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Abstract

Mild cognitive impairment (MCI) is a heterogeneous cognitive disorder that is often comorbid

with Parkinson’s diseases (PD). The amnestic subtype of PD-MCI (PD-aMCI) has a higher

risk to develop dementia. However, there is a lack of studies on the white matter (WM) struc-

tural changes of PD-aMCI. We characterized the WM structural changes of PD-aMCI (n =

17) with cognitively normal PD (PD-CN, n = 19) and normal controls (n = 20), using voxel-

based and tract-based spatial statistics (TBSS) analyses on fractional anisotropy (FA) axial

diffusivity (AD), and radial diffusivity (RD). By excluding and then including the motor perfor-

mance as a covariate in the comparison analysis between PD-aMCI and PD-CN, we

attempted to discern the influences of two neuropathological mechanisms on the WM struc-

tural changes of PD-aMCI. The correlation analyses between memory and voxel-based WM

measures in all PD patients were also performed (n = 36). The results showed that PD-

aMCI had smaller FA values than PD-CN in the diffuse WM areas, and PD-CN had higher

AD and RD values than normal controls in the right caudate. Most FA difference between

PD-aMCI and PD-CN could be weakened by the motor adjustment. The FA differences

between PD-aMCI and PD-CN were largely spatially overlapped with the memory-corre-

lated FA values. Our findings demonstrated that the WM structural differences between PD-

aMCI and PD-CN were mainly memory-related, and the influence of motor adjustment

might indicate a common mechanism underlying both motor and memory impairment in PD-

aMCI, possibly reflecting a predominant influence of dopaminergic neuropathology.
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1 Introduction

Parkinson’s disease (PD) is often comorbid with mild cognitive impairment (MCI), a hetero-

geneous cognitive disorder characterized as mild deficits in various cognitive functions, with

the prevalence varying between 25% and over 80% at different stages of PD [1]. According to

the impaired cognitive functions, MCI can be classified into different subtypes with disparate

neuroanatomical abnormalities [2, 3]. Similarly, PD-MCI can be classified into different cogni-

tive impairment subtypes; among them, the amnestic subtype of PD-MCI (PD-aMCI) shows a

higher progression rate to develop dementia [4, 5].

Several studies have investigated the neuroanatomical changes of PD-MCI [6–8]; however,

few studies focused on any specific subtypes of PD-MCI [9]. To our knowledge, no study has

examined the white matter (WM) changes of any specific PD-MCI subtype. Without specify-

ing the subtypes of PD-MCI, several studies investigated the WM structural changes in

PD-MCI, and the findings were inconsistent, possibly owing to the heterogeneous nature of

PD-MCI [10–13]. Compared to cognitively normal PD patients, Agosta and colleagues found

that PD-MCI showed a diffuse pattern of WM abnormalities [10], while two studies showed a

localized WM decrease pattern for PD-MCI in the frontal, temporal and anterior cingulate

WM bundles [11, 13]. There was also a report of no significant WM structural difference

between PD-MCI and cognitively normal PD patients [12].

Our first aim would be to characterize the WM structural changes of PD-aMCI with cogni-

tively normal PD patients (PD-CN) and normal controls on three diffusion tensor imaging

(DTI) metrics, including fractional anisotropy (FA), axial diffusivity (AD) and radial diffusiv-

ity (RD). We employed AD and RD, instead of mean diffusivity (MD), as AD and RD could

provide more detailed information on water diffusion directions than MD [14]. We used the

voxel-based method for three DTI metrics, because it has the advantage of exploring the

microstructural changes across the whole brain, including subcortical nuclei [15]. We also

used the tract-based spatial statistics (TBSS) method to validate the voxel-based DTI analysis

results, as the TBSS method could compensate some local registration errors of voxel-based

analysis by restricting the analysis to the major WM tracts [16].

