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Abstract: Carbon monoxide-releasing molecules (CORMs) that enable the delivery of controlled
amounts of CO are of strong current interest for applications in biological systems. In this review,
we examine the various conditions under which CO is released from 3-hydroxyflavones and
3-hydroxy-4-oxoquinolines to advance the understanding of how these molecules, or derivatives
thereof, may be developed as CORMs. Enzymatic pathways from quercetin dioxygenases and
3-hydroxy-4-oxoquinoline dioxygenases leading to CO release are examined, along with model
systems for these enzymes. Base-catalyzed and non-redox-metal promoted CO release, as well as
UV and visible light-driven CO release from 3-hydroxyflavones and 3-hydroxy-4-oxoquinolines,
are summarized. The visible light-induced CO release reactivity of recently developed extended
3-hydroxyflavones and a 3-hydroxybenzo[g]quinolone, and their uses as intracellular CORMs, are
discussed. Overall, this review provides insight into the chemical factors that affect the thermal and
photochemical dioxygenase-type CO release reactions of these heterocyclic compounds.
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1. Introduction

Advancing understanding of carbon monoxide (CO) as a signaling molecule in humans, and
evaluating its potential application as a therapeutic agent, are significant current goals in biomedical
research [1,2]. Whether endogenously generated or introduced as CO gas, low concentrations of CO
produce vasodilation, anti-inflammatory and anti-apoptotic effects that suggest it could be useful
in treating cardiovascular disease [3–6]. The delivery of controlled amounts of CO to tumor tissue
is also suggested as an approach for treating cancer [7,8]. Providing a precise amount of CO gas
to a specific tissue or organ is difficult. Thus, to enhance the spatiotemporal control of CO release,
carbon-monoxide releasing molecules (CORMs) have been developed. The vast majority of CORMs
reported to date that have been used in in vitro and in vivo studies are metal carbonyl compounds,
with the [Ru(CO)3Cl2]2 dimer (CORM-2), and the water soluble molecules [Ru(CO)3Cl(glycinato)]
(CORM-3) and [Mn(CO)4(S2CNCH3)(CH2CO2H)] (CORM-401), having been the most extensively
employed [9,10]. Notably, the Ru(II) complexes exhibit complicated solution chemistry, including
in blood plasma, and interact with proteins [11–16]. Thus, these compounds do not exhibit a single
predictable formulation for CO delivery [16,17]. Complicating matters further is the fact that CO
release from CORM-2, CORM-3 and CORM-401 occurs spontaneously via ligand exchange. This
means that CO release begins when the compound is dissolved in a solution or buffer, and that there is
no spatiotemporal control over CO delivery. Notably, recent studies also suggest that some biological
effects that have been reported for the Ru(II)-containing CORMs and CORM-401 may not be due to
CO release, but instead result from the reactivity of the metal complex or a fragment thereof [18,19].
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These limitations provide the impetus for the development of new types of CO-releasing molecules
that do not involve a metal carbonyl moiety.

Several research labs have taken up the challenge of preparing transition metal-free CORMs [20].
Examples reported to date include sodium boronocarbonate (CORM-A1 and analogs) [21] and
norbornadiene-7-one derivatives [22], both of which are spontaneous CO-releasing CORMs
(Figure 1(top)). Visible light-induced organic photoCORMs reported to date include unsaturated
cyclic diketones [23], xanthene carboxylic acid [24], and meso-carboxy BODIPY [25] (Figure 1(bottom)).
Limitations of these transition metal-free CORMs and photoCORMs include low yield multi-step
synthetic procedures and a lack of well-defined CO release products. Thus, despite these advancements,
further work is needed. The development of a tunable structural framework for CO release, that
enables modulation of key properties (e.g., solubility, trackability in cells, cellular or subcellular
targeting, triggered CO release) via standard synthetic and medicinal chemistry approaches would
advance the field.

