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Neural reactivity to food cues may play a central role in overeating and excess weight
gain. Functional magnetic resonance imaging (fMRI) studies have implicated regions
of the reward network in dysfunctional food cue-reactivity, but neural interactions
underlying observed patterns of signal change remain poorly understood. Fifty
overweight and obese participants with self-reported cue-induced food craving viewed
food and neutral cues during fMRI scanning. Regions of the reward network with
significantly greater food versus neutral cue-reactivity were used to specify plausible
models of task-related neural interactions underlying the observed blood oxygenation
level-dependent (BOLD) signal, and a bi-hemispheric winning model was identified
in a dynamic causal modeling (DCM) framework. Neuro-behavioral correlations are
investigated with group factor analysis (GFA) and Pearson’s correlation tests. The ventral
tegmental area (VTA), amygdalae, and orbitofrontal cortices (OFC) showed significant
food cue-reactivity. DCM suggests these activations are produced by largely reciprocal
dynamic signaling between these regions, with food cues causing regional disinhibition
and an apparent shifting of activity to the right amygdala. Intrinsic self-inhibition in
the VTA and right amygdala is negatively correlated with measures of food craving
and hunger and right-amygdalar disinhibition by food cues is associated with the
intensity of cue-induced food craving, but no robust cross-unit latent factors were
identified between the neural group and behavioral or demographic variable groups.
Our results suggest a rich array of dynamic signals drive reward network cue-reactivity,
with the amygdalae mediating much of the dynamic signaling between the VTA and
OFCs. Neuro-behavioral correlations suggest particularly crucial roles for the VTA, right
amygdala, and the right OFC-amygdala connection but the more robust GFA identified
no cross-unit factors, so these correlations should be interpreted with caution. This
investigation provides novel insights into dynamic circuit mechanisms with etiologic
relevance to obesity, suggesting pathways in biomarker development and intervention.
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INTRODUCTION

With the population of overweight or obese adults reaching 1.9
billion in 2016 (World Health Organization, 2021) and given
the immense and growing disease burden associated with high
BMI (Dai et al., 2020), sustained effort has been dedicated
to elucidating the physiology of overweight and obesity and
the neurocognitive architecture underlying relevant behaviors.
Considering the central importance of excess calorie intake and
food choice patterns in the development of obesity (Kadouh
and Acosta, 2017), much of the cognitive neuroscience research
has focused on how food is perceived and evaluated; how food
craving and hunger are induced, experienced and regulated;
and how these and other processes interact to shape eating
behavior (Leng et al., 2017; Letra et al., 2017; Stice and Burger,
2019). A critical feature of typical eating behavior is its being
closely preceded, mediated, and followed by rich set of associated
cues (Jastreboff et al., 2013; Joyner et al., 2017), which may
form conditional associations with ingested food (Boswell and
Kober, 2016). Once such appetitive conditioning develops, food
cues elicit a range of conditioned physiological processes; these
include increased parasympathetic tone (Nederkoorn et al., 2004)
and salivation (Jansen et al., 2003); neural activity, particularly
in reward processing and energy regulation circuits (Tang et al.,
2012; Cosme and Lopez, 2020); and cognitive processes such
as attention allocation (Liu et al., 2019). Food cues can also
induce food cravings (Werthmann et al., 2013) and hunger,
even in otherwise satiated individuals (Cornell et al., 1989;
Johnson, 2013).

This complex set of conditioned responses to food cues
is often termed “food cue reactivity” (Boswell and Kober,
2016). Food cue reactivity and appetitive conditioning are, by
themselves, normal and evolutionarily significant enablers of
adaptive motivated behavior: in cue-rich environments, they can
appropriately motivate food seeking while shifting individuals
toward a food-oriented neuro-physiological state in preparation
for food choice, ingestion, and digestion (Martin-Soelch et al.,
2007; Power and Schulkin, 2008; Leng et al., 2017). However,
evidence is mounting that certain patterns of food cue reactivity
and their neural substrates contribute to overeating in overweight
and obese individuals (Jansen et al., 2003; Havermans, 2013;
Ng and Davis, 2013). This maladaptive food cue reactivity is
hypothesized to involve a core dysfunction of the hedonic aspect
of conditioned food cue reactivity; namely, the misattribution
of overwhelming appetitive salience to food cues which would
drive cue-induced “wanting” (or craving) of food and subsequent
overeating, regardless of how rewarding the food itself is (Val-
Laillet et al., 2015; Robinson et al., 2016; Stice and Burger,
2019). Such “incentive sensitization” theories of obesity have
parallels in theories of cue-induced craving in drug addiction
(Robinson and Berridge, 1993) and are supported by evidence
that wanting, hunger and food consumption can be heightened
by food cues, independently of “liking” intensity (Joyner et al.,
2017; Polk et al., 2017).