Normally, motor and memory are two separate brain functions with distinct brain struc-

tural substrates. However, in PD-aMCI there might be a common culprit for both motor and

memory impairments. Evidence showed that the spread of dopaminergic neuropathology

across diffuse brain regions coincided with the decline of motor and memory [17–19]. Yet,

another line of evidence suggested that the accumulations of amyloid plaque and neurofibril-

lary tangle, the hallmarks of Alzheimer’s disease, had been specifically involved in the memory

decline of PD patients, indicating a unique cholinergic pathological mechanism [8, 20, 21].

Driven by this knowledge, we considered that motor and memory impairments were both

risk factors for the WM structural changes of PD-aMCI from PD-CN, and they may share a

common pathological cause at certain extent, similar to the description of overlapping risk fac-

tors by Kraemer and colleagues [22]. As the adjustment of an overlapping risk factor could

attenuate the relationship of another, we performed two sets of WM structural comparison

analyses between PD-aMCI and PD-CN, without and then with a motor performance index

controlled as a covariate. We hypothesized that some previously significant structural changes

of PD-aMCI might be weakened to non-significant by the motor adjustment, which possible

reflected the existence of a common dopaminergic mechanism underlying both motor and

memory deficits in PD-aMCI. However, there might be some WM structures that could sur-

vive the motor adjustment, which might reflect the part of memory deficit that was uniquely

affected by the cholinergic mechanism.
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In summary, to characterize the WM structural changes of PD-aMCI and better understand

its underlying neuropathological mechanisms, we performed two layers of analyses: 1) to com-

pare the WM structural differences between PD-aMCI and PD-CN and normal controls using

voxel-based and TBSS-based DTI metrics; 2) to exclude and then include the motor perfor-

mance as a covariate in the WM structural comparison between PD-aMCI and PD-CN to dis-

cern the influences of two neuropathological mechanisms. Moreover, we performed the

correlation analyses between memory and voxel-based WM measures in all PD patients, to

localize the memory-associated WM structures.

2 Materials and methods

2.1 Participants

Thirty-six PD participants were randomly recruited from the Neurological Clinics of the First

Affiliated Hospital of Fujian Medical University. The diagnosis of PD followed the UK Brain

Bank criteria for idiopathic Parkinson’s disease [23], and the Hoehn and Yahr (H&Y) stages of

PD were evaluated [24]. Motor function of the PD patients was assessed with the Movement

Disorder Society (MDS) modified version of the Unified Parkinson’s Disease Rating Scale

motor examination (UPDRS-III) [25]. We excluded the patients who were not at H&Y stage

I-III or had been diagnosed with any of the following conditions: dementia based on DSM-IV

criteria [26], a history of brain surgery, stroke, epilepsy, multiple sclerosis, progressive malig-

nancy (active cancer or receiving radiotherapy for cancer, other than prostate or mild skin

cancer), schizophrenia, bipolar disorder, and developmental disability. We also excluded the

PD patients who had a Mini-Mental State Examination score (MMSE)� 24 [27].

We recruited 20 healthy older adults, who did not have any known or suspected history of

neurological illness or psychiatric impairments including MCI. The normal controls (n = 20)

and PD patients (n = 36) were matched on age, gender, years of education and MMSE.

This study was approved by the ethics committee of Fujian Medical University and written

informed consents were obtained from all participants.

2.2 MCI classification

The Chinese version of Repeatable Battery for the Assessment of Neuropsychological Status

(RBANS) [28] were administered by trained medical graduates to assess cognitive functions of

the participants. The RBANS consists of twelve subtests that evaluate five cognitive domains,

which are immediate memory (list learning and story memory), delayed memory (list recall,

list recognition, story recall, and figure recall), language (picture naming and semantic flu-

ency), attention (digit span and coding), and visuospatial function (figure copy and line orien-

tation) [29]. The RBANS index score of each cognitive domain was the average T-score of the

subtests that consist of that domain; raw score of each subtest of each individual was firstly

standardized to z-score with the mean and standard deviation of that subtest in all participants,

and then transformed to T-score with a mean of 100 and standard deviation of 15.