Molecules 2019, 24, x FOR PEER REVIEW 2 of 26 

 

Several research labs have taken up the challenge of preparing transition metal-free CORMs 

[20]. Examples reported to date include sodium boronocarbonate (CORM-A1 and analogs) [21] and 

norbornadiene-7-one derivatives [22], both of which are spontaneous CO-releasing CORMs (Figure 

1(top)). Visible light-induced organic photoCORMs reported to date include unsaturated cyclic 

diketones [23], xanthene carboxylic acid [24], and meso-carboxy BODIPY [25] (Figure 1(bottom)). 

Limitations of these transition metal-free CORMs and photoCORMs include low yield multi-step 

synthetic procedures and a lack of well-defined CO release products. Thus, despite these 

advancements, further work is needed. The development of a tunable structural framework for CO 

release, that enables modulation of key properties (e.g., solubility, trackability in cells, cellular or 

subcellular targeting, triggered CO release) via standard synthetic and medicinal chemistry 

approaches would advance the field.  

 

Figure 1. Examples of transition metal-free CO-releasing molecules (CORMs). Spontaneous (top) and 

visible light-induced (bottom) CORMs. 

To design a new family of CORMs, we considered how CO is generated in biological systems. 

In humans, CO is endogenously generated with an equimolar amount of biliverdin in the first step 

of O2-dependent heme degradation in a reaction catalyzed by heme oxygenases (HO-1 and HO-2, 

Scheme 1(top)) [26,27]. The expression of HO-1 protein is a response to cellular stress, with the 

products of heme degradation exhibiting notable biological effects. Specifically, CO modulates 

vascular tone and biliverdin/bilirubin function as potent antioxidants [28]. In fungi and bacteria, the 

O2-dependent cleavage of 3-hydroxyflavone and 3-hydroxy-4-oxoquinoline derivatives occurs via 

enzyme-catalyzed dioxygenase-type reactions in which a 2,4-peroxo species undergoes O-O and 

C-C bond cleavage to give one equivalent each of CO and a carboxylic acid byproduct termed a 

depside (Scheme 1(bottom)) [29,30]. The biological implications of CO production in fungi and 

bacteria could be for its use as carbon, energy, or electron source [31]. Overall the similar nature of 

the heme oxygenase and bacterial/fungal CO release reactions suggests that if controlled CO release 

reactivity from 3-hydroxyflavone and 3-hydroxy-4-oxoquinoline derivatives can be harnessed, 

compounds of this class will provide a novel family of CORMs. An attractive feature of this strategy 

is that flavonols are already under significant investigation for their beneficial health effects. For 

example, quercetin, a 3-hydroxyflavone derivative found in many fruits and vegetables, is noted for 

its potentially beneficial anti-inflammatory, antioxidant and anti-cancer properties [32–34]. 

Triggered 3-hydroxyflavone or 3-hydroxy-4-oxoquinoline-based CORMs that could be targeted to 

specific locations for CO release would be especially attractive for probing the localized effects of CO 

delivery [35]. Using such bioactive frameworks, it may be possible to deliver CO while producing 

additional beneficial effects.  

  

Figure 1. Examples of transition metal-free CO-releasing molecules (CORMs). Spontaneous (top) and
visible light-induced (bottom) CORMs.

