas others are
found primarily in the small intestine (e.g., K cells, I cells,
and S cells: gastric inhibitory peptide-, cholecystokinin-,
and serotonin-secreting EECs, resp.) [50]. EECs are also
abundant in the rectum, where they are found at the highest
frequency in the GI tract other than the proximal small bowel
[52–54]. It has been suggested that crypt EECs, or possibly

Figure 2: Regional differences along the small intestinal tract. The proximal-distal axis of the small intestine displays a gradient of various
properties. Not only are mirobial loads progressively loads increased toward the ileal end of the intestine, but villus length gradually
decreases in this same direction as well. The mechanisms by which luminal microbes could affect such changes in intestinal architecture
may involve TLR activation, extracellular vesicles (EVs), metabolic byproducts, and/or other heretofore unspecified direct and indirect on
intestinal epithelial stem cells.
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secretory progenitor cells in general, may comprise a reserve
pool of IESCs that actively proliferate in response to
intestinal injury [25, 49, 55, 56]. Their contributions to the
maintenance of IESC function remain poorly characterized;
however, it is known that certain EEC-secreted peptides,
such as Glp-2, can serve as paracrine signaling molecules to
promote intestinal epithelial proliferation [57]. EECs have
also been shown to respond to microbe-derived peptides
and therefore may act as a conduit signaling mechanism
for the IESC niche [58]. For example, recently it was
shown that colonic exposure to proteins from Escherichia coli
stimulate Pyy and Glp-1 release from EECs in rats [59].
Much more work remains to be done in order to define more
rigorously the functional importance of crypt EECs to the
IESC niche.

2.4. Stromal Cells. In the adult intestine, the epithelium is
surrounded by stromal cells of the mesenchymal lineage.
These cells facilitate intercellular crosstalk through several
factors that regulate IESC proliferation and differentiation
and therefore are considered an integral aspect of the IESC
niche. Subepithelial mesenchymal stromal cells produce bone
morphogenetic proteins (BMPs), which are members of the
TGF-β superfamily that antagonize Wnt signaling along the
crypt-villus axis, thereby inhibiting IESC expansion and
promoting epithelial cell differentiation [60]. Other mesen-
chymal cells including myofibroblasts secrete BMP inhibi-
tors that promote Wnt-mediated IESC self-renewal [61].
Recently, a seminal study by Aoki et al. and Kaestner and
colleagues described a small population of elongated Foxl1-
expressing mesenchymal cells that envelop both the crypts
and villi of the intestinal epithelium and produce a number
of growth factors including those of the Wnt and Bmp family
to support IESCs [62]. Ablation of these cells, but not other
niche cells like Paneth cells, results in severely compromised
crypt proliferation. These data suggest that the Foxl1+ mes-
enchymal cell population constitutes an essential component
of the IESC niche [35]. In sum, the entire collection of
subepithelial stromal cells mediates an intricate signaling
network that maintains balance between IESC self-renewal
and differentiation along the crypt-villus axis. Comprehen-
sive characterization of the functional diversity of mesenchy-
mal cells and their roles in the niche remains an active and
important area of research.

Macrophages are crucial sentinels in the healthy intesti-
nal lamina propria that are required for maintenance of
intestinal homeostasis in the face of microbiota and food
antigens [63]. Epithelial tuft cells and goblet cells mediate
immune response to microbes and microbial-derived pep-
tides by secreting chemokines to which these intestinal
macrophages readily respond [64–68]. In both rodents and
humans, intestinal macrophages are more numerous in the
small intestine than in the large bowel. It is increasingly being
recognized that macrophages, in addition to serving an
innate immune function, can regulate intestinal stem cell
function. Recently, Saha et al. found that radiation-induced
intestinal injury is ameliorated by enhanced stem-cell prolif-
erative function stimulated in part by macrophage-secreted
Wnt factors [69].