In line with the recommendations of the Movement Disorders Society on PD-MCI [30],

the diagnosis of aMCI in PD patients was operationalized by 1) no significant impairment in

activities of daily living according to medical history; 2) a report of memory complaints, either

from the participants or their informant; and 3) memory impairment defined by the perfor-

mance on at least two tests in the immediate and/or delayed memory domains� -1.5 standard

deviation (SD) of the published normative values [31].

Seventeen PD patients met the criteria for PD-aMCI. Nineteen PD patients did not fulfill

the criteria for MCI and were classified as cognitively normal PD (PD-CN). No significant
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differences were found between PD-aMCI and PD-CN on age, gender, years of education, dis-

ease duration, H&Y stage, UPDRS-III, Levodopa equivalent daily dose and MMSE.

2.3 Image acquisition

MRI scans of all participants were acquired on a 3.0 T SIEMENS Magnetom Verio MRI scan-

ner (Siemens Medical Solutions, Erlangen, Germany) at the Department of Radiology of the

First Affiliated Hospital of Fujian Medical University. All PD participants and healthy controls

underwent a standardized brain MRI protocol. The PD participants were assessed “ON” their

usual dopaminergic medication. DTI scans were acquired using a single-shot echo-planar

imaging-based sequence with the following parameters: TR = 4316 ms, TE = 95 ms, flip

angle = 90˚, voxel size = 2 x 2 x 4.55 mm3, acquisition matrix = 128 x 128, FOV = 256 x 256

mm2, 62 non-linear diffusion weighting directions with b = 1,000 s/mm2 and one image with-

out diffusion weighting (i.e., b = 0 s/mm2).

2.4 Image processing

After visually inspecting MRI scans for structural abnormalities, the DTI dataset was processed

with the FSL 5.0 package (http://www.fmrib.ox.ac.uk/fsl/). The raw DTI images were firstly

undergone head motion, eddy current correction, and skull stripping; then the diffusion tensor

was reconstructed by fitting a diffusion tensor model for each image [16]. Diffusion metrics of

FA, AD, and RD were calculated from the diffusion-weighted images. Subsequently, the indi-

vidual voxel-wise maps of FA, AD, and RD were spatially transformed to the MNI standard

space in a 2 x 2 x 2 mm spatial resolution; and then finally smoothed with a 6-mm FWHM

Gaussian kernel for voxel-based DTI statistical analysis. The FA images were then averaged to

generate a mean FA image, which was used to create an FA skeleton by selecting the voxels

with the locally maximal FA values. The generated FA skeleton was then thresholded at

FA> 0.2 to minimize the partial volume effect and cross-subject misregistration [15]. Subse-

quently, the diffusion metrics of FA, AD, and RD were individually projected onto that skele-

ton, and the resultant maps of FA, AD, and RD on the skeleton were fed into the TBSS-based

DTI statistical analyses.

2.5 Statistical analysis

We compared the differences between PD-aMCI and PD-CN, or between PD-CN and normal

controls, on voxel-based DTI metrics (FA, AD, and RD). The analysis between PD-aMCI and

PD-CN could reveal the WM structural changes associated with aMCI in PD patients, while

the analysis between PD-CN and normal controls could exhibit the WM structural changes

associated with PD. The controlled covariates included age, gender, and disease duration (only

for the comparison between PD-aMCI and PD-CN). We also performed TBSS-based group

comparison analyses, controlled for the same covariates to validate the results of voxel-based

analysis. UPDRS-III was then added in the comparison analyses between PD-aMCI and

PD-CN on voxel-based DTI measures as a covariate.