To design a new family of CORMs, we considered how CO is generated in biological systems.
In humans, CO is endogenously generated with an equimolar amount of biliverdin in the first
step of O2-dependent heme degradation in a reaction catalyzed by heme oxygenases (HO-1 and
HO-2, Scheme 1(top)) [26,27]. The expression of HO-1 protein is a response to cellular stress, with
the products of heme degradation exhibiting notable biological effects. Specifically, CO modulates
vascular tone and biliverdin/bilirubin function as potent antioxidants [28]. In fungi and bacteria,
the O2-dependent cleavage of 3-hydroxyflavone and 3-hydroxy-4-oxoquinoline derivatives occurs
via enzyme-catalyzed dioxygenase-type reactions in which a 2,4-peroxo species undergoes O-O and
C-C bond cleavage to give one equivalent each of CO and a carboxylic acid byproduct termed a
depside (Scheme 1(bottom)) [29,30]. The biological implications of CO production in fungi and bacteria
could be for its use as carbon, energy, or electron source [31]. Overall the similar nature of the heme
oxygenase and bacterial/fungal CO release reactions suggests that if controlled CO release reactivity
from 3-hydroxyflavone and 3-hydroxy-4-oxoquinoline derivatives can be harnessed, compounds of
this class will provide a novel family of CORMs. An attractive feature of this strategy is that flavonols
are already under significant investigation for their beneficial health effects. For example, quercetin,
a 3-hydroxyflavone derivative found in many fruits and vegetables, is noted for its potentially beneficial
anti-inflammatory, antioxidant and anti-cancer properties [32–34]. Triggered 3-hydroxyflavone or
3-hydroxy-4-oxoquinoline-based CORMs that could be targeted to specific locations for CO release
would be especially attractive for probing the localized effects of CO delivery [35]. Using such bioactive
frameworks, it may be possible to deliver CO while producing additional beneficial effects.
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Scheme 1. CO release reactions catalyzed by heme oxygenases (top) and 3-hydroxyflavone and
3-hydroxy-4-oxoquinoline dioxygenases (bottom).

In this review we examine enzymatic and non-enzymatic reaction pathways leading to CO
release from 3-hydroxyflavone and 3-hydroxy-4-oxoquinoline derivatives to elucidate conditions
that influence CO release reactivity. Additionally, we discuss recent studies of photoinduced CO
release from novel extended 3-hydroxyflavone and 3-hydroxybenzo[g]quinolone motifs. Overall,
these combined results provide insight into the potential to control CO release from these heterocyclic
frameworks and their potential for use as nature-inspired CORMs.

2. CO Production from 3-Hydroxyflavones in Enzyme-Catalyzed Reactions and Model Systems

2.1. Fungal Flavonol Dioxygenases

Soil microorganisms have divalent metal-containing enzymes that catalyze CO release from
3-hydroxyflavones. The flavonol dioxygenase from the fungus A. japonicus is a homodimer with
a mononuclear Cu(II) center in the N-terminal domain [36]. Two different active site coordination
geometries were identified for the Cu(II) center. Approximately 70% of the mononuclear Cu(II)
sites exhibit a distorted tetrahedral coordination environment comprised of three histidine donors
and a water molecule. The remaining Cu(II) centers (~30%) have an additional glutamate ligand
(Glu73), resulting in an overall distorted trigonal bipyramidal geometry. EXAFS studies suggest
that monodentate coordination of the substrate quercetin occurs with displacement of the water
molecule [37]. As the enzyme exhibits 1000-fold lower activity in a site-directed mutant lacking Glu73,
it has been suggested that this residue acts as an active site base for deprotonation of the flavonol
3-hydroxyl moiety [38]. The consensus reaction mechanism proposed for CO release involves the
distorted square pyramidal five-coordinate Cu(II) enzyme/substrate complex forming a low-lying
excited state Cu(I)-flavonoxy radical species that can undergo reaction with 3O2 either at the copper
center or with the radical on the substrate (Scheme 2). Hybrid DFT calculations offer support for both
pathways [39,40]. The number and location of hydroxyl substituents on the substrate determines the
relative rate of enzymatic oxidation [41]. This relates both to the redox potential of the substrate and to
secondary hydrogen bonding interactions that influence the positioning of the substrate in the active
site [42].
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2.2. Bacterial Flavonol Dioxygenases

