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a b s t r a c t

Protein tertiary structure is important information in various areas of biological research, however, the
experimental cost associated with structure determination is high, and computational prediction meth-
ods have been developed to facilitate a more economical approach. Currently, template-based modeling
methods are considered to be the most practical because the resulting predicted structures are often
accurate, provided an appropriate template protein is available. During the first stage of template-
based modeling, sensitive homology detection is essential for accurate structure prediction. However,
sufficient structural models cannot always be obtained due to a lack of quality in the sequence alignment
generated by a homology detection program. Therefore, an automated method that detects remote
homologs accurately and generates appropriate alignments for accurate structure prediction is needed.
In this paper, we propose an algorithm for suitable alignment generation using an intermediate sequence
search for use with template-based modeling. We used intermediate sequence search for remote homol-
ogy detection and intermediate sequences for alignment generation of remote homologs. We then eval-
uated the proposed method by comparing the sensitivity and selectivity of homology detection.
Furthermore, based on the accuracy of the predicted structure model, we verify the accuracy of the align-
ments generated by our method. We demonstrate that our method generates more appropriate align-
ments for template-based modeling, especially for remote homologs. All source codes are available at
https://github.com/shuichiro-makigaki/agora.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Proteins are key molecules in biology, biochemistry, and phar-
maceutical sciences. A protein’s structure often has a strong corre-
lation with its function. Thus, the structure of a protein is an
important piece of information in biological research. Protein
structures can be determined experimentally using X-ray crystal-
lography or nuclear magnetic resonance spectroscopy, and protein
structures determined in this way are registered to, and accessible
in the online Protein Databank (PDB) [1]. Despite vast improve-
ments in the available experimental methods for protein structure
determination, the speed at which amino acid sequences can be
revealed has surpassed our ability to ascertain the corresponding
structure. Therefore, protein structure prediction, that is, the use
of computational techniques to generate a tertiary structural
model of a given amino acid sequence, remains essential.

Homology modeling, or template-based modeling, is one of the
computational protein structure prediction methods. It predicts
protein structures based on the structure of a template protein
and a sequence alignment between the target protein and the tem-
plate protein. Template structures are the structures of homolo-
gous proteins (homologs), and are often found by a homology
search of protein structure databases, such as the PDB. Currently,
provided one can obtain a good template structure and generate
an accurate sequence alignment, template-based modeling is the
most practical structure prediction method. This is because the
predicted models are more accurate than the other methods, such
as de novo prediction [2]. However, template-based modeling
requires homologous proteins with known structures-to be used
as templates. If the protein structure database does not have a
homolog entry that closely resembles a query protein, classic
sequence homology search algorithms, such as BLAST [3], fail to
find a template. Thus, to detect remote (i.e., distantly related)
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homologs, more sensitive search methods are required. In the first
stage of template-based modeling, sensitive and accurate homol-
ogy detection is essential for accurate structure prediction. In
long-term homology detection studies, sequence profiles based
on multiple sequence alignments, such as PSI-BLAST [4], DELTA-
BLAST [5], and hidden Markov model (HMM)-based methods,
representing a category of sequence profile-based methods, can
detect remote homologs. In addition, HMM comparison methods,
such as HHpred [6], have performed exceptionally well in structure
prediction benchmarks [7,8]. However, even when using the above
mentioned sensitive homology search methods, the detection of
remote homologs can fail due to insufficient search sensitivity.

To overcome this problem, the intermediate sequence search
(ISS) method has been proposed to provide more distantly remote
homology detection [9]. The basic idea of ISS is the following: two
sequences of remote homologous proteins, which do not have
enough sequence identity or a close relationship evolutionally,
can be related via another sequence whose characteristics and fea-
tures are intermediate between the two remotely homologous pro-
teins. If the match score between both the first and third sequences
and the second and the third sequences is high, it can be concluded
that the first and second sequences are related, even though their
sequence similarity is low. In the ISS method, after searching for
homologs of the query protein in the database, the results are used
as new queries to detect more distantly related homologs by re-
running the homology search. By identifying a connection via these
intermediate sequences, the ISS method can detect relationships
between the original query protein and remote homologs. The idea
of the intermediate sequence search itself is not novel [9]. Decades
ago, Entrez [10] provided intermediate sequence information.
However, the naïve ISS procedure often provides many false posi-
tives [11] and requires significant computing resources to evaluate
many homology searches. Recently, to overcome the computa-
tional demand and occurrence of false positives, approaches that
utilize network or graph theory were proposed [12,13]. In addition,
machine learning-based intermediate sequence search methods
have demonstrated good results [14,15].