Furthermore, correlation analyses were performed between two memory scores (immediate

memory and delayed memory) and voxel-based DTI measures in all PD participants. The con-

trolled covariates were age, gender, and disease duration. We then used the conjunction over-

lay method [32] to overlay the structural correlation map of memory upon the structural

difference map between PD-aMCI and PD-CN, and the common areas from the two maps

would indicate the correspondence. UPDRS-III was then added as a covariate in the WM

structural correlation analyses of memory, to verify if the motor adjustment could also affect

the memory-WM relationship.
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PLOS ONE | https://doi.org/10.1371/journal.pone.0226175 December 12, 2019 4 / 15

http://www.fmrib.ox.ac.uk/fsl/
https://doi.org/10.1371/journal.pone.0226175


In addition, we performed the correlation analyses for language, attention, visuospatial

function, and UPDRS-III with voxel-based DTI measures in all PD participants, controlled for

age, gender, and disease duration. The partial correlations between UPDRS-III and each cog-

nitive performance were also examined in all PD patients, controlled for age, gender, and dis-

ease duration.

All statistical analyses with WM structural measures were implemented in FSL 5.0, and the

correction for multiple comparisons employed the threshold-free cluster-enhancement

(TFCE) method, which is a non-parametric permutation test [33, 34]. We performed 5000 per-

mutations and set the significance threshold at p<0.05 (FWE-corrected). The supra-threshold

clusters of DTI metrics were superimposed on a series of brain slices in the MNI 152 T1 brain

template. The significant results on TBSS-based diffusion metrics were dilated to enhance

visualization.

3 Results

The demographic characteristics and cognitive performance for different PD groups and nor-

mal controls were shown in Table 1.

Compared to normal controls, PD-CN patients showed higher AD and RD values in the

right caudate (Table 2, Fig 1A and 1B). Compared to PD-CN, PD-aMCI patients showed

lower FA values in the corpus callosum (splenium and body), posterior thalamic radiation,

posterior corona radiata, tapetum, cingulum (cingulate gyrus) in the bilateral hemispheres, the

left superior corona radiata and fornix (crux), and the right superior longitudinal fasciculus

(Table 2 and Fig 2A). TBSS-based FA values were compared between PD-aMCI and PD-CN:

PD-aMCI showed lower FA values in the WM tracts of the corpus callosum (body and sple-

nium), superior and inferior longitudinal fasciculus, cingulum (cingulate gyrus), and inferior

fronto-occipital fasciculusin the bilateral hemispheres (Table 2 and Fig 2B). By visualizing Fig

2A and 2B, a similar spatial distribution was noted in the two FA-difference maps of PD-

Table 1. Demographic characteristics and cognitive performance for different PD groups and normal controls.

Mean ± SD or % Normal controls

(n = 20)

PD-CN

(n = 19)

p-valuea PD-aMCI

(n = 17)

p-valueb

Age, years 59.5±6.2 61.3±6.9 0.41 64.9±5.9 0.11

Gender (% male) 80% 78.9% 0.94 88.2% 0.46

Education, years 9.3±2.2 10.3±3.3 0.29 9.6±3.8 0.60

Disease duration, years / 5.9±3.4 / 7.6±4.9 0.23

Hoehn and Yahr stage / 1.5±0.8 / 1.9±0.8 0.14

UPDRS-III score / 17.7±9.7 / 24.4±11.2 0.07

Levodopa equivalent daily dose (mg) / 917.0±144.6 / 942.1±120.6 0.58

MMSE score 29.5±0.4 29.4±0.8 0.63 28.5±1.4 0.09

RBANS index scores

Immediate memory 113.6±7.9 108.8±10.2 0.12 74.2±8.1 <0.001

Delayed memory 112.1±9.7 109.3±9.0 0.38 75.4±10.1 <0.001

Attention 106.2±10.5 100.5±7.6 0.07 92.2±11.2 0.02

Language 104.8±7.1 99.8±11.3 0.12 94.6±7.3 0.11

Visuospatial function 102.3±11.3 100.6±13.2 0.68 96.6±12.6 0.36

PD = Parkinson’s disease; PD-aMCI = amnestic mild cognitive impairment in PD; PD-CN = cognitively normal PD patient; UPDRS-III = the Movement Disorder

