
Citation: Bayley, T.; Begen, M.A.;

Rodrigues, F.F.; Barrett, D. Relative

Efficiency of Radiation Treatment

Centers: An Application of Data

Envelopment Analysis. Healthcare

2022, 10, 1033. https://doi.org/

10.3390/healthcare10061033

Academic Editor: Andrea Tittarelli

Received: 24 April 2022

Accepted: 30 May 2022

Published: 2 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

healthcare

Article

Relative Efficiency of Radiation Treatment Centers:
An Application of Data Envelopment Analysis
Tiffany Bayley 1,* , Mehmet A. Begen 1 , Felipe F. Rodrigues 2 and David Barrett 1

1 Ivey Business School, University of Western Ontario, London, ON N6G 0N1, Canada;
mbegen@ivey.uwo.ca (M.A.B.); dbarrett@ivey.ca (D.B.)

2 School of Management, Economics, and Mathematics, King’s University College, University of Western
Ontario, London, ON N6A 2M3, Canada; frodrig7@uwo.ca

* Correspondence: tbayley@ivey.ca

Abstract: This study determines the relative efficiencies of a number of cancer treatment centers in
Ontario, taking into account the differences among them so that their performances can be compared
against the provincial targets. These differences can be in physical and financial resources, and
patient demographics. An analytical framework is developed based on a three-step data envelopment
analysis (DEA) model to build efficiency metrics for planning, delivery, and quality of treatment at
each center. Regression analysis is used to explain the efficiency metrics and demonstrates how these
findings can inform continuous improvement efforts.

Keywords: cancer care; data envelopment analysis; relative efficiency; radiation treatment; continuous
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1. Introduction

The role of radiotherapy in oncology has increased over the last decade as technological
advances have continued [1,2]. Providing access to timely and appropriate radiotherapy
services is crucial in order to minimize radiotoxicity and optimize patient outcomes [3–5].

In Ontario, Canada, there are 15 regional cancer centers (RCCs) that provide radio-
therapy services to its 14.5 million residents. As a means of promoting access, RCCs are
distributed across the Province and vary in size, availability of specialized equipment,
and extent of clinical expertise [6]. While the provincial health authority devised a plan
in 2015 to increase the performance of its cancer treatment centers through continuous
improvement cycles, the challenge became how to compare, identify, and subsequently
implement improvement opportunities and best practices to all its centers [7]. Given the
heterogeneity of center attributes and available resources, measuring their relative per-
formances against the same benchmarks may not be a fair assessment. For RCCs with a
similar set of resources (inputs), one would expect similar levels of performance, including,
for example, the number of patients completing treatment and the percentage of patients
starting treatment within pre-specified wait-time targets (outputs). Similarly, one may
expect an RCC with fewer inputs to yield lower performance. In reality, however, some
RCCs may be more (or less) efficient, producing greater (or fewer) outputs with the same
or fewer inputs due to a variety of reasons, such as patient composition, types of services
provided, and whether the center is a teaching hospital or not.

Data envelopment analysis (DEA) is a linear programming technique that is widely
used to compare decision-making units (DMUs) that provide similar services but operate
with differing levels of resources. DEA enables an improved comparison of the relative
efficiency of each DMU, that is, how well each DMU is able to transform its set of inputs into
desired outputs. Following DEA, regression analysis can be used to identify factors associ-
ated with inefficiency, and how a less-efficient DMU can improve its performance [8–12].
(We use the terms DMU and RCC interchangeably).
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This study employs DEA and regression analysis using data from 2013 to 2016 ob-
tained from two provincial databases that report cancer-related patient-level activity and
diagnoses. DEA is used to identify the factors associated with efficient planning and treat-
ment of radiation therapy for patients treated for cancer in Ontario RCCs, and regression
analysis is used to explain findings from the DEA model. We show how this analysis can
be used in the development of continuous improvement initiatives, which is not typically
discussed in DEA research. There is an opportunity to address gaps in the literature, specif-
ically by contributing a DEA study focused on cancer care in a Canadian province with
novel managerial insights regarding how to interpret and act upon efficiency scores. To the
best of our knowledge, this is the first study to use DEA to evaluate radiation treatment
center performance, and coupled with this are useful interpretations of model results that
can initiate improvement efforts. With this study, more awareness is shone on challenges
faced by provincial healthcare providers. We also demonstrate how integrated benchmarks
can guide decision-makers and lead to potentially beneficial collaborations between RCCs.

2. Literature Review

Özcan [13], Canter and Poh [8], and Kohl et al. [14] explored DEA in healthcare settings,
providing several examples of applications to hospitals, nursing homes, and international
health studies. In particular, Cantor and Poh [8] reviewed articles that use DEA in combi-
nation with other technical approaches, such as regression or factor analysis, to measure
healthcare system efficiency, and Kohl et al. [14] provided a review of DEA applied specifi-
cally in hospital settings. Those authors note an important disconnect between the findings
of DEA and the action taken to improve efficiency: being able to identify low-performing
DMUs and quantifying inputs (or outputs) that would yield 100% relative efficiency are
important first steps; however, DEA does not prescribe a process for using that knowledge
to achieve those targets.