2.5. Enteric Nervous System. The enteric nervous system
(ENS) plays a vital role in many aspects of GI tract function,
including orchestrating peristalsis and fluid secretion
required for food digestion and nutrient absorption and sus-
taining a healthy luminal microbiome. Also, it has been
found that the ENS can influence IESC function. For exam-
ple, Lundgren et al. have shown that modification of mucosal
afferent nerve function modulate IESC proliferation [70].
Given that enteric nerve cells act synchronously with clonally
related neurons, the effect may be broadly translated across
multiple crypts [71]. Moreover, in addition to their neural
support roles, glial cells of the ENS also contribute to intesti-
nal epithelial proliferation and repair after injury through the
secretion of proepidermal growth factor (pro-EGF) [72, 73].

For detailed reviews of the diverse cells types within the
IESC niche, see [11, 74, 75].

3. Role of Gut Microbiota in the Stem Cell Niche

To maintain gut homeostasis and proper function, IESCs
must respond either directly or indirectly to apical luminal
and basolateral abluminal factors, most notably gut microbi-
ota and dietary components. Cells of the IESC niche have
evolved a number of mechanisms to manage a constantly
changing luminal microenvironment. Constituents of the
intestinal microbiota and their products are potentially
highly potent regulators of IESC activity due to their proxim-
ity to the intestinal epithelia, as well as their profound effects
on host nutrition, metabolism, and mucosal barrier integrity.

3.1. Region-Specific Roles for Gut Microbiota in the Control of
Intestinal Epithelial Renewal. Decades of research on murine
models has revealed that luminal bacteria can shape a
variety of morphological and functional features of differ-
ent intestinal regions and cellular subpopulations. One of
the oldest observations was made in the 1960s through
studies of germ-free (GF) and antibiotic-treated mice and
rats. It was noted that these rodents exhibited decreased
villus height and crypt depth in the jejunum and ileum,
increased villus height and decreased crypt depth in the
duodenum, reduced mucosal surface area, lowered mitotic
indices, reduced lamina propria volume, and slower transe-
pithelial migration rates compared to conventionally raised
(CR) animals [76–84]. These findings were suggestive of
one or more of several possibilities. For example, shorter
crypts could be indicative of decreased proliferation, and/
or increased/premature differentiation, and/or progenitor
apoptosis. Subsequent follow-up studies have evaluated
these possibilities and are shedding light on the context-
specific effects of colonization on intestinal physiology.
Current state-of-the-art follow-up studies include whole
transcriptome profiling (both aggregate and single-cell)
and fluorescent immunohistochemistry for markers of active
proliferation and apoptosis. For example, we recently dem-
onstrated that genes in pathways associated with mitotic cell
cycle are transcriptionally upregulated in jejunal cell popula-
tions enriched for stem cells of conventionalized animals
relative to GF animals [38]. Yu et al. also demonstrated
increased ileal crypt proliferation in ex-germfree mice in
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response to colonization with microbiota from healthy
infants relative to colonization with microbiota from infants
with low weight gain [85]. In studies in which GF rodents
were exposed to commensal microbes, increased colonic
epithelial proliferation and deepened large bowel crypts were
observed [86, 87]. Although this effect was reported in other
small intestinal regions as well, it was evident that the magni-
tude of the effect of microbes on epithelial morphology is
region-specific [88, 89]. Duodenal and jejunal intestinal epi-
thelia from CR mice display slightly increased proliferation
relative to ileum, despite the fact that duodenal and jejunal
luminal bacterial loads are substantially less than what is
found in the ileal lumen [90]. The potential primacy of
microbial composition over total bacterial number on the
control of intestinal epithelial proliferation was demon-
strated by the observation that exposure to specific bacterial
species such as the breast milk-derived probiotic strain
Lactobacillus reuteri DSM 17938 induces intestinal epithelial
proliferation while other strains like L. reuteri PTA 6475 do
not [91]. Viruses may also contribute to overall intestinal
epithelial morphology and physiology. For example, certain
strains of murine norovirus can modulate innate immunity
and mediate some negative effects on the intestinal epi-
thelium of dextran sodium sulfate and certain antibiotic
treatments [92].