Society modified version of the Unified Parkinson’s Disease Rating Scale–part III for motor examination; MMSE = Mini-Mental State Examination. The differences

between PD-CN and normal controls, as well as between PD-aMCI and PD-CN in the variables were examined, and the significance values were indicated by p-valuea

and p-valueb, respectively.

https://doi.org/10.1371/journal.pone.0226175.t001
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aMCI. No significant GM differences were found between PD-aMCI and PD-CN, as well as

between PD-CN and controls.

The adjustment of UPDRS-III in the comparison between PD-aMCI and PD-CN weakened

all FA differences to non-significant at the threshold of p<0.05 (FWE-corrected); however,

some FA differences could survive at the threshold of p<0.07 (FWE-corrected), located in the

right posterior thalamic radiation, posterior corona radiata, and tapetum (Table 3 and Fig 3).

The structural correlation analyses of memory in all PD patients showed that delayed mem-

ory was positively correlated with voxel-based FA values in diffuse areas (Table 4, Fig 4A). The

conjunction overlay demonstrated that the FA correlates of delayed memory were mostly

overlapped with the FA differences between PD-aMCI and PD-CN, including the bilateral cor-

pus callosum (splenium and body), cingulum (cingulate gyrus), posterior corona radiata, tape-

tum, the left fornix and superior corona radiata, as well as the right posterior thalamic

radiation and superior longitudinal fasciculus (Fig 4B). The adjustment of UPDRS-III

Table 2. Differences in DTI metrics between PD-aMCI and PD-CN and between PD-CN and normal controls.

Comparison Metrics Cluster Peak voxels

Size MNI coordinates 1-p value Anatomical location

X Y Z

PD-CN Voxel/AD 317 12 4 16 0.98 R caudate

> NC Voxel/RD 83 12 4 16 0.96 R caudate

PD-aMCI Voxel/FA 810 10 -39 20 0.96 R corpus callosum splenium

< PD-CN -3 -17 24 0.96 R corpus callosum body

-8 -51 16 0.96 L cingulum (cingulate gyrus)

-28 -56 17 0.97 L posterior thalamic radiation

-19 -50 33 0.96 L posterior corona radiata

-29 -54 13 0.97 L tapetum

10 -45 23 0.95 R cingulum (cingulate gyrus)

744 33 -52 18 0.97 R posterior thalamic radiation

32 -49 8 0.95 R tapetum

32 -53 21 0.97 R posterior corona radiata

36 -53 18 0.96 R superior longitudinal fasciculus

318 -18 -1 38 0.96 L superior corona radiata

313 -25 -25 -10 0.95 L fornix

TBSS/FA 9124 -12 -9 30 0.97 L cingulum body

11 -25 28 0.98 R cingulum body

-37 -54 15 0.97 L superior longitudinal fasciculus

35 -12 34 0.96 R superior longitudinal fasciculus

-9 -29 35 0.97 L cingulum (cingulate gyrus)

9 -6 33 0.97 R cingulum (cingulate gyrus)

-27 -58 19 0.97 L inferior longitudinal fasciculus

28 -50 19 0.97 R inferior longitudinal fasciculus

32 -62 1 0.96 R inferior fronto-occipital fasciculus

41 -28 -74 3 0.95 L inferior fronto-occipital fasciculus

PD = Parkinson’s disease; PD-aMCI = amnestic mild cognitive impairment in PD; PD-CN = cognitively normal PD patient; AD = axial diffusivity; RD = radial

diffusivity; FA = fractional anisotropy. TBSS = Tract-based spatial statistics.