Efficiency in hospitals has been studied before [10,15,16], along with the effectiveness
of cancer screening programs as measured through detection rates [17,18] and cost [19,20].
However, few studies directly relate to our context, i.e., efficiency analysis of radiation
centers. Langabeer and Özcan [21] applied DEA Malmquist in their longitudinal study of
inpatient cancer centers across a five-year period in the United States, and uncovered that
greater specialization of treatment does not necessarily lead to higher efficiency or lower
costs. This was one of few DEA studies dedicated to cancer care. Meanwhile, Allin et al. [11]
focused on comparing 89 health regions in Canada, examining the potential years of life
lost that could be due to system inefficiencies, though their focus was not on cancer care.

Expanding on seminal work in DEA [22,23], Simar and Wilson [24] and Lothgren
and Tambour [25] established bootstrapping frameworks for approximating a sampling
distribution of the relative scale efficiencies, thereby enabling the construction of confi-
dence intervals for these estimates. Bootstrap DEA can be applied to any industry sector,
from banking [26] to education [27], to and healthcare supply chains [28]. In each of these
settings, regression analysis follows DEA to identify potential causes of inefficiency for
the DMUs.

3. Problem Description

Each of the 15 cancer centers in Ontario is subject to specific levels of available resources
and expertise (Table 1). For example, some programs are located in teaching hospitals
and others are not, and each center has its own level of specialized equipment required
for radiotherapy, or medical resource level. Centers can be further distinguished by their
treatment capabilities, or their “diversification”. It was observed that for every center,
the majority of treatments delivered were to the pelvis and chest, but certain centers had
wider or more diversified “portfolios” of body regions treated (e.g., brain). This is in contrast
to specialization, which implies that a center would treat only certain body regions and not
others. We express diversification as the proportion of radiation treatments delivered to
body regions other than pelvis or chest. Finally, centers are situated across the province,
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where local populations vary. Catchment population refers to the census population within
a 50-kilometer radius of the RCC as determined by population counts reported in the 2011
and 2016 census reports [29,30]. Annual population growth rates for Canada [31] were
used to estimate populations between 2012 and 2015, inclusive.

Table 1. Characteristics of regional cancer centers in Ontario.

RCC
Teaching
Hospital
(Yes = 1)

Medical
Resource
Level a

Diversification % a
Catchment
Population

(’000s) a

C1 0 [1, 6) b 32.62 ≤500 b

C2 0 [6, 10) 21.28 >500
C3 0 [6, 10) 23.52 >500
C4 0 [6, 10) 20.06 >500
C5 0 [1, 6) 23.33 ≤500
C6 0 [1, 6) 16.33 >500
C7 0 [6, 10) 21.01 ≤500
C8 1 ≥10 33.63 ≤500
C9 1 ≥10 36.49 >500
C10 1 [1, 6) 31.50 ≤500
C11 1 ≥10 55.69 >500
C12 1 [6, 10) 31.80 ≤500
C13 1 ≥10 40.13 ≤500
C14 1 ≥10 39.70 ≤500
C15 1 [6, 10) 30.42 ≤500

a Yearly average from 2013 to 2016. b Values presented in this table have been categorized to maintain center
anonymity; each center’s precise values were used in our quantitative analysis.

Measuring the performances of these distinct centers against the same benchmarks
may not be the best assessment. Rather, their performances relative to their available inputs
and respective outputs would provide a clearer picture of how efficiently they are operating
compared to one another. The scope of our study is limited to cancer treatments delivered
by linear accelerators, or LINACs.

To determine the appropriate inputs and outputs for the regional cancer centers (RCCs),
a patient’s radiation treatment journey is followed, while considering three dimensions
of treatment: planning, delivery, and quality. The planning dimension begins with the
patient’s initial diagnosis date. The patient is then referred for a consultation with a
radiation oncologist. The time between referral and the first consultation visit with a
radiation oncologist is an important performance indicator, called referral-to-consult (RTC).
If radiotherapy is indicated, the radiation oncologist will then develop a course of treatment,
and will also determine the date that treatment could begin (the ready-to-treat date).
The time between when the patient is physically ready to be treated and their first treatment
is another important indicator, the ready-to-treat to first treatment (RTT) time. To monitor
wait times for the radiation treatment program, the provincial health authority established
a 14-day benchmark for both the RTC and RTT wait times for all RCCs; the proportion
of patients whose wait time is within that target is tracked yearly. While each patient’s
course of treatment (e.g., dosages and timing of treatments) could differ, this planning
phase should be consistent for all patients (Figure 1).

Figure 1. Key dates.
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Once a plan is in place, radiation treatments are administered according to that plan
(the delivery dimension of treatment). This requires patients to visit their respective regional
cancer centers on specific dates and times (e.g., radiation is applied Monday through Friday
for 3 weeks). The number and timing of treatments that can be delivered at a center depend
upon that center’s availability and utilization of its resources, which comprise medical
equipment such as LINACs.

Patient support visits and quality assurance visits could also be booked around these
treatment visits to minimize the number of center visits required of the patient. Patient
support visits consist of patient education and coordination/scheduling of radiation-related
visits. Quality assurance visits include exposing the patient to a thermoluminescent dosime-
ter, acquisition of portal images or volumetric images, use of active breathing control, use
of respiratory gating equipment, manual calculations, fluence/dosimetry checks and peer
review. These activities are captured in the quality dimension of treatment planning and
delivery. Figure 1 illustrates the approximate timing of each treatment dimension. Though
several visits may occur simultaneously without requiring the patient to physically change
locations within the center, we consider them to be distinct. This allows for resources, such
as number of staff, technicians, and physicians, to be indirectly incorporated in the DEA
model, should information pertaining to full-time equivalent levels not be easily accessible.