In recent decades, rapid advances in the cognitive
neuroscience of eating and obesity have been enabled by
functional neuroimaging modalities, in studies which typically

involve the recording of changes in brain hemodynamics or
electrophysiology during exposure to food-related stimuli
to probe the neural bases of hedonic cue-reactivity (Leng
et al., 2017). Notably, reported observations can generally be
interpreted under an incentive sensitization framework: Food
cues generally induce heightened prefrontal and amygdalar
activation in obese individuals, potentially reflecting the higher
valuation or secondary cognitive responses to such valuation,
and alterations in the ventral tegmental-striatal dopaminergic
signaling suggest that core dopaminergic processes may underly
the aberrant incentive sensitization (Carnell et al., 2012; Val-
Laillet et al., 2015; Moore et al., 2017; Devoto et al., 2018).
Neural food cue reactivity research may have clinical utility far
beyond etiological explanation: the identification of mechanistic
neural underpinnings of dysfunctional eating and food choice in
obesity can suggest interventions to reduce cue exposure (Boulos
et al., 2012), regulate craving (Kober et al., 2010) or extinguish
conditioned cue responses (Frankort et al., 2014); and based on a
recent meta-analysis of prospective studies, functional magnetic
resonance imaging (fMRI) markers of food cue reactivity might
predict future eating and weight gain (Boswell and Kober, 2016).

Despite this progress, neuro-cognitive understanding of
cue-driven overeating is hampered by the complicated and
networked dynamics involved in reward processing and
appetitive cue-reactivity (Haber, 2017; Hill-Bowen et al., 2021).
Mesocorticolimbic regions often have reciprocal connections,
with prefrontal areas responding to but also controlling ventral
tegmental dopamine release (Lodge, 2011; Haber, 2017) and
dense fronto-amygdalar and amygdalar-striatal connections
involved in encoding and updating reward values (Janak and
Tye, 2015). Furthermore, these regions receive and project
both excitatory and inhibitory connections with reward and
anti-reward effects (Lodge, 2011; Bouarab et al., 2019) and food
cue-reactivity in obese individuals may engage both positive
and negative reward processing, which are respectively involved
in “wanting” and approach responses and guilt-associated
avoidance (Carnell et al., 2012; Liu et al., 2019). fMRI food
cue-reactivity studies often test for region- or voxel-wise
blood oxygenation level-dependent (BOLD) signal differences
within a general linear modeling (GLM) framework (Letra
et al., 2017), which cannot clarify how observed activations
or deactivations reflect food cue processing. This manuscript
complements the literature by using dynamic causal modeling
(DCM) to investigate the underlying neural dynamics of cue-
reactivity in overweight and obese individuals with food-induced
craving. DCM is a common framework for causal inference
on effective connectivity and includes biologically plausible,
explicit assumptions about the hidden neuronal state-space and
its relationship to observed BOLD signal (Friston et al., 2003).
Based on these assumptions, DCM involves the specification
and comparison of models of task-related interaction among
and within neural populations and the subsequent estimation
of model parameters (Friston et al., 2003; Razi and Friston,
2016). This allows us to investigate reciprocal connections
within and between regions of the reward network, tease
apart inhibitory and excitatory connectivities, and assess
the modulation of these interactions by food cues, shedding
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light on some of the neural dynamics which may underlie
food cue-reactivity.

MATERIALS AND METHODS

Participants
Overweight/obese volunteers who self-reported frequent food
cravings were recruited via specialized nutrition clinics and
through online advertisements and flyers. Frequent food craving
was defined as reporting three or more episodes of food craving
per day on average during the last month, and was assessed
with the following question on the self-reported demographic
questionnaire: “How many food cravings per day did you
experience during the last month?”. Respondents needed to
be 18–60 years old and were excluded if they: (1) reported
a healthy BMI (19–25 kg/m2); (2) had a current or past
history of psychiatric or neurological disorders; (3) had a
current or past history of eating or gastrointestinal or substance
use disorders, or metabolic or endocrine disease; (4) used
current psychopharmacological medication; (5) were pregnant;
(6) suffered from claustrophobia; (7) had any metallic implants;
(8) reported having severe food allergies; (9) reported having
special diets; or (10) had low food cue-induced craving.

Fifty-six candidates provided written informed consent and
were screened for eligibility to enter the study. Two had low food
cue responsiveness and were excluded from further assessment.
Fifty-four participants fulfilled all inclusion/exclusion criteria, of
whom four were excluded from the study—one for excessive head
motion during scanning, 2 for unanticipated claustrophobia, and
one due to an intracranial lesion. The final sample included in the
analyses consisted of 50 overweight/obese volunteers aged 21–59
(M = 35.33, SD = 9.82; 34 female). Detailed demographic and
clinical information of the participants is reported in Table 1. The
study protocol was approved by the ethics committee of the Iran
University of Medical Sciences (IR.IUMS.REC.1396.0459).

Experimental Procedures
Figure 1 shows an overview of the experimental procedure.
During the screening session, participants completed a
battery of baseline assessments. These included a self-reported
demographic questionnaire, the Depression Anxiety Stress
Scales-21 (DASS-21; Sahebi et al., 2005), the Three-Factor Eating
Questionnaire-R18 (TFEQ-R18; Mostafavi et al., 2017), the
Eating Disorder Diagnostic Scale (EDDS; Stice et al., 2000),
and the Compulsive Eating Scale (CES; Mostafavi et al., 2016).
This was followed by familiarization with the cue-reactivity task
during a training session in which participants were instructed to
rate their momentary craving induced by several food cues on a
0–100 VAS scale and lasted ∼3 min. Average cue-induced craving
from this session was used to exclude participants with low cue-
induced food craving, defined as a mean cue-induced craving
score below 80 out of 100. Participants who were eligible after
this screening session were then scanned in one fMRI session.