Voxel-based DTI metrics (FA, AD, and RD) were compared between PD-CN and normal controls, as well as between PD-aMCI and PD-CN. TBSS-based FA values

were also compared between PD-aMCI and PD-CN. The significance level was set at p<0.05 (FWE-corrected). The controlled covariates included age, gender, and

disease duration (only for the comparison between PD-aMCI and PD-CN).

https://doi.org/10.1371/journal.pone.0226175.t002
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weakened all previously significant FA correlates of delayed memory to non-significant at the

threshold of p<0.05 (FWE-corrected); however, a few FA correlates could survive at the

threshold of p< 0.07 (FWE-corrected), located in the bilateral corpus callosum (body and sple-

nium), right posterior cingulum, posterior thalamic radiation, posterior corona radiata, and

tapetum (S1 Table and S1 Fig).

Attention was positively correlated with the FA values in the right corpus callosum sple-

nium and posterior corona radiata (S2 Table). The FA correlates of attention shared a small

extent of common area (only 4 voxels) with the FA differences between PD-aMCI and PD-CN

Fig 1. DTI measure differences between PD-CN and normal controls. Compared to normal controls, PD-CN

showed significantly higher voxel-based DTI values in the caudate. The color bar indicates the 1-p value ranging from

0.95 to 1. Higher axial diffusivity values A) and radial diffusivity values B) in PD-CN were shown on the axial slices

ranging from -2 mm to 18 mm at z-axis, with an interval of 4 mm (from bottom to top).

https://doi.org/10.1371/journal.pone.0226175.g001

Fig 2. Differences in voxel-based and TBSS-based FA values between PD-aMCI and PD-CN. Compared to PD-CN,

PD-aMCI showed smaller fractional anisotropy (FA) values. The smaller voxel-based FA values A) and TBSS-based FA

values B) were located in the brain areas superimposed on a series of sagittal slices ranging from 46 mm to -46 mm at

x-axis (from right to left), with an interval of 4 mm. The color bar indicates the 1-p value ranging from 0.95 to 1. In B),

the significant TBSS-based FAs (in red) were dilated to enhance visualization, overlaying on the white matter skeleton

(in green).

https://doi.org/10.1371/journal.pone.0226175.g002
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(not shown). No significant structural correlations were found for other cognitive perfor-

mance and UPDRS-III in all PD patients. The correlations of UPDRS-III with different cogni-

tive functions were: attention (r = -0.35, p = 0.047), delayed memory (r = -0.27, p = 0.12),

immediate memory (r = -0.25. p = 0.15), language (r = -0.15, p = 0.40), and visuospatial func-

tion (r = -0.29, p = 0.10).

4 Discussion

4.1 FA changes in PD-aMCI

No prior study examined the WM changes of PD-aMCI. Using voxel-based and TBSS-bases

analyses, we demonstrated a diffuse pattern of FA decreases of PD-aMCI compared to

PD-CN, located in the corpus callosum (splenium and body), posterior thalamic radiation,

posterior corona radiata, tapetum, and cingulum (cingulate gyrus). A few studies investigated

the WM changes of PD-MCI, without specifying the subtype of MCI, and revealed significant

FA decreases across different WM tracts in PD-MCI, compared to PD-CN [10, 13]. Given that

a lower FA value indicates decreased fiber integrity induced by demyelination [14, 35, 36], our

findings possibly suggested that PD-aMCI might have an extensive fiber integrity disruption,

relative to PD-CN.

4.2 FA changes of PD-aMCI mostly overlapped with the FA correlates of

delayed memory

By the conjunction overlay, we demonstrated that the FA difference between PD-aMCI and

PD-CN were mostly overlapped with the FA correlates of delayed memory. This finding indi-

cated that decreased fiber integrity in PD-aMCI was mainly contributed by the WM abnormal-

ity associated with memory decline. In healthy older adults, the WM measures associated with

memory were mainly localized in the fornix and cingulum [37–39]. However, in PD patients,

Table 3. Controlling for UPDRS-III in the comparison of FA between PD-aMCI and PD-CN.