Examples of flavonol dioxygenases from Bacillus subtilis [43–46] and Streptomyces sp. FLA [47–52]
have been recently characterized. X-ray crystallographic studies of the iron-containing form of the
Bacillus subtilis enzyme revealed a mononuclear five-coordinate Fe(II) center in each cupin domain of
the bicupin protein [45]. Similar to the A. japonicus enzyme, the metal center is ligated by three histidine
residues, a glutamate, and a water molecule. Initial kinetic studies of the B. subtilis enzyme as a function
of metal ion provided an activity profile that has an approximate match to the Irving−Williams metal
ion series for the stability of His- and Glu-ligated metal complexes [45]. Subsequent kinetic studies
showed that inclusion of four different metal ions (Co(II), Mn(II), Cu(II), and Ni(II)) produced higher
levels of turnover than the Fe(II)-containing enzyme, with the highest turnover in the presence of
Mn(II) [46]. The kcat/KM value and turnover number (~25 s−1) for the Mn(II)-containing B. subtilis
enzyme is similar to that reported for the CuII-containing A. japonicus enzyme. Both bind approximately
two equivalents of metal ion, while the CoII and FeII-containing B. subtilis enzyme exhibit lower metal
affinity as well as lower kcat/KM values.

The quercetinase from Streptomyces sp. FLA is a monocupin protein that exhibits the highest
turnover in the presence of Ni(II) and Co(II) [48]. Notably, anaerobic absorption spectra of the Ni(II)
or Co(II)-containing Streptomyces sp. FLA enzyme in the presence of the quercetin substrate showed
a hypsochromic shifts for the flavonol lowest energy absorption feature (Band I). The opposite is
observed for the Cu(II)-containing quercetinase of Aspergillus flavus wherein a bathochromic shift
of the flavonol Band I is observed [49]. Considering redox potentials, the formation of transient
Co(I)- or Ni(I)-flavonoxy radical species is unlikely in the reaction pathway of the B. subtilis and
Streptomyces sp. FLA quercetin dixoygenases (QDOs). This led to the proposal of the active site metal
ion having a non-redox role and instead acting as a conduit for electron transfer from the metal-bound
flavonol substrate to coordinated dioxygen [46,48]. Evidence for an active site metal structure relevant
to this proposal was found in the X-ray crystallographic analysis of a cryotrapped version of the
Ni(II)-containing QDO from Streptomyces sp. FLA in the presence of O2 [50]. While exhibiting
the typical coordination of three histidines and one glutamate to the Ni(II) center, a monodentate
coordinated quercetin (via the 3-OH which is likely deprotonated at the pH = 8 optimum for this
enzyme) and a side-on coordinated O2 are also present (Figure 2). These species are proposed to
represent flavonoxy and superoxide radicals, respectively, having formed via electron transfer from the
flavonolato anion to O2 via the Ni(II) conduit. The O2 ligand is perpendicular to the C2-C3 and C3-C4
bonds, which subsequently undergo oxidative cleavage leading to CO release from the C3-OH moiety.
Quantum mechanics/molecular mechanics (QM/MM) simulations from two different laboratories
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have provided insight into the possible reaction mechanism for the Ni(II)-containing QDO [51,52]. Key
differences between the two studies concern whether the active site glutamate (Glu74) is protonated
and the assignment of the rate-determining step. With regard to the former, Li, et al. performed their
investigations with a protonated Glu74 [51] whereas Wang, et al. investigated both protonation levels
of Glu74 [52]. Both investigations suggest that dioxygen binding to the Ni(II) center results in electron
transfer from the deprotonated flavonolato anion to O2 resulting in the formation of a Ni(II) flavonoxy
radical/superoxide species with the O2