3.2. Mechanisms of Microbial Influence on IESCs. Although it
is clear that the presence of luminal microbes is correlated
with structural and functional changes in IECs, it is often
difficult to determine whether microbes or the experimental
treatments that induce microbial changes are responsible
for these effects. Modifications of diet and antibiotic treat-
ments have been employed historically to alter the intestinal
microbiota in order to study host effects. However, identify-
ing the precise, and likely multiple, mechanisms by which
microbiota influence the IESCs has proven challenging
especially given the regional specificity and diversity of
microbes and their derived metabolites. Regulation of IESCs
by microbiota may occur either through direct and or
indirect means, and understanding mechanisms of niche-
microbe interactions has therapeutic relevance. Secreted
factors that stimulate the Wnt/β-catenin signaling pathway
are the primary means by which the niche offers support
for IESCs. For example, following injury from radiation,
mesenchymal stem cells activate theWnt/β-catenin signaling
pathway and support Lgr5+ stem cell growth to promote
regeneration [93]. Similarly, as mentioned above, Saha et al.
demonstrated that macrophages secrete Wnt factors in
exosomes to support the intestinal stem cell niche during
regeneration and protect it from radiation-induced injury
[69]. Yet, the extent to which these and other niche cells act
in response to changes in the gut microbiota during homeo-
stasis or following injury has not been fully elucidated.

3.2.1. Potential Mechanisms of Direct Influence. The intes-
tinal stem cell niche has been described as being maintained
under completely sterile conditions in the absence of
injury [94–96]. However, microbes residing within intestinal
mucosa, and indeed within healthy intestinal crypts, are well

documented, which raises the possibility of direct regulation
of intestinal stem cell physiology by gut microbiota. The
earliest visualization of microbiota in direct contact with
the intestinal epithelium was in the 1970s using scanning
electron microscopy on mouse intestine. These studies
showed microbes attached to the openings of the crypts of
Lieberkühn via long webbing filaments [97–100], and not
fully separated from the epithelium by the mucus layer. How-
ever, it was not until recently that microbes were visualized
deep within crypts [101, 102]. One main challenge in
identifying these crypt-based microbes stems from the use
of common washing and fixation methods that dissolve or
disturb microbial biofilms and host-mucins [98, 103]. Using
a fixation method that preserves the biofilms, such as anhy-
drous Carnoy’s fixative, together with extremely cautious
sectioning techniques, has further improved visualization of
microbes within intestinal crypts [5, 95, 99, 101, 102].
Current research suggests that crypt-based microbes are
found primarily in the colon and caecum, which is consis-
tent with the overall microbial density gradient within the
gut [5, 101, 102]. Bacterial species found within the crypt,
as identified by 16S sequencing, and fluorescent in situ
hybridization (FISH) of murine colonic crypts, indicate the
predominance of bacteria capable of aerobic metabolism,
including species of Acinetobacter and Proteobacteria [5].
This finding is interesting given that the flora of the small
intestine is also enriched for aerobes [104, 105]. Following
GI infection, certain pathogenic microbes have been found
to more frequently occupy the crypt niche, even in the upper
GI tract, and it has been suggested that colonization of the
crypts might promote pathogenic longevity leading to
chronic infections, as is seen with Helicobacter pylori in the
stomach [106]. On the other hand, the presence of residing
H. pylori in gastric crypts also prevents secondary infections,
a form of “colonization resistance,” which may be beneficial
to the host’s health.

Less well studied is the possibility that microbiota may
stimulate IESCs directly through the release of outer
membrane vesicles (OMVs). Given that IESCs take up
macrophage-derived exosomes [69], much like what has
been observed in enterocytes, it is possible that IESCs also
take up outer membrane vesicles (OMVs) produced by
gram-negative bacteria localizing at the base of villi or within
the crypts [107–109]. OMVs are similar in size to exosomes
and are taken up via similar pathways, such as through cave-
olin or lipid raft-mediated endocytosis [110]. OMVs may
carry bacterially derived and molecularly active peptides,
virulence factors, small RNAs, and DNA, all of which could
act to modify IESC gene expression patterns. Uptake of
OMVs by IESCs has not been formally evaluated, though
uptake of OMVs by other intestinal epithelial cells has been
demonstrated [111]. This may suggest multiple possibilities
by which microbes directly regulate IESC gene expression
and cellular behavior.