On the magnetic resonance imaging (MRI) scan day,
participants arrived in the morning between 8:30 and 10:30
am after a fasting period of at least 2 h. Participants were

asked to fill out the Food Craving Questionnaire-Trait (FCQ-
T; Kachooei and Ashrafi, 2016), as well as the Food Craving
Questionnaire-State (FCQ-S; Cepeda-Benito et al., 2000). After
ratings of feelings of the current craving, hunger, prospective
consumption, food control, and affective states (anger, anxiety,
awareness, drowsiness, happiness, and sadness) on a 0–100 VAS
(Figure 1A, Craving Assessment I), participants began the food-
cue reactivity paradigm (in the MRI scanner). After completion
of the scans, participants again rated their feeling of craving,
hunger, prospective consumption, food control, and affective
states (Figure 1A, Craving Assessment II).

Functional MRI Food-Cue Reactivity
Paradigm
Stimuli were presented in a block design, with 12 blocks of 6
images each (six blocks with food cues and six blocks with neutral

TABLE 1 | Sample characteristics (n = 50).

Variable Mean SD

Age 35.33 9.82

Height (m) 1.67 0.10

Weight (kg) 82.63 14.16

BMI (kg m−2) 29.67 3.56

Education (Y) 16.94 2.38

CES 11.06 5.78

DASS 20.84 13.16

Depression (0–21) 6.16 5.21

Anxiety (0–21) 5.02 4.22

Stress (0–21) 9.67 5.14

TFEQ

Hunger (0–30) 14.61 5.47

Cognitive restraint (0–12) 5.71 2.72

Emotional eating (0–6) 3.53 1.62

EDDQ

Body image (0–24) 14.90 5.39

Overeating (0–8) 4.54 2.08

Compensatory behaviors (0–56) 3.10 3.98

FCQ-Trait

Lack of control under environmental cues 29.37 15.04

Thoughts or preoccupation with food 13.04 9.17

Hedonic hunger 31.20 13.10

Emotions before or during food craving 11.24 5.70

Guilt from craving 7.20 4.50

FCQ-State 32.06 15.98

Intense desire to eat 7.66 3.96

Anticipation of positive reinforcement that may
result from eating

7.74 3.93

Anticipation of relief from negative states and
feelings as a result of eating

5.91 4.04

Obsessive preoccupation with food or lack of
control over eating

6.38 4.20

Craving as a physiological state 4.36 3.89

Values are reported as mean (SD). BMI, Body Mass Index; CES, Compulsive Eating
Scale; DASS-21, Depression Anxiety Stress Scales-21; EDDQ, Eating Disorder
Diagnostic Questionnaire; FCQ-T, Food Craving Questionnaire-Trait; FCQ-S, Food
Craving Questionnaire-State; TFEQ-R18, Three-Factor Eating Questionnaire-R18.
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FIGURE 1 | Outline of the experimental procedure and cue-reactivity paradigm. (A) Experimental procedure. First, individuals underwent screening for their
neuropsychological functioning (measured by self-reported questionnaire; see Table 1 for details). Each participant (n = 50) then underwent a food cue-reactivity
training task. On the experiment day, participants completed two food craving questionnaires: FCQ-state and FCQ-Trait and subsequently underwent an MR scan
with the food cue-reactivity task. Immediately before and after the MR scan, participants rated their self-reported food craving, hunger, and affective states (anger,
anxiety, awareness, drowsiness, happiness, sadness). (B) Food cue-reactivity paradigm. In the food cue-reactivity task, participants saw 12 blocks of 6 pictures
each (six blocks with food cues and six blocks with neutral cues). Each block was followed by an inter-block interval with a duration between 8 and 12 s. In total,
participants saw 72 cues over 342 s.

cues), where participants were asked to look at the cues and
pay close attention. Each cue lasted 4000 ms. Each block was
followed by a jittered inter-block interval with a duration between
8 and 12 s (Figure 1B). In total, participants viewed 72 cues over
342 s. The neutral cues originated from the Full4Health Image
Collection (Charbonnier et al., 2016) and the food cues were
taken from the Internet or in the course of the study. Neutral
images were matched for content to the food images.

MRI Data Acquisition
Functional MRI images were collected using a SIEMENS 3.0T
scanner (MAGNETOM Prisma, SIEMENS, Germany) using a
20-channel head coil at the Iranian National Brain Mapping
Laboratory. A total of 167 functional T2∗-weighted images
were acquired in an interleaved slide order with a voxel size
of 3 × 3 × 3 mm, a repetition time (TR) = 2500 ms,
echo time (TE) = 23 ms, and flip angle (FA) = 70◦. Each
volume consisted of 43 axial slices and a field of view
(FOV) = 192 × 192 mm. Furthermore, we acquired a

T1-weighted structural image (magnetization prepared rapid
acquisition gradient echo, MPRAGE) with 176 slices, a
TR = 1810 ms, TE = 3.45 ms, and a FA = 7◦.

Functional MRI Data Analysis
Functional MRI data were analyzed using MATLAB R2018b
(Mathworks Inc., Natick, MA, United States) and SPM12
software (Wellcome Trust Centre for Neuroimaging, London,
United Kingdom1). The fMRI scans were corrected for slice
timing and head motion. The structural T1 image was co-
registered to the mean functional image generated during
realignment. The structural images were segmented into GM,
WM, CSF, skull, soft-tissue, and air partitions following co-
registration with the mean T2∗ image. The functional images
were spatially normalized to the Montreal Neurological Institute
(MNI) standardized space, and smoothed with a 6-mm full-width
at half-maximum Gaussian kernel.