3.1. Data

Data between 2013 and 2016 were examined from two databases: Activity Level
Reporting (ALR), which reports patient-level activity within the cancer system, and Ontario
Cancer Registry (OCR), a database of residents in Ontario who have been diagnosed with
cancer and residents who have died of cancer. From ALR, total number of visits by type
(e.g., planning and simulation) and number of incident cases (i.e., number of new cases
of diagnosed cancer) were gathered. The patient was assigned to an RCC based on the
location of their first treatment. Number of deaths by year and by RCC was calculated
by linking to the OCR and the Registered Persons Database, which hold information on
Ontario residents’ access to public health services. The proportion of patients whose RTC
and RTT wait times were within the provincial target of 14 days was calculated, along with
total number of radiation treatments delivered to specific body regions. From both ALR
and OCR, number of new cancer diagnoses after the first initial diagnosis for a patient
as a surrogate for the subsequent cancer diagnosis rate was identified. Publicly available
sources for teaching hospital designations were consulted [32], and they were for data on
medical resource (MR) capacity and utilization too [33,34].

3.2. Privacy and Software

This study was approved by the Western University Health Sciences Research Ethics
Board. Data envelopment analysis was performed using optimization solver CPLEX 12.10
via the Python API (Python version 3.6) and regression analysis was performed with
statistical software R (version 3.6.0).

4. Computing Relative Efficiencies

To compare the performances of RCCs between 2013 and 2016, a DEA model to
compute the relative efficiency score for each center across the three treatment dimensions
each year was constructed. We posit that the provincial health authority has more control
over its inputs than outputs and that resources are limited in our problem setting (as is
typical in healthcare environments), so the DEA was formulated as an input-oriented,
variable-returns-to-scale (VRS) model, where economies of scale may exist (i.e., we do
not assume there is a constant rate of substitution between inputs and outputs). In other
words, the VRS assumption is more general and does not require that a change in the
inputs produce a proportional change in the outputs. Details regarding the mathematical
formulation of the input-oriented VRS DEA model, [DEA], can be found in Appendix A.1,
and we note once again that RCCs are analogous to decision-making units (DMUs).
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The relative efficiencies computed in a DEA model indicate how well an RCC is able
to transform its inputs into outputs, relative to other RCCs. Consider Figure 2. The points
A through F represent different RCCs and the levels of output they can achieve based on
their inputs. The DEA determined that RCCs A, B, C, and D are efficient, and joining their
coordinates will form the efficient frontier. An inefficient RCC such as E can improve its
relative efficiency in several ways: increase output without changing its original input
(move to E1), use fewer inputs to produce the same level of outputs (E2), or adjust both
inputs and outputs in such a way as to reach the frontier (E3).

Figure 2. Visualization of a VRS model with a single input and single output.

Efficiency scores for the planning dimension were generated using the numbers of
clinic visits, planning visits, and simulation visits as inputs; and the percentages of patients
with RTC and RTT times ≤14 days as outputs (Table 2). Efficiency scores for the delivery
dimension used medical resource (MR) capacity and the inverse of RTT times ≤14 days as
inputs; and MR utilization and the number of treatment visits as outputs. The inverse of
RTT was used because a smaller input value is desirable in an input-oriented DEA model
(i.e., a lower inverse RTT implies that a higher proportion of patients are within the target
wait time window). Similarly, a larger output value is desirable in this type of analysis.

Lastly, efficiency in the quality dimension used the number of patient support visits,
quality assurance visits, and treatment visits as inputs, and survival rate and the inverse of
the subsequent diagnosis rates as the outputs. The subsequent diagnosis rate was measured
by first identifying for each patient in the population over all years in our study whether
an incident (i.e., cancer diagnosis) was the first or a subsequent cancer diagnosis. Then, in a
given year, the total number of subsequent cancer diagnoses across the patient population
was divided by the total number of cancer incidents to determine the subsequent diagnosis
rate. The complement of this value is used in this analysis, since larger outputs are more
desirable in an input-oriented VRS model.
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Table 2. Input and output parameters for DEA models.

Parameter Description Dim (I or O) 1
2013 2014 2015 2016

Mean SD Mean SD Mean SD Mean SD

Clinic Visits Number of new radiation and follow-up clinic
visits with a physician P(I) 12,568.87 7615.68 13,256.07 7458.43 13,910.4 7832.72 13,357.07 7782.20

Planning
Visits Number of radiation planning visits P(I) 961.87 1307.27 889.40 1229.06 929.20 1313.66 939.53 1404.12

Simulation
Visits

Number of visits involving conventional
simulation, CT simulation, or emerging
imaging methods

P(I) 3950.87 2450.01 3989.93 2730.23 3999.93 2505.11 4103.20 2479.76

RTC Target
% of patients whose time from referral to a
radiation oncologist until the consult occurred
(referral-to-consult; RTC) was ≤14 days

P(O) 82.81 8.29 86.51 6.39 87.20 6.58 85.67 6.14

RTT Target

% of patients who started treatment ≤14 days
from the date the patient was deemed
‘ready-to-treat’ (RTT) by the radiation
oncologist responsible for that patient’s care

P(O) D(I) 2 93.58 4.42 94.03 3.21 92.81 3.44 90.74 7.17

MR Capacity Available MR equipment hours D(I) 21,310.40 11,790.95 21,310.40 11,790.95 21,310.40 11,790.95 19,136.80 12,658.32