Analysis Cluster size Peak voxels

MNI coordinates 1-p value Anatomical location

X Y Z

PD-aMCI 74 33 -51 17 0.94 R posterior thalamic radiation

< PD-CN 30 -52 19 0.94 R posterior corona radiata

31 -50 16 0.93 R tapetum

PD = Parkinson’s disease; PD-aMCI = amnestic mild cognitive impairment in PD; PD-CN = cognitively normal PD patients; UPDRS-III = the Unified Parkinson’s

Disease Rating Scale–part III for motor examination; FA = fractional anisotropy.

Voxel-based FA values were compared between PD-aMCI and PD-CN, controlled for age, gender, disease duration, and UPDRS-III. The significance level was set at

p<0.07 (FWE-corrected).

https://doi.org/10.1371/journal.pone.0226175.t003

Fig 3. Adjusting for UPDRS-III in the comparison of voxel-based FA between PD-aMCI and PD-CN. UPDRS-III

was adjusted in the comparison analysis of voxel-based FA between PD-aMCI and PD-CN, along with age, gender,

and disease duration. At the threshold of p<0.07 (FWE-corrected), smaller FA values in PD-aMCI were shown on the

sagittal slices ranging from 40 mm to 26 mm at x-axis (from right to left), with an interval of 2 mm.

https://doi.org/10.1371/journal.pone.0226175.g003
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Table 4. Correlations between voxel-based FA and memory in PD patients.

Cognition Cluster size Peak voxels

MNI coordinates 1-p value Anatomical location

X Y Z

Delayed 3792 5 -18 26 0.98 R corpus callosum body

memory -13 -42 23 0.98 L corpus callosum splenium

29 -47 22 0.97 R posterior corona radiata

-26 -54 21 0.97 L posterior corona radiata

-22 -21 34 0.96 L superior corona radiata

10 -41 28 0.98 R cingulum (cingulate gyrus)

-10 -22 36 0.95 L cingulum (cingulate gyrus)

27 -34 -1 0.96 R fornix (crux)

-24 -24 -9 0.96 L fornix (crux)

29 -46 16 0.97 R tapetum

-28 -53 17 0.97 L tapetum

-22 -24 16 0.97 L internal capsule (posterior limb)

79 30 -13 30 0.97 R superior corona radiata

FA = fractional anisotropy; PD = Parkinson’s disease

Voxel-based FA values were correlated with the performance of different cognitive domains in 36 PD patients. The controlled covariates included age, gender, and

disease duration. The significance level was set at p<0.05 (FWE-corrected). Only delayed memory and attention were significantly positively correlated with FA.

https://doi.org/10.1371/journal.pone.0226175.t004

Fig 4. Voxel-based FA correlates of memory in PD patients and the conjunction overlay. Voxel-based fractional

anisotropy (FA) values that were significantly correlated with delayed memory in all PD patients were superimposed

on a series of sagittal slices in the brain template (from right to left). The color bar indicates the 1-p value ranging from

0.95 to 1. A) The positive FA correlates of delayed memory were shown on the slices ranging from 46 mm to -46 mm

at x-axis, with an interval of 4 mm. The conjunction overlay analysis showed B) the positive FA correlates of delayed

memory were overlapped with the FA differences between PD-aMCI and PD-CN, and the common brain areas (in

orange) were superimposed on the slices ranging from 46 mm to -46 mm at x-axis, with an interval of 4 mm.

https://doi.org/10.1371/journal.pone.0226175.g004
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several studies showed a diffuse WM correlation pattern with memory, which have been dem-

onstrated in the fornix, cingulum, corpus callosum and posterior corona radiate, consistent

with our findings [40–42].

4.3 AD and RD changes in PD-CN

PD-CN showed significantly higher AD and RD values than normal controls in the right cau-

date, whilst no difference in FA values. AD and RD estimate the diffusivity of water molecule

along and perpendicular to the direction of WM tracts, respectively [14]. Thus, when water

diffusivity in different directions is proportional, a minimal change in FA would be expected

[43]. Such patterns of changes in AD, RD, and FA have been suggested as an indication of

enlarged extracellular space, which could be due to neurodegeneration involving neuronal

death and fiber shrinkage [44–46].