1http://www.fil.ion.ucl.ac.uk/spm/
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We used a general linear model (GLM) to obtain individual
statistical parametric maps. At the single subject level, the
experimental conditions (i.e., food and neutral) were defined
by stimulus onset and the duration of each experimental trial.
Experimental conditions were modeled as separate regressors
and convolved with a canonical hemodynamic response function.
Six head motion parameters and DVARS (Power et al., 2012)
were added as regressors of no interest into the first-level model.
A high pass-filter with a cut-off frequency of 1/128 Hz was used
to remove low-frequency drifts (Glover et al., 2000).

For each subject, the differential contrasts directly comparing
the food to the neutral conditions were then entered into second-
level random-effects t-test models. The individual contrast maps
thresholded at p < 0.05 (uncorrected) whereas group-level
contrast maps were corrected for multiple comparisons at a
family-wise error rate PFWE < 0.05 using Gaussian random field
theory (Worsley et al., 1996; Nichols and Hayasaka, 2003).

Definition of Regions of Interest and
Time-Series Extraction
We selected the regions of interest (ROIs) based on an initial
mass-univariate SPM analysis, as is usual in the DCM literature,
seeking the simplest possible functional wiring diagram that
accounts for the results of the SPM analysis. Based on
aforementioned food craving findings in humans and the role in
the reward network central to salient cue processing, we focused
on the VTA, the amygdala, and the OFC. We then extracted
BOLD time-series from regions of interest (ROI), based on the
peak activations induced by food craving from the whole-brain
univariate analysis (contrast: food > neutral). Here, we used
uncorrected contrast maps for subject-level activation analyses
to ensure that the five ROIs (i.e., VTA, left amygdala, left OFC,
right amygdala, right OFC) required in the DCM analysis could
be identified in most participants.

Dynamic Causal Modeling
Based on the extraction of the principal eigenvariate time-series
in the predefined ROIs of the VTA, left amygdala, left OFC, right
amygdala, and right OFC, adjusted for the F-contrast modeling
the all food and neutral regressors, we subsequently applied
bilinear DCM (Friston et al., 2003) with the stochastic option
to model effective functional connectivity between these ROIs
(Friston et al., 2011; Li et al., 2011; Daunizeau et al., 2012).

In the present study, we specified a “parent” DCM model –
which contained all free parameters, with three regions (i.e.,
the VTA, left amygdala, left OFC, right amygdala, right OFC)
for each subject (Zeidman et al., 2019a). In a parent DCM
model, all possible connectivity parameters were freely estimated,
that is, there were extrinsic forward and backward connections
between the VTA and amygdala, between the VTA and OFC,
between the amygdala and OFC, between the left amygdala
and right amygdala, between the left OFC and right OFC,
as well as intrinsic self-connections of the regions (fixed
connections, A matrix), and also all self-connections were
allowed to be modulated by food stimuli (contextual modulation,
B matrix). Limiting modulatory effects to the self-connections

enables biological interpretability and generally facilitates a more
identifiable model (Zeidman et al., 2019a). The external inputs
(food and neutral stimuli) were exerted on the nodes as driving
input (exogenous inputs, C matrix). This parent DCM model
was estimated for each subject using Bayesian model inversion
(Friston et al., 2015).

To estimate group-level parameters in the craving network,
we performed a second-level Parametric Empirical Bayes (PEB)
analysis (Friston et al., 2015, 2016). We used a linear PEB analysis
of the parent model estimated for all subjects. After estimating
the parameters of the parent PEB model, we performed a
Bayesian model reduction (BMR) to prune away any insignificant
connectivity parameters from the parent model until the model
evidence was not improved (Friston et al., 2016; Zeidman et al.,
2019b). In brief, this procedure is known as a greedy search over
the model space to optimize model evidence. We here used the
BMR as a post hoc model selection with only minimal constraints
and performed an automatic search over nested PEB models.
In the present study, significant connectivity parameters were
determined with a posterior probability of P > 0.99.

Group Factor Analysis
We used the group factor analysis (GFA) to identify latent
variables that describe relationships between groups of variables
with a sparsity constraint (Klami et al., 2015). GFA employs
a sparse Bayesian estimation to identify latent factors that
either explain away group-specific variation or describe a robust
relationship between groups. Three variable groups were defined:
(i) effective connectivity parameters; (ii) behavioral measures;
and (iii) demographic measures. In total, the model included
23 connectivity parameters (with a posterior probability of
P > 0.99), 12 behavioral measures (changes in self-reported
craving and hunger, FCQ-State subscales (Supplementary
Figure 1) Lack of control, Desire, Positive reinforcement, Negative
reinforcement, Physiological hunger, and FCQ-Trait subscales
(Supplementary Figure 1) Lack of control, Emotions, Guilt,
Hunger, Thoughts), and three self-report measures (age, BMI,
education). Variables were z-normalized to have zero mean and
unit variance, a form suitable for GFA. To minimize the risk
of identifying spurious latent factors, sparse Bayesian estimation
was repeated 10 times and only factors that were robust across
10 replicates of the GFA were extracted (Peng et al., 2021; White
et al., 2021).

As a less robust, complementary test for neuro-behavioral
associations, we used Pearson’s correlation tests to assess bivariate
associations between estimated neural parameters and behavioral
variables. All Pearson’s correlations and group factor analysis
were conducted in statistical software R version 4.0.5, and the
group factor analysis was calculated using the function gfa in R
package GFA (Leppäaho et al., 2017; R Core Team, 2020).