− ligand coordinated in an end-on fashion. The ground state of
this complex is an open-shell singlet with a high-spin Ni(II) center antiferromagnetically coupled to
the superoxide and flavonoxy radicals. In the singlet state, the O2 moiety coordinates in an end-on
fashion which differs from the observed side-on binding in the X-ray structure [50]. Attack of the
terminal superoxide oxygen atom at C2 of the flavonoxy radical leads to the formation of a bridging
Ni(II)-peroxo species. Li, et al. suggest that a conformational change involving movement of the
proximal Ni(II)-coordinated peroxo oxygen atom closer to the C4 atom of the flavonolato ligand is
the rate-determining step, with a free energy barrier of 19.9 kcal/mol [51]. However, the calculations
of Wang, et al. instead suggest that this step is not rate-determining and proceeds to two different
intermediates that differ in terms of the orientation of the glutamate residue. In both calculations,
subsequent formation of a five-membered cyclic intermediate via C4-O bond formation enables
concurrent C2-C3 and C3-C4 bond cleavage, extrusion of CO, and formation of the depside product
(Scheme 3). Wang, et al. propose that cleavage of the cyclic peroxide is rate-determining, with a free
energy barrier of 17.4 kcal/mol, which is similar to experimental kinetic data (~15 kcal/mol) [48].
The calculations of Wang, et al. also indicate that if the glutamate residue is protonated, cleavage of
the C2-C3 and O-O bonds should occur leading to the formation of a α-keto acid product, which has
not been experimentally observed [52].
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As outlined above, bacterial quercetin dioxygenases (QDOs) catalyze the O2-dependent cleavage
of flavonols to release CO and the corresponding depside. Recently, Farmer and co-workers have
shown that the Mn-containing QDO from Bacillus subtilis will catalyze CO release from quercetin
in the presence of a different small molecule, nitrosyl hydride (HNO) [53]. This nitroxygenase
activity results in the incorporation of N and O atoms in the depside product (Scheme 4).
The substitution of dioxygen with nitrosyl hydride is rationalized on the basis of the fact that
the anionic form of nitrosyl exists as a triplet (3NO−) and is isoelectronic with dioxygen [54].
The Mn-QDO nitroxygenase reactivity was found to be highly regioselective, producing only
2-((3,4-dihydroxyphenyl)(imino)methoxy)-4,6-dihydroxybenzoate (Scheme 4). Although dioxygenase
activity is found for the Fe(II)- or Co(II)-containing QDO enzymes, no nitroxygenase activity was
found for these enzymes [53]. The nitroxygenase reaction pathway has been evaluated quantum
chemically by Wojdyla and Borowski [55]. The lowest energy reaction sequence involves initial
Mn(II)-O-NH complex formation. Addition of the NH moiety of the Mn(II)-nitroxyl to the flavonolato
C2 center, followed by shifting of the hydrogen bond involving Glu69 from O3 to O4, enables C4-O
bond formation (Scheme 4). The rate-determining step, with a barrier of 21.5 kcal/mol, involves
cleavage of the five-membered ring leading to CO extrusion. The regioselectivity of the reaction is an
inherent property of the reactants. Specifically, the larger electrophilicity of the nitrogen atom in HNO
makes the C2-N bond formation more feasible than C2-O, with the C2-N quercetin:HNO adduct being
>15 kcal/mol lower in energy versus the C2-O adduct.
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2.3. Model Systems for Cu(II)-Containing Fungal QDOs

Many synthetic model complexes have been reported for the enzyme/substrate adduct in
fungal copper-containing quercetin dioxygenases, with many notable contributions from Speier
and co-workers [56–58]. These Cu(II) complexes typically contain a supporting bidentate or
tridentate nitrogen donor ligand to mimic histidine ligation and a bidentate-coordinated flavonolato
ligand involving a five-membered chelate ring formed via coordination of the deprotonated
3-OH moiety and the 4-keto oxygen atom. This flavonolato coordination mode is different from
the monodentate coordination proposed in the enzyme/substrate complex of the A. japonicus
enzyme, which is suggested to result from secondary interactions involving the quercetin
substrate hydroxyl substituents [36,37]. The synthetic Cu(II) flavonolato complexes are much less
reactive than the enzyme, typically undergoing O2-dependent dioxygenase-type reactivity only at
elevated temperatures (e.g., 80–120 ◦C) in DMF. Enzyme-like products are generated, specifically
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O-benzoylsalicylate (depside) which is often retained on the Cu(II) center (Scheme 5), and CO,
which is typically not quantified. A bimolecular rate law for such reactions is –d[Cu(II) flavonolato
complex]/dt = k[Cu(II) flavonolato complex][O2]. An example of such a reaction is the O2-dependent
CO release reaction of [Cu(idpa)(fla)]ClO4 (Scheme 5; fla = monoanion of 3-hydroxyflavone;
idpa = 3,3’-imino-bis(N,N-dimethylpropylamine)) [59]. Similar to the proposed enzyme reaction
pathway, an idpa-coordinated Cu(I)-flavonoxy radical species is suggested to undergo single electron
transfer from Cu(I) to O2 to form a Cu(II) superoxide adduct. The terminal oxygen atom of superoxide
moiety subsequently combines with the flavonoxy radical to form a bridging peroxo species. Attack of
the Cu(II)-coordinated peroxo oxygen atom at C4 results in the formation of a 2,4-cyclic peroxide species
from which CO extrusion and depside formation can occur. For this reaction, ∆H‡ = 64 ± 5 kJ/mol
and ∆S‡ = −120 J/mol·K. The negative entropy of activation is consistent with the O2 activation step
to produce a Cu(II)-superoxo species being rate-determining. Enhanced electron density within the
flavonolato ligand increases the oxygenation rate with the Hammett ρ value being −0.29.
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Notably, addition of an exogenous carboxylate donor ligand (acetate or triphenylacetate) to
solutions of [Cu(idpa)(fla)]ClO4 results in an acceleration of the CO release reaction [57,60]. This is
attributed to Cu(II) coordination of the carboxylate ligand, which results in a shift to monodentate
coordination of the flavonolato ligand (Scheme 6). The enhanced electron density within the flavonolato
moiety at C2 makes direct electron transfer to O2 more viable thus enhancing the rate of formation of
O2