3.2.2. Potential Mechanisms of Indirect Influence. Resident
microbiota, as part of the symbiotic relationship with
humans, metabolize and ferment foods in the intestinal
lumen. Byproducts and metabolites from these processes
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can be absorbed or act as receptor ligands by both the host as
well as by other microbes within the gut. Some of the most
widely studied microbial metabolites include short-chain
fatty acids (SCFAs), which are produced primarily in the
colon through the fermentation of dietary fibers. Kaiko
et al. found that SCFA butyrate suppressed colonic stem cell
proliferation [112], perhaps through receptors encoded by
Ffar3, Ffar2, and Niacr1 [113]. Ffar2 is robustly expressed
in mouse jejunal IESCs and is downregulated upon conven-
tionalization [38]. Importantly, enterocyte metabolism of
butyrate at the entrance of the colonic crypt was an impor-
tant modulator of the SCFA dosage received by IESCs,
suggesting that certain enterocytes may support the niche
[114]. However, given the trace amounts of SCFAs in the
small intestine, this may not be a prominent pathway
regulating the small bowel IESC niche. In this same screen
by Kaiko et al., nicotinic acid (or niacin) was found to have
pro-proliferative effects on colonic stem cells [112]. Niacin
is ingested or biosynthesized by the gut microbiota [115]
and may therefore be a strong candidate for regulation of
small intestine IESCs. Further research into small intestinal
metabolites that regulate IESCs is warranted.

Microbial stimulation of non-IESC niche cells may result
in the secretion of signaling peptides that in turn influence
IESC physiology. For example, Paneth cells of the small
intestine (and possibly DCS cells of the colon) form a major
component of the IESC niche. They secrete a number of
antimicrobial peptides and growth factors including lyso-
zyme, α-defensins, WNT, EGF, and Notch to their neighbor-
ing stem cells, and when dysregulated leave the host more
susceptible to infection and other physiological abnormalities
(see reviews [40, 116–118]). TLR activation in Paneth cells is
associated with the degranulation and secretion of defensins
into the crypt [119–122], which would modulate the niche
microenvironment. However, it is not yet clear what the pre-
cise effect of Paneth cell degranulation is on IESC physiology.

Other niche cells may provide more insight, though in
some cases their actions on IESCs may be interdependent.
Niche cells respond to various microbial signals (e.g., via
TLR receptors) and metabolites (e.g., SCFA), resulting in a
number of downstream stimuli that could alter IESC physiol-
ogy. Some EECs, such as L-cells located along the crypt-villus
axis, release Pyy and Glp-1 in response to microbial stimuli
[119]. Pyy in turn stimulates intestinal epithelial proliferation
and differentiation both in vivo and in vitro [123, 124]. EECs
that reside outside the niche may also contribute toward the
control of IESC behavior by serving as intermediates in mul-
ticellular signaling pathways initiated by resident microbes.
Tuft cells have recently been shown to respond in part to
parasites and helminthes by secreting IL-25 [125]. IL-25
induces innate lymphoid cells to secrete the IESC stimulat-
ing factor IL-13 [67], resulting in increased goblet and tuft
cell differentiation [65]. IL-33 expression in intestinal stro-
mal cells provides another possible mechanism by which
microbes may regulate IESCs, as some microbes, including
helminths and other parasites, induce IL-33 release from
lymphocytes [126]. For example, it was recently shown that
TNF-α- and IL-1β-stimulated IL-33 release from pericryptal
fibroblasts in response to Salmonella typhimurium infection

promotes secretory cell differentiation of IESCs [127].
Sources of IL-33 are not limited to these fibroblasts; epi-
thelial cells may also express IL-33 thereby further regulating
IESC differentiation.

Finally, microbiota-derived neurostimulatory peptides,
including glutamate, serotonin, and GABA, as well as macro-
nutrients like glucose and fatty acids, can act as neurotrans-
mitters to stimulate the enteric nervous system, which in
turn can regulate IESC function (see reviews Mazzoli and
Pessione [58] and Neunlist and Schemann [128]).

4. Tools to Study Microbiota Interactions in the
IESC Niche

A number of questions remain with regard to how the micro-
biota may influence the IESC niche. Over the past several
decades, experimental models have been developed, which
span in vitro, ex vivo, and in vivo methodologies (Table 1).
Here, we touch on the most recently developed as well as
the most widely used tools for studying IESC-microbe
interactions.