RESULTS

Behavioral Data
To assess behavioral cue-reactivity effects on craving, hunger,
prospective consumption, and food control ratings, we compared
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data directly before and after the fMRI session. After the fMRI
session, participants reported increased craving [t(89.98) = –2.84,
P = 0.005], hunger [t(54.89) = –2.57, P = 0.012], prospective
consumption [t(93.13) = –3.14, P = 0.002], and decreased food
control [t(63.19) = 1.71, P = 0.092] compared with before
they went into the scanner (Figures 2A–D). In agreement with
this observation, hunger VAS scores were directly correlated
with food craving scores, such that individuals with higher
craving ratings demonstrated stronger increase of hunger scores
following cue-reactivity paradigm (R = 0.84; P < 0.001; Pearson’s
correlation) (Figure 2E).

As expected, after the fMRI session, participants did not
report a statistically significant change in anger [t(86.18) = 0.096,
P = 0.924; Figure 2F], awareness [t(94.83) = 0.79, P = 0.43;
Figure 2H], drowsiness [t(94.15) = 0.24, P = 0.809; Figure 2I],
sadness [t(94.94) = 0.66, P = 0.514; Figure 2K], and happiness
[t(94.95) = –1.095, P = 0.276; Figure 2J] compared with before
they went into the scanner. There was however a significant
decrease in anxiety state following cue-reactivity paradigm
[t(87.40) = 2.43, P = 0.016] (Figure 2G).

General Linear Modeling Analysis of
Food Cue Reactivity and Regions of
Interest Selection
To examine how cue-reactivity influenced the brain’s
mesocorticolimbic circuitry, we analyzed BOLD activity
measured during the food cue-reactivity task (contrast:
food > neutral) using a random-effects model. Functional MRI
findings were reported at the whole-brain level and within
Brainnetome atlas regions (Figure 3 and Supplementary
Figure 2, p < 0.05 FWE corrected). Investigating BOLD
responses to food compared with neutral cues yielded highly
significant activations in the amygdala, parahippocampus, insula,
visual and orbitofrontal cortex (Figure 3A). Similar to previous
observations, we found three peaks in the left mesocorticolimbic
reward pathway [VTA (peak at MNI coordinate: –2, –14, –
16), amygdala (peak at MNI coordinate: –18, –4, –16), OFC
(Brodmann’s area 11; peak at MNI coordinate: –24, 30, –
18)] and two peaks in the right mesocorticolimbic reward
pathway [amygdala (peak at MNI coordinate: 18, –4, –16), OFC
(Brodmann’s area 11; peak at MNI coordinate: 24, 30, –18)]. For
each of those peak locations, we created an ROI (a sphere of 6 mm
radius around the peak) to be used in the PEB-DCM analysis.

Effective Connectivity Network of Food
Cue Reactivity
To investigate the network mechanisms underlying the food
cue-reactivity effects, we next employed DCM to infer effective
connectivity of craving-related regions during the food cue-
reactivity task. We selected five regions revealed by the
food > neutral contrast: the left amygdala, left OFC, right
amygdala, right OFC—which are all frequently implicated in the
reward processing—and the VTA—to model the driving input
(Figure 4A).

Post hoc Bayesian model selection (Friston et al., 2016)
identified the model with the best evidence by comparing the

evidence over nested PEB models. This resulted in an effective
neural network with reciprocal positive connections between the
left amygdala and left OFC, between the left amygdala and VTA,
and between the left OFC and right OFC, positive connections
from the VTA to right amygdala, from right OFC to right
amygdala, from the VTA to right OFC, and from left amygdala
to right amygdala, as well as negative connections from left OFC
to VTA, from right amygdala to VTA and right OFC, and from
right amygdala to left amygdala. There were also inhibitory self-
connections in the VTA, right OFC, right amygdala, and left
amygdala nodes. More interestingly, the model also included
negative modulation by food stimuli of the self-connection of the
right OFC, right amygdala, and left amygdala regions, as well as
positive modulation of the self-connection of the VTA region by
food stimuli (Figures 4B–E and Supplementary Table 2).

Relationships Between Neural,
Behavioral and Demographic Variables
Group factor analysis extracted two robust latent variables
(Figure 5), together explaining approximately 12.56% of the
variance across variable groups, no robust cross-unit latent
factors were identified between the neural group and both
behavioral and demographic variable groups. In other words,
the GFA failed to show any coherence between the neural
group and both behavioral and demographic variable groups in
latent variable space. In contrast, the GFA identified a robust
latent factor that loaded across behavioral and demographic
units of analysis. However, the mean-variance explained was
20.76 and 1.23% within the behavioral and demographic variable
groups, respectively. Thus, while this latent factor technically
contained loadings across behavioral and demographic levels of
analysis, the behavioral variables accounted for virtually all of the
variance explained.

Finally, we tested for bivariate correlations between behavioral
variables and estimated excitatory/inhibitory coupling and
modulatory neural parameters. These Pearson’s correlation tests
included individual estimated parameters from the winning PEB
and either cue-induced food craving or hunger (defined as
changes in food craving and hunger, post-fMRI – pre-fMRI) or
FCQ-trait and FCQ-state scores. These correlation tests revealed
a significant positive correlation (R = –0.33; P = 0.024, n = 50,
Pearson’s correlation) indicating that negative modulation of the
inhibitory intrinsic connection of the right amygdala by food
cues is correlated with cue-induced increases in food craving
(Figure 4F). There were other significant correlations between
behavioral variables and inhibitory self-connections in the VTA
and right amygdala nodes and the extrinsic connectivity from the
right OFC to right amygdala, from the VTA to left amygdala,
and from the right amygdala to right OFC (Figures 4G–K and
Supplementary Figure 3).