MR
Utilization

% time MR equipment is in use, calculated as
the number of hours MR equipment was in
use divided by MR capacity

D(O) 89.60 15.08 90.60 15.38 91.60 15.65 81.53 13.38

Treatment
Visits

Number of visits where radiation is given with
a LINAC D(O) Q(I) 48,462.67 38,107.06 48,491.93 39,037.90 50,253.33 38,813.57 49,702.87 37,659.65

Patient
Support
Visits

Patient education and
co-ordination/scheduling of radiation-related
visits

Q(I) 39,085.73 34,866.61 41,535.40 38,200.28 44,525.00 39,306.04 43,830.27 40,144.35

Quality
Assurance
Visits

Some activities include image acquisition, use
of respiratory gating equipment, peer review,
and fluence/dosimetry checks

Q(I) 77,278.80 91,423.45 79,555.27 87,393.01 84,650.60 89,687.21 87,858.20 91,477.60

Survival
Rate (%) 1 − (Deaths ÷ Incidents) Q(O) 81.91 17.80 81.07 18.14 84.95 14.90 81.31 17.74

Inverse
Subsequent
Diagnosis
Rate (%)

1 − (Subsequent Cancer Diagnoses ÷
Incidents) Q(O) 85.42 1.64 84.08 1.64 78.35 2.17 78.61 2.24

1 Dim = dimension, I = input, O = output; 2 inverse of rtt target was used.
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Solving [DEA] provides only a snapshot of relative efficiency scores, based on single
measures of inputs and outputs at a given point in time. To better capture the variability
in these efficiencies, a bootstrap DEA [24,35] allows computation of an average efficiency
and confidence interval through sampling with replacement. This bootstrap approach
(presented in Appendix A.2) repeatedly samples inputs to generate a range of efficiencies,
ultimately providing an average efficiency score that better distinguishes efficient RCCs
from one another, even if the differences are small. Tables 3–5 show efficiency scores
derived from [DEA], along with the bias-corrected mean efficiencies and their 5th and 95th
quantiles (denoted by θ, θ̂, q0.05, and q0.95, respectively). The ranking of RCCs remains,
in general, consistent with results from solving [DEA] just once, so we see that results
are robust.

Table 3. Planning dimension efficiencies, bias-corrected bootstrap efficiencies, and quantiles.

DMU
2013 2014 2015 2016

θ θ̂ q0.05 q0.95 θ θ̂ q0.05 q0.95 θ θ̂ q0.05 q0.95 θ θ̂ q0.05 q0.95

C1 0.743 0.653 0.538 0.736 0.454 0.384 0.289 0.451 0.738 0.625 0.506 0.722 0.838 0.696 0.605 0.808
C2 1.000 0.768 0.557 0.990 1.000 0.740 0.544 0.983 1.000 0.721 0.535 0.976 1.000 0.721 0.568 0.957
C3 1.000 0.765 0.546 0.991 1.000 0.737 0.544 0.983 1.000 0.798 0.587 0.972 1.000 0.727 0.570 0.959
C4 1.000 0.887 0.754 0.992 0.688 0.602 0.507 0.677 0.388 0.329 0.274 0.382 1.000 0.737 0.590 0.952
C5 1.000 0.771 0.567 0.991 1.000 0.752 0.580 0.985 1.000 0.762 0.629 0.976 1.000 0.744 0.616 0.953
C6 1.000 0.874 0.709 0.993 1.000 0.733 0.544 0.983 1.000 0.807 0.673 0.978 1.000 0.750 0.627 0.955
C7 1.000 0.826 0.637 0.992 1.000 0.800 0.614 0.984 0.938 0.769 0.603 0.916 1.000 0.749 0.615 0.953
C8 0.228 0.198 0.152 0.226 0.285 0.246 0.197 0.281 0.250 0.211 0.168 0.245 0.445 0.363 0.310 0.431
C9 0.342 0.312 0.263 0.340 0.264 0.228 0.193 0.260 0.307 0.267 0.232 0.300 0.280 0.225 0.194 0.267

C10 0.585 0.513 0.370 0.580 1.000 0.761 0.563 0.981 1.000 0.724 0.535 0.973 1.000 0.718 0.568 0.948
C11 0.602 0.548 0.453 0.597 0.792 0.706 0.619 0.779 0.731 0.629 0.545 0.713 1.000 0.754 0.632 0.955
C12 0.176 0.159 0.133 0.175 0.213 0.189 0.168 0.210 0.128 0.108 0.088 0.126 0.255 0.208 0.181 0.244
C13 1.000 0.763 0.546 0.991 0.384 0.334 0.267 0.381 0.422 0.357 0.285 0.416 1.000 0.720 0.569 0.952
C14 0.168 0.152 0.121 0.167 0.158 0.140 0.114 0.156 0.213 0.194 0.171 0.211 0.230 0.185 0.155 0.224
C15 0.885 0.786 0.633 0.878 1.000 0.733 0.544 0.983 0.891 0.768 0.582 0.874 1.000 0.722 0.568 0.948

Table 4. Delivery dimension efficiencies, bias-corrected bootstrap efficiencies, and quantiles.