4.1. In Vitro Models to Study Intestinal Host-Microbe
Interaction. One of the most straight-forward and widely
used in vitro cell culture models to study host-microbe
interactions are coculture systems. Typically, an intestinal
epithelial cell line (e.g., Caco-2, HIECs, T84, IEC6, and
HT29s) will be seeded as a monolayer, on transwells, or on
a scaffold device. Bacteria, or bacterial supernatant, or other
microbes, may be added to the culture chamber either
directly to the cells or separated by some type of membrane
or barrier [129–131]. Metabolic, molecular, and physiolog-
ical assays can then be conducted in the hours or days
following. These coculture experiments are scalable, highly
reproducible, and straightforward to conduct in most labs
with standard cell culture equipment. Additional cell types,
such as primary-derived macrophages or PBMCs [132–134],
can be included in the coculture. Despite the ease of per-
forming these coculture experiments, they harbor limitations
with regard to mimicking in vivo physiological conditions.
To address this limitation, researchers have recently devel-
oped interesting in vitro coculture microfluidic, scaffold,
and three-dimensional (3D) systems [135–138]. For exam-
ple, Chen et al. developed a tube culture system to coculture
enterocyte-like Caco-2 cells, Goblet-like HT29-MTX cells,
and H-InMyoFibs myofibroblast cell lines. The tube struc-
ture allows researchers to pass media and bacteria across
cells, while also mimicking the oxygen and nutrient gradients
present in vivo within the intestinal tract [137]. Nonetheless,
many of the cell lines used are transformed and therefore
may not always faithfully represent primary cells. Moreover,
there exist no known cell lines for certain intestinal cell types
such as Paneth cells [45].

4.2. Ex Vivo Models to Study Intestinal Host-Microbe
Interaction. More recently, researchers have moved to the
use of ex vivo three-dimensional (3D) primary enteroid and
intestinal organoid models to evaluate epithelial-microbe
interactions [38, 93, 139–141]. Intestinal tissue is isolated
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and single cells, crypts, or whole mucosa is extracted and
grown in a collagen-rich matrix, such as Matrigel. Enteroids
and organoids will grow into large 3D masses containing all
mature cell types of the isolated tissue, which more accurately
mimics in vivo physiology compared to in vitromodels [142].
Enteroids refers to cultures consisting solely of intestinal
epithelial tissue, whereas organoids are derived to contain
multiple tissue types, such as epithelia, enteric nerves, myofi-
broblasts, and smooth muscle cells [143]. Enteroid cultures
can be passaged indefinitely making them a viable alternative
to immortalized cell lines. Of note, these structures can also
be derived using induced pluripotent stem cells (iPSC cells)
[144, 145]. Because enteroids will form sealed “lumens,” with
villi forming on the inside and crypts projecting outward,
microbes should be microinjected into the lumens to evaluate
host-microbe interactions (see [146, 147] for review). Micro-
injections of enteroids and organoids can be challenging.
Moreover, the tendency of these structures to occasionally
burst and then reseal can be prohibitive to long-term studies
of injected microbes. Nevertheless, we recently demonstrated
that IESCs grown in enteroid culture can be genetically
manipulated using gymnosis to knockdown gene and
microRNA expression [38]. Recently, monolayer versions of
ex vivo enteroid culture systems have emerged, which expand
the number of assays that can be performed, including patch
clamps and live imaging studies [134, 148]. Less widely used
are ex vivo mucosal explants and slice models, which, like
organoids, contain a full complement of intestinal cell types
[149, 150] and like coculture systems can be manipulated
by adding microbes to the culture media (see review [151]).
However, even with high oxygenation, small bowel explants
have not been cultured successfully beyond 48 hours, and
are not easily multiplexed like some enteroid systems [152],
which severely limits their usefulness [149, 153]. Despite
the advantages of using these culture systems, results of
experiments intended to evaluate the effects on IESCs could
be confounded by the presence of mature, differentiated
intestinal cell types. Certain small molecules may assist in
enriching for IESCs, for example, valproic acid and
CHIR99021 [154], which could help clarify direct effects of
microbes on IESCs.