The degeneration of dopaminergic neurons in the basal ganglia is a pathological feature of

PD [17, 18]. Caudate is an essential component of the cortico-basal ganglia-thalamo-cortical

pathways to regulate movement [47]. The changes of MD and FA in the caudate have been

reported in PD patients [48, 49]. Moreover, several studies demonstrated the dopaminergic

denervation, GM atrophy, and morphological deformation in the caudate in PD patients [50–

53]. These lines of evidence were consistent with our findings on the increases of AD and RD

in the caudate, suggesting a possible neurodegeneration in this area in PD patients.

4.4 Possible neuropathological mechanisms of PD-aMCI

Our study showed that the adjustment of UPDRS-III could weaken the originally significant

FA differences between PD-aMCI and PD-CN and FA correlates of memory to non-signifi-

cant. Motor and memory are two distinct brain functions with diverse neural substrates,

which are normally not related. However, in PD-aMCI, the impairments in both functions

might be subject to a common dopaminergic pathological influence [17–19]. Meanwhile, evi-

dence suggested that the cholinergic mechanism was also involved in the PD-aMCI [8, 20, 21].

The extensive influence of motor adjustment as shown in our results might reflect a pre-

dominant influence of dopaminergic neuropathology [19]. However, we also noted a tendency

towards significance for some voxel-based FA differences between PD-aMCI and PD-CN,

which were located in the posterior cingulum, posterior thalamic radiation, and tapetum.

These regions were adjacent to the fornix and hippocampal formation, which might suggest

the specific influence of cholinergic neuropathology on memory [37–39].

Our findings were in accordance with the theory of dual neuropathological mechanisms in

PD-aMCI. It has been suggested that the two neuropathological mechanisms could drive syn-

ergistically neurodegenerative processes to undermine brain structural integrity of PD-aMCI

and accelerate its conversion to dementia [8, 54].

4.5 WM structural correlation analyses of attention, language, visuospatial

function in all PD patients

Only attention showed positive correlations with the FAs in the right corpus callosum sple-

nium and posterior corona radiata, while language and visuospatial function showed null cor-

relations. These results were expected, given that PD-aMCI and PD-CN had no significant

differences on language and visuospatial function, which lead to a small inter-individual varia-

tion in all PD participants and reduced likelihood for a significant cognitive correlation. More-

over, different from memory, the FA correlates of attention had a small spatial overlap (4

voxels) with the FA differences between PD-aMCI and PD-CN, suggesting a limited contribu-

tion of attention-related WM changes to the WM abnormality of PD-aMCI.
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4.6 Limitation

Despite that the number of our PD-aMCI patients is reasonable comparing to prior neuroim-

aging studies on PD-MCI, our sample size is small. To alleviate the concern on the robustness

of the results, we performed the TBSS-based FA analysis as a complementary method to vali-

date the results of voxel-based FA analysis. The results indicated a similar distribution pattern

between the voxel-based and TBSS-based FA difference maps. Moreover, we employed the

threshold-free cluster-enhancement (TFCE) method, which has been recommended as a strin-

gent statistical method in voxel-wise analysis [33, 34].

4.7 Conclusion

No previous neuroimaging studies have examined the WM structural changes of a specific

PD-MCI subtype, PD-aMCI. Our study showed a diffuse FA decrease pattern for PD-aMCI

compared to PD-CN. However, most FA difference between PD-aMCI and PD-CN could be

weakened by the adjustment of motor performance, which might indicate a predominant

influence of dopaminergic neuropathology. Yet, some FA differences of PD-aMCI adjacent to

the fornix and hippocampal formation showed a tendency to survive the motor adjustment,

which might reflect a memory-specific influence by the cholinergic neuropathological

mechanism.
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