DMU
2013 2014 2015 2016

θ θ̂ q0.05 q0.95 θ θ̂ q0.05 q0.95 θ θ̂ q0.05 q0.95 θ θ̂ q0.05 q0.95

C1 1.000 0.968 0.867 0.999 1.000 0.970 0.913 0.998 1.000 0.970 0.903 0.998 1.000 0.976 0.865 1.000
C2 0.988 0.978 0.966 0.986 0.981 0.970 0.954 0.980 1.000 0.987 0.973 0.999 1.000 0.990 0.975 1.000
C3 1.000 0.978 0.937 0.999 1.000 0.975 0.935 0.998 1.000 0.974 0.931 0.999 1.000 0.976 0.836 1.000
C4 0.907 0.899 0.889 0.906 0.924 0.919 0.912 0.923 0.942 0.936 0.929 0.941 0.945 0.942 0.938 0.945
C5 0.985 0.977 0.965 0.984 0.981 0.967 0.948 0.979 0.986 0.978 0.963 0.985 0.976 0.970 0.952 0.976
C6 0.980 0.969 0.947 0.979 1.000 0.981 0.960 0.999 0.886 0.875 0.848 0.885 1.000 0.980 0.912 1.000
C7 0.963 0.955 0.946 0.962 0.975 0.966 0.955 0.974 0.974 0.965 0.955 0.973 0.996 0.992 0.979 0.996
C8 0.926 0.919 0.912 0.925 0.953 0.945 0.936 0.952 0.977 0.970 0.961 0.976 0.951 0.949 0.944 0.951
C9 0.997 0.987 0.964 0.996 0.997 0.985 0.964 0.995 1.000 0.989 0.971 0.999 0.980 0.974 0.959 0.980

C10 1.000 0.987 0.960 0.999 1.000 0.985 0.947 0.999 1.000 0.986 0.953 0.999 1.000 0.974 0.836 1.000
C11 1.000 0.967 0.867 0.999 1.000 0.969 0.913 0.999 1.000 0.970 0.904 0.998 1.000 0.974 0.837 1.000
C12 1.000 0.986 0.973 0.999 0.911 0.902 0.890 0.910 0.943 0.934 0.923 0.941 1.000 0.992 0.978 1.000
C13 0.840 0.835 0.829 0.839 0.898 0.891 0.883 0.897 0.904 0.897 0.890 0.903 0.804 0.802 0.799 0.803
C14 0.984 0.975 0.963 0.983 0.982 0.972 0.958 0.981 0.978 0.969 0.956 0.977 0.992 0.990 0.987 0.992
C15 0.969 0.962 0.953 0.968 0.967 0.961 0.954 0.965 0.982 0.976 0.968 0.981 0.980 0.977 0.971 0.980
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Table 5. Quality dimension efficiencies, bias-corrected bootstrap efficiencies, and quantiles.

DMU
2013 2014 2015 2016

θ θ̂ q0.05 q0.95 θ θ̂ q0.05 q0.95 θ θ̂ q0.05 q0.95 θ θ̂ q0.05 q0.95

C1 1.000 0.719 0.567 0.958 1.000 0.713 0.551 0.986 1.000 0.673 0.556 0.924 1.000 0.700 0.554 0.966
C2 1.000 0.680 0.531 0.958 1.000 0.711 0.550 0.984 1.000 0.698 0.577 0.933 1.000 0.698 0.548 0.965
C3 0.656 0.502 0.369 0.633 1.000 0.711 0.551 0.981 1.000 0.667 0.554 0.921 1.000 0.696 0.546 0.964
C4 1.000 0.676 0.514 0.962 1.000 0.776 0.561 0.985 1.000 0.673 0.558 0.926 1.000 0.773 0.571 0.967
C5 1.000 0.679 0.519 0.957 1.000 0.714 0.551 0.983 1.000 0.672 0.556 0.921 1.000 0.696 0.547 0.960
C6 0.249 0.193 0.142 0.243 0.817 0.693 0.516 0.805 0.745 0.572 0.482 0.694 0.641 0.500 0.399 0.621
C7 1.000 0.696 0.544 0.964 1.000 0.810 0.573 0.984 1.000 0.674 0.561 0.929 1.000 0.695 0.548 0.960
C8 0.767 0.583 0.433 0.747 0.192 0.165 0.137 0.189 0.228 0.168 0.139 0.211 0.192 0.154 0.117 0.188
C9 0.055 0.043 0.033 0.054 0.224 0.197 0.169 0.220 0.214 0.165 0.142 0.200 0.165 0.150 0.132 0.164

C10 0.407 0.357 0.301 0.403 0.910 0.841 0.760 0.905 1.000 0.794 0.685 0.927 0.998 0.903 0.802 0.988
C11 0.243 0.188 0.144 0.233 0.232 0.194 0.145 0.228 0.225 0.167 0.135 0.216 0.215 0.170 0.125 0.211
C12 0.306 0.229 0.175 0.294 0.372 0.341 0.305 0.366 0.411 0.323 0.277 0.394 0.448 0.390 0.339 0.440
C13 0.085 0.073 0.060 0.084 0.218 0.203 0.185 0.215 0.278 0.223 0.192 0.262 0.248 0.216 0.190 0.243
C14 0.111 0.091 0.068 0.109 0.182 0.155 0.120 0.180 0.216 0.164 0.137 0.205 0.236 0.202 0.162 0.233
C15 1.000 0.672 0.514 0.955 0.391 0.338 0.275 0.385 1.000 0.669 0.556 0.923 0.494 0.439 0.384 0.489

5. Explaining Relative Efficiencies

We want to understand the differences in efficiencies to gain insights on how to
interpret them. External factors that may be determinants of relative efficiency include:

1. Center size;
2. Center catchment population;
3. Radiation treatment diversification;
4. Teaching hospital designation.