DISCUSSION

This study adds to the scant literature using causal inference
to investigate neural food cue-reactivity, selecting regions of
the reward network with differential food > neutral activation
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FIGURE 2 | Behavioral results in the cue-reactivity condition. (A–D) Representative bar charts showing main effect of cue-reactivity on (A) craving; (B) hunger; (C)
prospective consumption; and (D) food control before and after food cue-reactivity task. (E) Participants’ scores on the self-reported craving and hunger were
significantly positively correlated (R = 0.84; P < 0.001; Pearson’s correlation). (F–K) Changes in self-reported score of affective states [anger (F), anxiety (G),
awareness (H), drowsiness (I), happiness (J), and sadness (K)] before and after food cue-reactivity task. Data in bar charts are represented as mean ± SEM.

before inferring the neural interactions likely to underly the
observed BOLD signal. Among causal inference frameworks,
DCM is uniquely tailored for fMRI and has several advantages
(Bielczyk et al., 2019): DCM explicitly models the task-related
hemodynamic response and enables inference on neural level
(Razi and Friston, 2016), and it allows for the specification
and comparison of sophisticated models with modulated
excitatory and inhibitory connections (Bielczyk et al., 2019).
Furthermore, empirical investigations generally support DCM’s
validity (Papadopoulou et al., 2015) and reliability (Bernal-
Casas et al., 2013; Almgren et al., 2018). We are aware of two
studies utilizing DCM to investigate neural food cue processing:
Tiedemann et al. (2017) demonstrated that central insulin
inhibits the excitatory VTA-nucleus accumbens connection in
fasted insulin-sensitive (but not insulin-resistant) individuals and
that this modulatory effect is correlated with lower food valuation
following insulin administration; and He et al. (2019) utilized
a mixed cue-reactivity/go-nogo task to elucidate the network
interactions underlying response inhibition during exposure to
food cues, showing that interactions are influenced by food
deprivation and that this influence is associated with BMI among
college students. Subsequently, the present investigation is the

first to focus purely on the neural dynamics engaged by a
cue-reactivity task and their modulation by food cues in a
moderately sizeable sample of overweight or obese individuals
(n = 50), and the relationship between these neural dynamics
and variables such as BMI, state and trait food craving, and cue-
induced hunger and craving. In addition, this investigation is the
first food cue-reactivity study to use a sparse Bayesian GFA to
assess the latent factors that describe relationships between the
neural and behavioral variables, as well as exploratory neuro-
behavioral correlation tests. Furthermore, this study included
only participants with cue-induced food craving, excluding
individuals whose overweight or obese status is less likely caused
by cued overeating.

Ventral Tegmental Area, Dopaminergic
Center of the Reward Network
Among regions of the reward network (Haber, 2017), the VTA,
bilateral OFCs and amygdalae showed significant food cue-
reactivity. DCM results suggest that these activations result
mostly from reciprocal excitatory and inhibitory connections
across the network, with food cues disinhibiting the left

Frontiers in Behavioral Neuroscience | www.frontiersin.org 7 June 2022 | Volume 16 | Article 899605

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-899605 June 23, 2022 Time: 7:43 # 8

Ghobadi-Azbari et al. Effective Connectivity During Food Cue-Reactivity

FIGURE 3 | Whole-brain response to the task-based fMRI in contrasts of Food > Neutral. (A) Brain activation maps and (B) changes in brain activation in
Brainnetome (BNA) regions. Based on the whole-brain analysis, changes in brain activation (contrast: food > neutral) in terms of beta values obtained from the
general linear modeling (GLM) are represented to examine how food cue-reactivity influenced the brain’s circuitry. The details of brain activation changes for each
subregion of the Brainnetome Atlas are shown in Supplementary Figure 2, and the ontology and nomenclature of brain areas and their abbreviations in the
Brainnetome Atlas and associated Brodmann areas are listed in Supplementary Table 1. Data in bar charts are represented as mean ± SEM. SFG, superior frontal
gyrus; MFG, middle frontal gyrus; IFG, inferior frontal gyrus; OrG, orbital gyrus; PrG, precentral gyrus; PCL, paracentral lobule; STG, superior temporal gyrus; MTG,
middle temporal gyrus; ITG, inferior temporal gyrus; FuG, fusiform gyrus; PhG, parahippocampal gyrus; pSTS, posterior superior temporal sulcus; SPL, superior
parietal lobule; IPL, inferior parietal lobule; Pcun, precuneus; PoG, postcentral gyrus; INS, insular gyrus; CG, cingulate gyrus; MVOcC, medioventral occipital cortex;
LOcC, lateral occipital cortex; Amyg, amygdala; Hipp, hippocampus; BG, basal ganglia; Tha, thalamus.