4.3. In Vivo Models to Study Intestinal Host-Microbe
Interaction. Finally, there are a number of in vivo methods
to study the effect of microbiota on the intestinal stem cell
niche. These models typically fall into one of two classes:
introduction-based or depletion-based. In introduction
models, a GF animal is exposed to microbes in a process
termed “colonization.” Depletion models on the other
hand aim to remove microbiota from a CR animal through
the exposure to broad-spectrum antibiotics. Sometimes,
researchers may combine approaches and reintroduce
microbiota following depletion [175–177]. There are benefits
and limitations to both approaches.

While the systemic and intestinal physiology of GF mice
is atypical, these animals provide a “blank slate” for
researchers to evaluate the effects of single strains, defined
sets of microbes, or undefined microbiota on the stem cell
niche. However, as humans are never reared in GF

conditions, the clinical utility of GF models is often ques-
tioned [178]. Nevertheless, GF animals provide a valuable
resource. Attempts at generating GF animals began before
the beginning of the 20th century using chickens and
guinea pigs [179, 180]. However, multigenerational GF
animals were not described until much later in the 20th
century (see [180, 181] for review). Currently, GF animals
are acquired surgically through aseptic caesarian section or
embryo transfer, and then maintained under sterile condi-
tions in specialized isolation chambers. Food, water, and
bedding must be sterilized prior to being introduced to
animals, and fecal matter as well as cage environments are
regularly checked to verify that no microbes have uninten-
tionally been introduced. While GF animals survive, and in
fact may live longer than CR animals [182], they develop
abnormally and have altered behavior, metabolism, diges-
tion, and immune system function [180]. Colonization of
GF animals with microbes elicits a robust immune response,
which takes several weeks to normalize to a state more
similar to that of CR animals [166–168, 183]. The dynamic
process of conventionalization is an important consideration
as animal age, length of colonization, and animal diet
contribute to microbial community structure and immune
response. Moreover, colonization dynamics demonstrate
substantial regional specificity. Temporal and regional
dynamics of GF mouse conventionalization have been exam-
ined, most notably in a series of papers by El Aidy and
colleagues [166–168, 184]. From these studies and others,
we know certain developmental processes have a limited
timeframe during which microbial colonization of GF ani-
mals may restore phenotypic similarity, especially within
the immune system, with CR animals (see review [185]).
Temporal and regional changes are also quite robust, with
genes involved in innate immunity being most different in
the first couple of days following colonization and stabilizing
between 2 and 3 weeks postcolonization [167, 186, 187].
Regionally, immune cell recruitment occurs more rapidly in
the small intestine compared to the colon in the days
postcolonization [167], which has the potential to affect
niche response. Many studies have performed colonization
at different ages and for different lengths of time, making
cross-study comparisons challenging. Moreover, differences
in housing conditions, bedding material, and nonsterilized
foods can introduce variables that further confound cross-
study comparisons. The evaluation of the in vivo effect of
specific microbes can be achieved using GF animals. How-
ever, because early microbe exposure significantly affects
immune development and other physiological functions,
the results of some gnotobiotic experiments may not reflect
what occurs in animals that have been exposed to microbes
since birth [188]. Despite these limitations, GF models have
been used successfully to evaluate the effect of microbiota
on IESCs, including many studies employing laser capture
microdissection (LCM) [42, 85, 172, 189, 190] to isolate
and test the effect of microbiota on the niche. For example,
using LCM, Yu et al. [85] assessed the effects of microbiota
on crypt cell gene expression following colonization of GF
animals with microbiota collected from neonatal patient
samples. Others have shown specific effects of antibiotics
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and colonization on gene expression in the intestinal
crypts [172]. LCM of intestinal epithelial crypts includes
several cell lineages, though it is possible to enrich for
IESCs by genetically depleting Paneth cells [190]. This
method, however, is labor intensive and does not result
in high yields of RNA. As an alternative to LCM methods,
we derived GF Sox9-EGFP reporter mice, which allow for the
isolation of IESCs and progenitor cells using fluorescent-
activated cell sorting (FACS), allowing for more precise
assaying of cell-type-specific effects of microbiota [38].