ISS is a useful technique for improving homology search sensi-
tivity, and several studies have used this method for protein func-
tion prediction [16,11,9]. However, to our knowledge, there have
been no examples of its use in protein structure prediction. The
ISS method can detect remote homologs, but it does not generate
any sequence alignments between the query and target proteins.
As mentioned, template-based modeling requires a template as
well as a sequence alignment between the query and template pro-
teins. Thus, to apply template-based modeling to the result of
homology detection via ISS, we have to generate a sequence align-
ment in a separate step. The simplest approach to generate a
sequence alignment is through the use of an algorithm, such as
Smith-Waterman local alignment [17]. However, it is difficult to
generate accurate sequence alignments between remote homo-
logs, and an inaccurate sequence alignment often leads to low
quality of predicted models in homology modeling. In essence,
alignment quality is crucial to template-based modeling. Thus, in
order to apply ISS to template-based modeling, we need a method
to generate accurate sequence alignments specifically designed for
ISS results.

Sequence alignment generation of remote homologs is a diffi-
cult task due to low sequence identity between the query and tar-
get sequences. However, for the case of ISS results, we can use
additional intermediate sequence information that bridges the
two sequences requiring alignment. Thus, we hypothesize that
the intermediate sequences would help to generate more accurate
sequence alignments.

In this paper, we propose a new sequence alignment generation
method for remote homologs detected by an intermediate
sequence search for sue in homology modeling. To our knowledge,
this is the first study demonstrating the generation and evaluation
of alignments using ISS results in the context of template-based
modeling. To evaluate the quality of the generated sequence align-
ments, we performed homology modeling based on the sequence
alignments and measured their structure prediction accuracy. As
a result, the proposed method showed better accuracy in compar-
ison to a baseline method. Our method is expected to be valuable
for distant homologs, and we also evaluate our method for these
distant and difficult pairwise targets.
2. Materials and methods

To detect homologs, we use the intermediate sequence search
method. To date, many ISS methods have been proposed to address
early problems with the method [12–16,11,9], however, the flow of
the searches is basically the same. In this study, we implemented a
basic ISS method. The ISS searches for homologs of the query pro-
tein in a protein structure or sequence database, and continuously
uses the results as new queries to detect more distantly related
homologs by re-running the homology search. Fig. 1 shows an
overview of the ISS method. As our aim was template-based mod-
eling, the last search had to be done using a structural databases.
Any arbitrary databases can be used for the intermediate data-
bases, as they need not be structural databases. To achieve high
sensitivity, the intermediate databases should be large; for exam-
ple, NCBI nr [18] or UniProt [19]. The number of times intermediate
searches is one of the parameters in this type of study, and,
depending on the level of more sensitivity needed, this can be
increased as more depth is required. Also, any search method can
be applied for the ISS method. It is recommended that the tools
used are fast as execution time often becomes long for numerous
intermediate sequences, however, their sensitivity can be low
because intermediate sequences should assure sensitivity.
2.1. Proposed alignment generation method

Although the detection performance of the ISS is high, this
method often provides many false positives [11]. To overcome this
problem, we implemented two improvements. First, our method
uses a sub-region of the detected sequence as intermediate results
to be used as the subsequent query, instead of using the whole
sequence of the detected homolog. Many sequences in protein
databases consist of multiple domains within one sequence; thus
false positives are obtained because the domains, which are not
related to the query sequence, are used as subsequent queries in
intermediate searches. These domains are inappropriate for remote
homology detection and cause many false positives during the ISS
[9]. By narrowing the search region to a detected homology region,
it is expected that the number of false positives will be reduced.
Second, the proposed method assigns rankings to the final results
set by the sum of similarities between intermediate sequences.
The similarities are calculated during the ISS; for example, if
DELTA-BLAST [5] or PSI-BLAST [4] is used, the similarity score will
be the Evalue or bit-score. Our method sums similarity scores on
the path from query to the final hits, and sorts them to generate
the final search results. If multiple paths exist between the query
and the final hit, the path with the best one is selected. In this
research, we used the Evalue as similarity score and selected a path
of the smallest score as the best.