OFC, bilateral amygdalae, and the VTA. These regions have
been consistently implicated in food cue-reactivity studies
in overweight and obese individuals, and their reactivity to
appetitive food cues can predict overeating and body composition
changes (Val-Laillet et al., 2015; Boswell and Kober, 2016;
Letra et al., 2017; Devoto et al., 2018). The VTA contains a
multitude of excitatory and inhibitory neural populations which
synapse mainly at the ventral striatum and corticolimbic regions,
including the prefrontal cortex and the amygdala (Trutti et al.,
2019). The region’s hyper-activation in response to food cues is a
key part of incentive sensitization theories of obesity (Robinson
et al., 2016; Stice and Burger, 2019): These theories generally
predict that as appetitive conditioning to food-relevant cues
develops, exposure to such cues would come to activate the VTA,
which has excitatory dopaminergic connections to other regions
of the reward network (Morales and Margolis, 2017; Devoto
et al., 2018). Furthermore, there is evidence that this activation
partly results from the relief of tonic self-inhibition which is
maintained by anti-reward GABAergic neurons in the VTA

(Jalabert et al., 2011; van Zessen et al., 2012; Bouarab et al., 2019).
This is in line with our observations that food cues negatively
modulate this self-connection and disinhibit the VTA, and the
clinical relevance of tonic VTA inhibition might be highlighted
by our exploratory observation of negative correlations between
the strength of intrinsic inhibition and both cue-induced hunger
and food craving.

Amygdala, Encoding Valence and
Salience in Reward Learning
The amygdala seems particularly central in the food cue-
reactivity network based on DCM results, with reciprocal
connections between both amygdalae and the VTA and
OFC ipsilaterally. Previous food cue-reactivity research has
demonstrated that amygdalar cue-reactivity is associated with
BMI, compulsive overeating and symptoms of food addiction
(Filbey et al., 2012; Pursey et al., 2019; Stice and Burger,
2019), suggesting that the amygdala is particularly involved in
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FIGURE 4 | DCM results. (A) The parent DCM model was defined and inverted at the single-subject level, which included all intrinsic self-connections and extrinsic
between-region connections in each hemisphere, food and neutral stimuli as driving input, and food modulation of all intrinsic connections. (B) The winning DCM
model after post hoc Bayesian model selection, green arrows indicate modulation by the food stimuli. (C) The upper panel shows the range of log-posterior
probabilities of all possible models examined. The bottom panel shows the posterior probability for all reduced models. It shows that the winning model had the
posterior probability of 0.73, which indicates that the model had more evidence than any other model. The next most probable model was M128 with a posterior
probability of 0.14 (the log-probability of 11.66). (D,E) The corresponding connectivity matrices for winning DCM model. Matrices A and B correspond to connection
strengths and input modulations of connections, respectively. (F) Correlations between neural and behavioral findings. Individual parameter estimates of food
modulation on the inhibitory intrinsic connection of the right amygdala correlated with craving changes (1 craving effect post-fMRI - pre-fMRI) (R = –0.33; P = 0.024;
Pearson’s correlation). Individual intrinsic self-connection of the VTA node predicted participants’ scores on the self-reported craving (R = 0.32; P = 0.03; Pearson’s
correlation) (G) and hunger (R = 0.42; P = 0.022; Pearson’s correlation) (H). Also, intrinsic self-connection of the right amygdala node correlated with participants’
scores on the self-reported craving (R = 0.35; P = 0.016; Pearson’s correlation) (I) and the FCQ-Trait (R = 0.29; P = 0.043; Pearson’s correlation) (J). Individual
extrinsic connections from the right OFC to right amygdala correlated with scores on the FCQ-Trait (R = –0.33; P = 0.021; Pearson’s correlation) (K). lAmyg, Left
Amygdala; lOFC, Left Orbitofrontal Cortex; rAmyg, Right Amygdala; rOFC, Right Orbitofrontal Cortex; VTA, Ventral Tegmental Area.

overweight and obesity driven by cued over-eating. This could
be explained by an incentive sensitization theory of obesity, since
amygdalar circuits are essential for reward valuation and associate
stimuli to reward valence to guide behavior in conjunction
with the prefrontal cortex (Murray, 2007; Lichtenberg et al.,

2017; Devoto et al., 2018). This valence encoding may explain
the bivariate correlation between food-mediated amygdalar
disinhibition and induced craving, consistent with evidence
that amygdalar cue-reactivity encodes subjective food cue
valuation and predicts food consumption (Gottfried et al., 2003;
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FIGURE 5 | Group factor analysis (GFA) robust factor loadings. Heatmap colors indicate the weight of each group variable loading. Robust group factors are sorted
in descending order by mean percent variance explained across all groups. Asterisks indicate latent variable that contained at least one latent variable loading whose
95% credible interval did not contain 0. Latent variable labels, indicating the variable group onto which each latent variable was loaded and the order by most
variance explained, are given in the upper key beneath the heatmap. BMI, Body Mass Index; Demogr, Demographic; FCQ-State, Food Craving Questionnaire-State;
FCQ-Trait, Food Craving Questionnaire-Trait; lAmyg, Left Amygdala; lOFC, Left Orbitofrontal Cortex; rAmyg, Right Amygdala; rOFC, Right Orbitofrontal Cortex; VTA,
Ventral Tegmental Area.

Tiedemann et al., 2020). Another possibility is that the observed
disinhibition is mediated by negative valuation of food cues: The
amygdalae encode both the negative and positive reward valence
of conditioned stimuli (Murray, 2007; Janak and Tye, 2015), and
might be involved in compulsive overeating despite and because
of negative associations and feelings of guilt induced by food cues
(Moore et al., 2017). However, this is less likely to be the primary
mechanism since we observed no evidence of changes in negative
affect after the scan.