Center size was estimated using the medical resource level (MRL) as a proxy (Table 1).
Catchment population and radiation treatment diversification were defined in Section 3.
Table 6 presents the variables in our regression model, and shows mean and standard
deviation values for these regression variables over the four years of study.

The regression model takes the following form:

θ̂∗j = β0 + β1MRLj + β2DIVj + β3POPj + β4TEAj + εj (1)

where θ̂∗j denotes a transformed bias-corrected efficiency score. As θ̂j are censored at 1,

(i.e., 0 ≤ θ̂j ≤ 1), this requires various cut-off points (and thus regression models) to
be developed to compute meaningful efficiency estimates that remain within 0 and 1.
However, by transforming scores so that they are left-censored at 0 only, a censored (or
Tobit) regression can be applied and interpreted similarly to an ordinary least squares
regression [13]. We apply the following transformation to compute θ̂∗j :

θ̂∗j =
1
θ̂j
− 1 (2)

Note that with this transformation, θ̂∗j ≥ 0 and can be interpreted as an “inefficiency” score;

i.e., θ̂∗j = 0 indicates that RCC j is 100% efficient.
For each model dimension, a left-censored (Tobit) regression analysis was performed

with the vglm function from the VGAM library in R using the transformed efficiencies
over all four years of our study. From the results in Table 6, this combination of determi-
nants explains roughly 64% and 38% of variation in the planning and quality efficiency
scores, respectively, but does not adequately account for variation in delivery efficiency
(R2 < 0.1%).
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Due to the transformation applied to efficiency scores, interpretation of coefficients
must be handled carefully: a positive coefficient indicates that efficiency worsens as the
dependent variable increases, and vice versa. For the planning dimension, higher efficiency
scores were associated with smaller centers (lower levels of medical resources) (p < 0.01)
and centers with less diverse radiation treatment portfolios (p < 0.001), but not catchment
populations (p = 0.253) or teaching designation (p = 0.218). Smaller RCCs were also more
efficient in the quality (p < 0.05).

Table 6. Regression variables and results.

Dependent Variable Description Mean SD
Coefficient by Dimension

Planning Delivery Quality

MRL
Medical Resource Level: a measurement of
medical equipment required for radiation
treatment delivery

7.68 4.20 0.2216 ** 0.0055 * 0.4234 *

DIV

Radiation Treatment Diversification:
Proportion of radiation treatments
delivered to body regions other than pelvis
or chest

30.50 10.12 9.2068 *** −0.1373 −3.789

POP Center Catchment Population: Population
within 50 km radius of center (in ’000s) 585.93 350.10 −0.0007 0.0000 0.0000

TEA Teaching hospital designation
See Table 1 for binary
designation −0.6216 0.0014 2.093

R2 0.6364 0.0008 0.3846

*** p < 0.001, ** p < 0.01, * p < 0.05. Note: a positive (negative) coefficient indicates a decrease (increase)
in efficiency.

6. From Rankings to Continuous Improvement

Treatment center policies can be informed by relative efficiency scores. Rather than
focusing solely on the rankings that a DEA provides, we want to work towards actionable
plans that contribute to the continuous improvement of RCCs. We developed several
visualizations to identify potential courses of action for an RCC to improve upon its
performance in a given dimension. In the following subsections, visualizations for a
selection of computed results are presented; similar analysis can be performed for all
dimensions, years, and combinations of RCCs.

6.1. Comparing Results by Dimension

For each of the three treatment dimensions, relative efficiency scores can be compared
to identify whether any trends in performance are apparent. Figure 3 plots the bias-
corrected mean efficiencies for the planning dimension (θ̂), computed according to the
method in Appendix A.2 and shown in Table 3 by year and RCC.

The efficiencies of some centers are distinctly lower than others: C8, C11, C13, and C14
consistently perform with θ̂ < 0.30. Focusing on a specific center or group of centers within
this range, say C8 and C14, allows us to understand which inputs and outputs impact their
planning efficiency scores (Figure 4).
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Figure 3. Mean bias-corrected planning efficiency scores.

Figure 4. Comparing planning dimension performance: C8 and C14.

Though both in the band of low efficiency, C14’s performance in the planning di-
mension has improved since 2013, whereas C8’s has seen a decline. These trends can be
attributed numerous changes in inputs and outputs for C14 and C8. In particular, C14 saw
a general decline in clinic visits and improvement in the proportion of patients meeting
the RTC wait time target, which both outweigh the increase in simulation visits. For C8,
however, while the number of planning visits decreased over this period, it did not offset
increases in clinic and simulation visits or the worsening of the RTC target.

We do not recommend exhausting pairwise comparisons of centers; rather, decision-
makers should identify “peer centers” (or, RCCs with similar performances in a treatment
dimension) and scrutinize why those RCCs perform differently. In what specific measures
does one RCC outperform the other, and how can each RCC strive for improvement?

6.2. Relative Comparison of RCCs

To assist in identifying these peer centers, we propose visualizations in Figures 5–7 to
compare two dimensions in a given year (2016).
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Figure 5. Benchmarking according to planning and quality dimensions (2016).

Figure 6. Benchmarking according to planning and delivery dimensions (2016).