-, which was detected in reaction mixtures.
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Some Cu(II) flavonolato complexes, such as [Cu(phen)(fla)2] and [Cu(bpy)(fla)2], do not
exhibit CO release but instead undergo reaction via a 1,2-dioxetane intermediate to give
2-hydroxyphenylglyoxylate following hydrolysis (Scheme 7) [61,62]. The ligand environment and
Lewis acidity of the Cu(II) center are suggested to affect the regioselectivity of carbon-carbon bond
cleavage by influencing the electrophilicity of the flavonolato carbonyl center [61]. Evidence for the
involvement of a 1,2-dioxetane are emission bands at 506, 546, and 578 nm [62].
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2.4. Model Systems for Bacterial QDOs

Grubel, et al. synthesized the first series of divalent 3d metal flavonolato compexes of structural
relevance to bacterial quercetin dioxygenases [63]. These complexes, supported by an aryl-appended
tris(pyridylmethyl)amine ligand, have thus far not been investigated for thermal CO release reactivity.
Sun, et al. and Matuz, et al. subsequently prepared, characterized, and examined the O2-dependent CO
release reactivity of two series of divalent metal ion flavonolato complexes (Scheme 8) [64,65]. Sun, et al.
studied complexes supported by a carboxylate-containing N3O-donor ligand (Scheme 8a) [64]. A metal
ion dependence on the second-order rate constant for oxidative cleavage (Fe(II) > Cu(II) > Co(II) >
Ni(II) >Zn(II) > Mn(II)) correlates with the oxidation potential of the coordinated flavonolato ligand,
which in turn is influenced by the Lewis acidity of the metal center. These oxidative cleavage reactions
occurred at lower temperatures than those reported for synthetic complexes having a neutral nitrogen
supporting ligand environment [65], likely due to the reduced Lewis acidity of the metal center.
The yield of CO produced using the Fe(II) complexes supported by carboxylate-containing N3O-donor
ligand was determined to be 68%. The series of complexes reported by Matuz, et al. (Scheme 8b,c
exhibit similar reactivity in terms of the products generated [65]. The ester-appended derivatives
shown in Scheme 8c are more reactive that the propionate analogs (Scheme 8b), suggesting that ligand
exchange involving the monodentate anion is important in the rate-determining O2 activation step.
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Scheme 8. Dioxygenase-type reactivity of divalent metal complexes containing a carboxylate or ester
appendage [64,65].