Another observation is the striking lateralization of effective
amygdalar connectivity: Only the right amygdala is disinhibited
by food cues and receives excitatory connections from the VTA,
the contralateral amygdala, and the ipsilateral OFC, an effective
connectivity pattern which would shift activity from across the
reward network to the right amygdala during food cue-reactivity.
This striking hemispheric asymmetry would not have been
observable in the conventional GLM analysis, and exploratory
neuro-behavioral correlation tests suggest that it should not
be overlooked: in the right but not the left amygdala, both

weaker self-inhibition and stronger food-induced disinhibition
are correlated with a higher trait food craving and greater cue-
induced craving. This accords with some evidence that right
amygdalar volume may be associated with BMI in overweight
individuals (Orsi et al., 2011), and meta-analytical evidence
that both drug and food cues activate the right amygdala
(García-García et al., 2014). Multiple hypotheses have been
put forward to explain observations of amygdalar asymmetry
in affective neuroscience, including suggestions that the right
amygdala may be more sensitive to pictorial cues (Markowitsch,
1998) and responds and habituates more quickly to emotional
stimuli (Sergerie et al., 2008); or that the right amygdala is
engaged more strongly by negative reward and valence, while
the left amygdala is more involved in positive reward and
valence processing (Lee et al., 2004). While neuro-behavioral
correlations suggest that the right amygdala may be uniquely
relevant to food craving in overweight and obese individuals,
more extensive research is required to clarify the reproducibility
and implications of the observed functional lateralization of
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the amygdalae, especially given its multifaceted role in cue-
reactivity in obesity.

Orbitofrontal Cortex, Integrator of
Sensation, Reward and Behavior
The OFC likely has a sophisticated involvement in food cue-
reactivity, receiving food-relevant sensory inputs and interacting
with the reward network to dynamically associate cues and
reward expectations with decision-making (Wang et al., 2004;
Havermans, 2013; Haber, 2017). In accordance with previous
observations, our model includes both excitatory connections
from the VTA to the OFC and inhibitory projections from
the OFC to the VTA (Lodge, 2011; Seabrook and Borgland,
2020). We also observed reciprocal OFC-amygdalar connections
and a negative correlation between trait craving and right
OFC-amygdala connectivity, which is notable since the two
regions communicate extensively through the uncinate fasciculus
(Bracht et al., 2009) and their cue-related communication
may be impaired in obesity (Stoeckel et al., 2009). Substantial
research has implicated this reciprocal interaction in value-based
decision-making broadly, with amygdalar projections to the
OFC mediating cue-associated reward expectancies and the OFC
modulating amygdalar cue-reactivity to link reward expectancy
and behavior (Tromp et al., 2012; Lichtenberg et al., 2017;
Seabrook and Borgland, 2020). A final noteworthy observation
is that while the right and left OFC are similarly activated by
food cues, their effective connections are asymmetrical: the right
OFC was disinhibited by food cues and received an excitatory
connection from the VTA, while the left OFC sent an inhibitory
connection to the VTA and was not directly affected by food
cues. Furthermore, only the right OFC received an inhibitory
amygdalar connection. This might suggest a tonic regulatory role
for the left OFC and a more dynamic food cue response in the
right OFC, but hemispheric lateralization has also been observed
in attentional, inhibitory and other neurocognitive processes
potentially relevant to food cue-reactivity (D’Alberto et al., 2017;
Lopez-Persem et al., 2020), and more research is required to
clarify its implications.

Limitations
Several limitations should be noted in the investigation. The
present study did not include a control group (i.e., lean human
subjects), so the specificity of observed neural patterns in
overweight and obese individuals is unclear. Furthermore, we
only examined appetizing food cues and since possible differences
between appetizing and non-appetizing foods in neuronal food
processing have previously been observed (Nummenmaa et al.,
2012), our results should be generalized with caution.

CONCLUSION

This work adds to the growing literature on the neural network
dynamics and effective connections which underlie food cue-
reactivity in overweight and obese individuals, and uses DCM
to select a plausible model of reward network function during
food cue-reactivity. Most regions of the reward network are

disinhibited during exposure to food cues in the winning model,
and activation largely converges on the right amygdala based
on the balance of excitatory and inhibitory connections in
the network. This model largely accords with the incentive
sensitization theory of obesity, which would account for the
activation of regions involved in encoding reward valence and
excitatory outgoing signals from the VTA in response to food
cues (Robinson et al., 2016; Devoto et al., 2018; Stice and Burger,
2019). Furthermore, our results complement recent evidence
that neural food cue-reactivity predicts overeating and BMI
(Boswell and Kober, 2016) and that reward network functional
connectivity may explain the therapeutic impact of interventions
(Makaronidis and Batterham, 2018; Kerem et al., 2020), with
exploratory tests identifying significant correlations between
lower intrinsic inhibitory tone in the VTA and right amygdala
and right amygdalar disinhibition during food cue-reactivity
on the one hand and food-induced craving and hunger on
the other; however, it should be noted that the more robust
GFA extracted no common latent factors between neural and
behavioral variables, similar to other recent work suggesting
that such cross-modal relationships may be difficult to identify
using current paradigms (Peng et al., 2021). Our work points
to potential avenues for interventions targeting the reward
network; in particular at the VTA, right amygdala, and the
right OFC-amygdala connection. Moving forward, prospective
and interventional studies are required to further elucidate the
reward network dynamics with etiologic relevance to obesity and
establish the clinical relevance of network parameters.
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