However, it is difficult to generate alignments between remote
homologs because the sequence identity between them is often
low. Even if some local alignments can be generated, the length
of the alignment region is often too short for accurate template-



Fig. 1. Method overview for intermediate sequence search. Red diamond, blue circles, and yellow triangles show the query, intermediate and hit sequences, respectively.
First, we search homologs of a query sequence in the intermediate database and resulting hits represent the first intermediates. Second, these hits are used as queries, such
that the next series of find hits represent the second intermediates. Finally, these second intermediates are used as queries again, and we search the final database. Hit score is
calculated by the sum of each hit score. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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based modeling, such that prediction of the protein structure will
not be accurate.

To overcome the problem, we use intermediate sequences
detected by the ISS. This is reasonable because, in the ISS phase,
the proposed method only uses aligned sequence regions, while
other domains in a sequence are not used for the search. Fig. 2
shows an overview of our alignment generation method. To extend
the aligned region, hit regions are extended in intermediate layers
as far as possible such that they do not include other domains too
much. The length of the extension is one of the hyperparameters.
The extended sub-sequence is used as a query in each intermediate
search. In each intermediate layer, pairwise alignments are gener-
ated using the Smith-Waterman algorithm.

At the final phase of alignment generation, the proposedmethod
merges pairwise alignments between intermediate sequences.
Fig. 2. Alignment generation with intermediate sequences. In each intermediate laye
alignments between intermediate sequences. Each sub-pairwise alignment is preserved,
During the merging procedure, no dynamic-programming-based
multiple sequence alignment method is used. Each sub-pairwise
alignment is preserved, which means that the positions of residues
in a pairwise alignment are preserved. A pairwise alignment
between the query protein and one of the final hits is then split
out from the merged alignment.

Fig. 3 shows an example of how intermediate sequences work.
Usually, when the pairwise sequence identity of the query and
template sequences is low, these regions are not aligned by naïve
substitution matrix-based methods. However, if intermediate
sub-sequences exist, which are similar to the query or template
sequence, similar sequence regions are aligned via these interme-
diate sequences. These intermediate-proxied alignment regions
exist in the merged alignment, and they allow for the extension
of aligned regions using remote homologous information.
r, a pairwise alignment is generated. The proposed method merges the pairwise
which means that the positions of residues in a pairwise alignment are preserved.



Fig. 3. Alignment generation of low a sequence identity region. Sequence similarity of the query and template sequences in the bracketed regions are low. However, the
intermediate sub-sequences are similar, and the regions of low sequence similarity are aligned as a result. Blue and red shards identify identical and similar (positive
BLOSUM62 score) residues, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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This alignment method generally produces reasonable align-
ments, but sometimes generate obviously incorrect alignments
because of a large shift of the aligned regions in intermediate
search results and so on. Fortunately, we can detect most of these
cases by checking the length of the aligned region. Therefore, in
addition to merging multiple pairwise alignments, as described
above, we also apply the Smith-Waterman algorithm to generate
a pairwise alignment of the query and template. Then, we select
one that has a longer aligned region.
2.2. Materials

In this paper, we used the following datasets for evaluation.
UniRef [19] was used as an intermediate sequence database, and
Structural Classification of Proteins (SCOP) [20,21] was used as
the final database. The SCOP database classifies proteins by class,
folds, superfamily (SF), family, and domain, based on manually
curated function/structure classifications. Because the two data-
bases contain redundant sequences, we used UniRef50, which was
a reduced by clustering sequences of 50% sequence identity; and
SCOP95 was used as the final database, reduced by 95% sequence
identity clustering. DELTA-BLAST was used for the intermediate
search tool. For merging intermediate alignments, we used
MAFFT’s [22] alignment merge function. For evaluation, we
selected 100 sequences for test data from SCOP40, which is a SCOP
database reduced by 40% sequence identity. Each of the 100
sequences were randomly selected, one from each of the top 100
superfamilies that were sorted according to the size of the super-
family. The selected 100 test domains and their information are
listed in Supplementary data.
2.3. Evaluation