Depletion of bacteria in CR animals using broad
spectrum antibiotics is another approach for investigating
the effect of microbiota on the stem cell niche. The major
advantages are that such depletion-based approaches are
substantially less expensive and quicker to conduct. How-
ever, there are several limitations. Notably, it has been shown
that antibiotic treatment alone, irrespective of microbial
depletion, can modify host gene expression and cause
alterations to the intestinal epithelium, especially within the
crypt compartment [172]. Moreover, complete elimination
of microbiota using antibiotics is unlikely [169, 191], espe-
cially since most broad spectrum antibiotics specifically
target bacteria, leaving enteric fungi and viruses to flourish.
Nevertheless, antibiotic treatment continues to be a widely
used model to investigate the effect of microbes on the host.
It is likely that a combination of both introduction and
depletion models could be helpful to evaluate fully the effect
of microbial factors on the niche [192].

Another strategy that circumvents both gnotobiotic and
antibiotic models is surgery to create isolated intestinal
segments, such as Thiry-Vella fistulas, to determine the effect
of autonomous microbial changes on intestinal function
without experimental modification of the lumen [193].
However, this in vivo model eliminates normal luminal flow
which of course does not properly reflect normal physiology.
Despite the inherent limitations of all of the investigative
methods, much has been learned concerning the mecha-
nisms mediating microbial influences on host intestinal
epithelial structure and function.

5. Conclusion and Discussion

The IESC niche constitutes a complex network of cell types
expanding well beyond the epithelial layer to help govern
the balance between IESC self-renewal and differentiation.
The mammalian IESC is comprised of epithelial cells includ-
ing IESCs, Paneth cells, and EECs, as well as nonepithelial
components including stromal, neural, and immune cell
types. It is also evident that gut microbiota have a prominent
influence on intestinal epithelial physiology and stem cell
function. However, the underlying mechanisms remain
poorly understood and are still under active investigation.
A major challenge is the isolation of functionally distinct
cellular subpopulations and niche cells from the intestine as
well as the difficulty in ascertaining the specific effect of
individual microbes, metabolites, and other microbe-derived
products. Several in vitro, ex vivo, and in vivo tools are
available to investigate the relationship between host and
microbe within the gut, and the research community has

made substantial strides in the last decade. Nevertheless,
several key questions remain, most notably the following:
(1) Do IESCs respond to direct signals from gut microbiota?
(2) Which niche cells are essential for proper microbial con-
trol of IESCs? (3) Do IESCs provide feedback to intestinal
microbiota? (4) Does the niche contribute to the selection
of microbes which reside in crypts, and what if any are the
unique functions of the crypt-based microbes in regulating
IESC behavior? (5) How are host-microbe interactions
altered by diet, age, disease, or anatomic position along the
GI tract? The answers to these questions will significantly
advance our understanding of the role of host-microbe com-
munication in normal intestinal physiology and in driving
gastrointestinal diseases.

As we continue to address these and related important
questions, moving forward, it is our opinion that special care
must be taken to standardize relevant in vitro, ex vivo, and
in vivo experiments in order to facilitate cross-study compar-
isons. For example, in terms of in vivo studies, given what we
know of regional specificity and variability, we believe it is
important whenever possible to report measurements from
all three major small intestinal segments as well as the colon.
Also, as rodents ingest bedding material, a considerable
source of fiber, studies using animal models should include
specifics as to bedding material, the diets used throughout
the study course, the housing conditions (single versus
cohoused, open versus closed ventilation, and light/dark
cycles), the age at (and duration of) colonization, and the
source, composition, and handling of the microbiota used
for colonization, all of which have previously been shown
to affect microbial composition.

The development of probiotics or engineered bacteria,
as well as molecular strategies such as those based on
microRNAs, represent exciting possibilities for modulating
the gut microbiome and the IESC stem cell niche and
thereby modifying intestinal physiology. Such efforts
could in the long-term provide benefit to patients with
a wide range of gastrointestinal diseases. With many recent
advances in tools and technologies for exploring direct and
indirect interactions between microbes and host IESCs,
we anticipate significant progress in this area over the
next decade.
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