Figure 7. Benchmarking according to delivery and quality dimensions (2016).
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Say we compare centers based on both planning and quality dimensions (Figure 5).
In keeping with our C8 and C14 pairing, we can see how “far” away C8 is compared to
C14, but also how close it is in performance to other centers, such as C11. While all centers
should be striving to be in the top-right quadrant (i.e., 100% efficient in both dimensions),
in the short-term, it is perhaps better to compare just certain groups of centers, quadrant-
by-quadrant. This visualization also quickly identifies clusters of centers: According to
this study, non-teaching hospitals (denoted by “×”) performed better in both planning
and quality in 2016, in general, compared to their teaching counterparts. This clustering is
also apparent when comparing planning and delivery dimensions (Figure 6) and delivery
and quality dimensions (Figure 7) in 2016, as most non-teaching hospitals performed better
than non-teaching hospitals in all three dimensions.

The dotted red lines in each of these quadrant charts represent arbitrarily chosen
thresholds for performance, and should be adjusted appropriately by decision-makers.
For example, in Figure 7, if a 60% efficiency threshold in the quality dimension is considered
too high to strive for, it can be lowered to some other value, say 30%. By focusing on fewer
centers who have not met this 30% target, decision-makers can tailor strategic plans for
those centers to get them past this milestone. Alternatively, centers scoring very high on
quality (given managerial targets) may reduce efforts in this dimension to focus on under-
performing aspects in other dimensions. Through these positive incremental changes,
centers maybe be encouraged to adopt more continuous improvement initiatives.

7. Discussion

As part of measuring the performances of RCCs, the provincial health authority mea-
sures and reports various indicators, including RTC and RTT. Although this is an important
and effective means of assessing improvement opportunities, indicators measured in isola-
tion do not speak to the center’s efficiency. DEA, in contrast, provides a single numeric
value that signifies each center’s relative efficiency and can identify system-level strategies
towards performance improvement (e.g., increase medical resource levels).

We recognize that computing these scores is not enough; we must also consider how
to influence managerial action from those scholarly insights [14]. Typically, inefficient RCCs
would seek to reduce their inputs while maintaining or increasing their outputs, with spe-
cific targets obtained using slack values from model [P]. These RCCs may also consider
emulating a “weighted” combination of efficient RCCs based on results from model [DEA].
While knowing these target values is useful, how to achieve them operationally is another
story. We present a variation of this benchmarking information to assist in identifying
potential partnerships between centers. Visualizing DEA inputs, outputs, and resulting
efficiency scores allows policy makers to quickly see how centers are performing across
several radiation treatment dimensions and against other centers over time. By consider-
ing three separate treatment dimensions, we show that an RCC that is inefficient in one
dimension can also be a leader in another. The parameters listed in Table 2 were used as
inputs and outputs. While there are other measures that could be incorporated, the number
of RCCs we studied was a limiting factor: Özcan [36] suggests that the number of inputs
and outputs to consider in a DEA model should satisfy n ≥ max(r× s, 3(r + s)), where n, r,
and s denote the numbers of RCCs, inputs, and outputs, respectively. With n = 15 RCCs,
we used r ≤ 3 and s ≤ 2 for any one DEA model.

Some determinants of relative efficiencies discussed in Section 5 are not within the
decision-making jurisdiction of an individual radiation treatment center. For example,
center catchment population and teaching hospital designation cannot be controlled or
changed by an RCC. Medical resource levels and treatment diversification, however, can
be influenced by the specific needs of the population served by the RCC and the policies
developed by radiation treatment center administrators.

Furthermore, the inputs and outputs used in our analysis were limited to values that
are currently available. Other center-specific information that could have been more infor-
mative would include full-time equivalents (FTEs) for radiation treatment professionals,
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such as oncologists, dosimetrists, technicians, and administrators. Provincial funding
also differs by center and is partly based on the center’s case mix, neither of which was
provided by the health authority for use in our study. A center’s case mix would influence
the complexity of radiation treatments planned and delivered, which could impact RTC
and RTT wait times, medical resource utilization, and patient survival rates, but also the
specialization of FTEs and types of equipment required to deliver specialized treatments.
Without this more granular information, insights from DEA models are limited to high-level
interpretations.

Finally, it is important to be mindful of metrics deemed important by provincial au-
thorities to ensure the insights developed by DEA modeling are meaningful. For example,
during the analysis period (2013 to 2016), RTC and RTT wait times were considered impor-
tant indicators for how well RCCs were meeting provincial wait time targets. However,
in their most recent plan, the provincial authority modified these indicators to measure
instead wait time from diagnosis to first treatment date and the radiation integrated wait
time [37]. The DEA model should be revised to reflect these updates in provincial measure-
ments. Regardless, the analytical approach we presented here can be followed with the
appropriate value substitutions [10,11,21].

8. Conclusions

Using data envelopment analysis, multiple and varying inputs and outputs were
considered together by separating the patient’s radiation treatment journey into three
phases: planning, delivery, and quality. With bias-corrected DEA scores computed from
the bootstrap model, efficient centers are better distinguished from one another based
on their mean efficiencies compared to using VRS DEA results directly. The censored
(Tobit) regression analysis identifies external determinants of efficiency, namely, center
size (measured by medical resource level), diversification of radiation treatment, center
catchment population, and teaching hospital designation. These determinants account for
roughly 64% and 38% of variation in efficiencies in the planning and quality dimensions,
respectively (but they did not significantly explain variation in the delivery dimension).