To evaluate alignment quality for template-based modeling, we
generated structural models by template-based modeling from
alignments obtained using the proposed method. For template-
based modeling, we use the program MODELLER [23]. The TM-
score [24] between native protein structure and the predicted
one is used as a measure of structure prediction accuracy. The
TM-score indicates global structure similarity by a regularized
ð0;1Þ value, and a TM-score ¼ 1 means the predicted model corre-
sponds to the native structure. We compared the TM-scores of pre-
dicted models obtained using the proposed method with two
baseline methods. The baseline alignment methods used are the
Smith-Waterman algorithm [17], and DELTA-BLAST.
3. Results

Fig. 4 shows the model accuracy distribution of difficult targets,
meaning pairs of query and templates that are not detected using
DELTA-BLAST without ISS, but are detected by the proposed ISS
method. The figure shows a comparison of the DELTA-BLAST and
Smith-Waterman algorithm as a baseline. For DELTA-BLAST, we
changed the word score threshold to 1 (-threshold 1) to get
longer aligned regions. On average, alignments using DELTA-
BLAST did not generate more accurate models than alignments
using the Smith-Waterman algorithm.

Fig. 5 also shows the model accuracy distribution for a difficult
target, which is a comparison of the proposed method with the
Smith-Waterman algorithm as the baseline. Using these remote
homologs, our method generated more accurate models than those
generated using the Smith-Waterman alignment, with average
TM-scores of 0.50 and 0.46, respectively. We tested the statistical
significance using the related t-test. The p-value was 6:3� 10�13,
and the average difference is significant (p < 0:01). Gray lines indi-
cate the same query and template pair, and they reveal that many
models have lower than average TM-scores, and thus improved
accuracy.

Fig. 6 and 7 show two examples of results. In these examples,
we address alignment quality by comparing them with a structural
alignment. In structural alignment, the structural difference
between a target protein structure and a template protein struc-
ture is minimized; thus, sequence alignments generated by struc-
tural alignment are ideal for template-based modeling. Often, the
sequence alignments generated by homology detection methods
are dissimilar to those generated by structural alignment, espe-
cially for remote homologs.

As shown in Fig. 6, the TM-score of the proposed and Smith-
Waterman methods are 0.73 and 0.56, respectively. This demon-
strates that our method generated a more appropriate alignment
for template-based modeling. The TM-score of the query and tem-
plate is 0.77. The alignment generated using intermediates is sim-
ilar to the structural alignment. The aligned region of the pairwise
Smith-Waterman alignment is right-shifted and narrower in com-
parison to that obtained using the proposed method. Therefore, the
model generated from pairwise the Smith-Waterman alignment is
different from the native structure.

In contrast, Fig. 7 shows a slightly worse results than others.
The TM-score of the proposed and Smith-Waterman methods are
0.50 and 0.56, respectively. The TM-score of the query and tem-
plate is 0.75, but the accuracy of the models is approximately
0.5. In this case, structural alignment by TM-align (Fig. 7f) contains



Fig. 4. TM-score distribution of hard targets, meaning hits that are not detected by DELTA-BLAST without the use of intermediates. The solid line represents the median, and
the dashed line represents the mean. In these results, all templates are from the same superfamily as the query. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 5. TM-score distribution of hard targets, meaning hits that are not detected by DELTA-BLAST without intermediates. A solid line represents the median, and a dashed line
represents the mean. Dots within the boxplot represents individual samples. Gray lines represent the same query and template pair. For the results shown, all templates are
from the same superfamily as the query.
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many small gap regions, and it is difficult to make a similar align-
ment using algorithms based on affine-gap. A similar result is
obtained when the sequence identity is quite low.
4. Discussion

4.1. Homology detection accuracy of intermediate sequence search

In this study, we implemented a simple intermediate sequence
search to avoid any influence from specific algorithms. Thus, the
homology detection accuracy of the search method was unclear.
To verify the accuracy of our implementation, we performed an
evaluation test using the SCOP database. For the evaluation of
detection accuracy, we used a receiver operating characteristic
(ROC) curve, because of the imbalance between the number of
homologs and non-homologs. For quantitative analysis, we
employed the area under the ROC curve (AUC) as the evaluation
metrics [25]. Additionally, instead of using the original ROC and
AUC, we used ROCn and AUCn according to previous methods
[26]. These methods considered results only up to the nth false
positive, and AUCn was normalized by the number of false positives
and cutoff value n. We define a true positive homology detection as
results that are in the same superfamily as the query protein. By
comparing the AUC of homology detection, we evaluated our
method against DELTA-BLAST without ISS, as the baseline.