We highlight that this analysis is not prescriptive: while it can identify problem areas,
it does not actually prescribe the specific actions for centers to take to reach their targets.
Rather, with a larger number of RCCs for comparison, it can point decision-makers in
directions that could lead to learning opportunities and beneficial collaborations between
regional cancer centers for meeting provincial goals.

There are interesting empirical and theoretical future research directions for our work.
For example, how can we combine three different efficiency scores into a single measure and
evaluate all the centers with this new score? A single score will be more practical and easier
to understand and act upon. However, building such a theoretical and empirical framework
is an open research question. Another option would be to compare all centers within a
province to those in another province while taking into account provincial differences. This
would allow policy makers to improve centers even more.
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Appendix A. Bootstrap DEA Model Solution Approach

Appendix A.1. Input-Oriented VRS DEA Model

We follow the DEA frameworks established by [22,23], which are presented in [13]. We
begin by detailing the primal linear program from which we construct the dual model used
in the bootstrap DEA. Let c = 1, 2, 3 denote the planning, delivery, and quality dimensions
of the radiation treatment program, respectively. Let j = 1, 2, . . . , n denote the regional
cancer centers (DMUs), i = 1, 2, . . . , mc be the inputs, and r = 1, 2, . . . , sc represent the
outputs for each DMU. We use the following notation for every treatment dimension c and
year t:

θct
j = relative efficiency of DMU j

xct
ij = input i from DMU j

yct
rj = output r from DMU j

vct
i = implicit price of input i

uct
r = implicit price of output r

u0 is an unrestricted in sign variable (urs)
For every DMU k = 1, 2, . . . , n; treatment dimension c = 1, 2, 3; and year t = 2013, . . . ,

2016, we have:

[P]ct
k max θct

k =
sct

∑
r=1

uct
r yct

rk + u0 (A1)

s.t.
sct

∑
r=1

uct
r yct

rj −
mct

∑
i=1

vct
i xct

ij + u0 ≤ 0 ∀j = 1, 2, . . . , n (A2)

mct

∑
i=1

xct
ik = 1 (A3)

uct
r ≥ 0 ∀r = 1, 2, . . . , sct (A4)

vc
i ≥ 0 ∀i = 1, 2, . . . , mct (A5)

u0 urs (A6)

Constraint (A2) ensures the sum of outputs for a DMU is less than or equal to the sum
of its inputs, while (A3) scales the inputs of DMU to equal 1. Constraints (A4)–(A6) are
defining domains of the variables. The objective function maximizes the total outputs of
DMU k: if the result equals 1, then DMU k is considered efficient; otherwise it is deemed
inefficient. (Note that we omit superscripts c and t from here on to streamline our notation,
but all models are solved for every treatment dimension c and year t.)
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An inefficient DMU need not despair: information regarding how it might reach the
efficient frontier can be obtained from solving the dual of [P]. After introducing weights, λj
for DMU j and dual efficiency of DMU k, θk, the dual of [P] is formulated as follows:

[DEA]k min θk (A7)

s.t.
n

∑
j=1

xijλj ≤ xikθk ∀i = 1, 2, . . . , m (A8)

n

∑
j=1

yrjλj ≥ yrk ∀r = 1, 2, . . . , s (A9)

λj ≥ 0 ∀j = 1, 2, . . . n (A10)
n

∑
j=1

λj = 1 (A11)

Here, we minimize the dual efficiency of DMU k, where Constraint (A8) ensures
the weighted sum of reference inputs i is less than or equal to the input for DMU k and
Constraint (A9) ensures the weighted sum of reference outputs r is greater than or equal to
the output of DMU k. Inequalities (A10) ensure weights are non-negative.

An efficient DMU t will yield θk = 1. For an inefficient DMU k, solving [DEA] will
give θk < 1. The reference set (or benchmarks) to this inefficient center is identified by
observing the efficient DMUs k′ = 1, 2, . . . whose λk′ > 0.

Appendix A.2. Bootstrap DEA

We follow the approach outlined in [38], which uses the Shephard input δ (≥1) rather
than the Farrell efficiency score θ (where θ ≤ 1 and δ = θ−1). For each year t and treatment
dimension c:

1. Solve an input-oriented VRS DEA and calculate δj for j = 1, 2, . . . , n.
2. Let {δ1, δ2, . . . , δn, 2− δ1, 2− δ2, . . . , 2− δn} be a list of mirrored efficiencies.
3. For B = 1, . . . , 2000:

(a) Generate a standardized realization of efficiencies through sampling with
replacement from mirrored efficiencies;

(b) Using this sample, generate fictional reference inputs, x∗;
(c) Solve VRS DEA using original outputs and inputs, and use x∗ as reference

inputs for DMUs 1, . . . , n.

4. Calculate the bias-corrected mean efficiency, θ̂j, and quantiles for each DMU j.

This bootstrap approach repeatedly samples inputs to generate a range of efficiencies,
ultimately providing us with an average efficiency score that better distinguishes efficient
DMUs centers from one another, even if that difference is small. Tables 3–5 show efficiency
scores derived from [DEA], along with the bias-corrected mean efficiencies and their 5th
and 95th quantiles (denoted by θ, θ̂, q0.05, and q0.95, respectively). The ranking of DMUs
remains, in general, consistent with results from solving [DEA] just once.
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