Fig. 8 shows the AUC distribution of the accuracy of homology
detection. For all of the allowed number of false positives
n ¼ ð10;50;100;250;500Þ, the proposed method with two inter-
mediate layers overcomes the average AUC of DELTA-BLAST with-
out intermediate layers. In the case of n ¼ 10, the average AUC of
the proposed method was 0.52 while that of the DELTA-BLAST
was 0.46. In the case of n ¼ 500, the average of our method reached
a value of 0.63 while that of the BLAST approach increased to 0.55.
As for the number of intermediate layers, the AUC of two interme-
diate layers is consistently higher than that of one layer. By
increasing the allowed number of false positives (n), the AUC of
both methods increased.

4.2. Model accuracy distribution by various expansion lengths

Fig. 9 shows the model accuracy distribution upon changing the
length of expansion of the hit region. We tried 5 and 20 for the
length, and the combination of 5 in intermediate layers and 20
for the final, was used in the proposed method. Longer expansion
length could generate more accurate models, and the proposed
parameters, which are 5 for two intermediate layers and 20 for
the final layer, show the best result. However, query-template
pairwise Smith-Waterman alignment shows the highest TM-
score average, yet. Finally, our method executes both of Smith-
Waterman with intermediates and pairwise Smith-Waterman
without intermediates. Using the proposed method, we selected
the one that shows a wider aligned region and the results are
shown in Fig. 9.

5. Conclusion

In this study, we developed an alignment generation algorithm
suited for accurate template-based modeling based on intermedi-
ate sequence search (ISS) for remote homology detection. Our
method used the intermediate sequence search method to detect
remote homologs and a sum of similarity score to assign rankings.
In the alignment generation phase, we proposed a method that
extended the hit region detected by the ISS, and used multiple
pairwise alignments between intermediate sequences. In addition
to alignment generation, we also applied the pairwise Smith-
Waterman algorithm to query and the template sequences, and
selected one alignment based on the length of the aligned region.
We evaluated our method by comparing the AUC of homology
detection for sensitivity and selectivity. We also evaluated the
quality of the alignments by comparing the accuracy of
template-based structural models generated from the alignments.



Fig. 6. Example 1: SCOP ID of query and template protein are d1tp6a_ and d2rfra1, respectively.
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As a result, the proposed method could detect homologs more
accurately than DELTA-BLAST without intermediates. The evalua-
tion of alignment quality based on the accuracy of structural mod-
els generated from the alignment, revealed that the proposed
method generates more appropriate alignments for template-
based modeling, than those prepared without intermediate
sequences. As for domains that are not detected by DELTA-BLAST,
which were treated as difficult targets, model accuracy measured



Fig. 7. Example 2: SCOP ID of query and template protein are d2pcsa1 and d5i8fa1, respectively.

Fig. 8. AUC distribution of homology detection. In the boxplots, solid lines indicate medians; dashed lines indicate means. X and Y axes show the allowed count of false
positives and AUC, respectively. 1-Layer and 2-Layers indicate a single intermediate sequence search and double intermediate search, respectively.

Fig. 9. TM-score distribution upon changing extension length. Local and iLocal indicate query-template pairwise Smith-Waterman without intermediates and Smith-
Waterman with intermediates, respectively. Solid lines in boxplots indicate median, and dashed lines indicate mean.
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by TM-score improves by +0.04 on average, when compared using
naïve dynamic programming-based alignment.

In this study, we used a simple ISS model to generate align-
ments using intermediate sequences and evaluate the alignment
quality. However, more intelligent ISS methods are available and
if used in place of the simple ISS method used here, homology
detection performance is expected to improve. Nevertheless, our
alignment generation method can be successfully applied to the
ISS. Evaluation of the more sophisticated ISS methods remains as
one of future work.
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