Enhancing the electron density within the carboxylate moiety of the supporting chelate ligand
produces structural, electronic and reactivity effects via the benzoate-M(II)-O(4)=C(27)-C(21)=C(22)
conduit in M(II)-containing flavonolato complexes. Specifically, incorporation of an electron donating
group on the ligand benzoate moiety produces a smaller torsion angle between the flavonol B and C
rings (Scheme 9), a π→π* absorption band that is shifted to lower energy, and a lower redox potential
for the flavonolato moiety. These characteristics result in higher dioxygenase reactivity in Co(II), Ni(II)
and Fe(II) complexes [66–68]. CO quantification studies were not reported for these reactions.
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2.5. CO-Release Reactivity of Other Metal Flavonolato Complexes

Simple metal flavonolato complexes that lack structural relevance to quercetin dioxygenase
but exhibit CO release reactivity have also been reported by Speier and co-workers [56,69–71].
When heated in DMF at 95 ◦C, bis- and tris-flavonolato complexes such as Mn(fla)2(py)2 and
Fe(4′-MeO-fla)3 (Figure 3) release CO in near quantitative yields (80–90%) resulting in the
formation of the corresponding O-benzosalicylate complexes. The rate law for these reactions is
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–d[complex]/dt = k[complex][O2], with the rate constant for the Mn(II) derivative being approximately
6-fold larger than that of the Fe(II) complex (0.50 and 0.08 M−1·s−1, respectively) at 100 ◦C in DMF.Molecules 2019, 24, x FOR PEER REVIEW 10 of 26 
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Figure 3. Mononuclear Mn(II) and Fe(III) flavonolato complexes that undergo CO release in DMF [69].

Anion effects on the O2 reactivity of Fe(III) flavonolato complexes have been reported [72].
The Fe(III) flavonolato complex Fe(fla)(salen) (fla = anion of 3-hydroxyflavone, Scheme 10) undergoes
reaction with O2 at 100–125 ◦C in DMF to give an O-benzosalicylate complex and CO [72]. The rate
law for this reaction is –d[Fe(fla)(salen)]/dt = k[Fe(fla)(salen)][O2] with k = 2.07 ± 0.12 M−1·s−1,
∆H‡ = 76 kJ/mol and ∆S‡ = −94 J/mol·K at 373.16 K. Incorporation of an electron-donating group
at the para position of the flavonol results in a ~2.5-fold increase in the rate of reaction. A significant
171-fold rate enhancement is produced upon addition of a bulky carboxylate anion (triphenyl acetate,
Ph3CCOO−, Scheme 10). The coordination of this anion to the Fe(III) center is proposed to induce a
shift in the flavonolato coordination mode from bidentate to monodentate. The enhanced electron
density within the flavonolato ligand is suggested to be responsible for the dramatic rate enhancement.
The overall rate law for the anion-containing reaction is Rate = k[Fe(fla)(salen)][O2][Ph3CCOO−] with
∆H‡ = 35 kJ/mol and ∆S‡ = −120 J/mol·K at 313.16 K. This lower activation barrier results in a
dioxygenase-type CO release reaction that can proceed at room temperature.
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2.6. Summary

Studies of quercetin dioxygenases and model systems for these enzymes have provided insight
into the factors that influence the reactivity of metal-flavonolato species with O2 in dioxygenase-type
CO-releasing reactions. In model complexes containing a flavonolato ligand coordinated in a
bidentate manner via a five-membered chelate ring, high temperatures are typically required to
induce O2-dependent CO release reactivity. Key to increasing this reactivity is to enhance the electron
density within the flavonolato moiety, as this lowers the activation barrier for electron transfer for O2.
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Enhanced electron density can be achieved by adding electron-donating substituents on the flavonolato
ligand, increasing the electronic donor properties of a supporting chelate ligand, or by introducing
additional bulky anionic donors that via coordination to the metal center induce a shift to monodentate
metal-flavonolato coordination. To date, the systems that exhibit reactivity closest to room temperature
involve monodentate flavonolato coordination similar to that proposed in the enzymatic reaction
pathways. In organic solvents, few of these complexes have been evaluated in terms of quantification
of the amount of CO released. Additionally, 3d metal flavonolato complexes have not been evaluated
as CO-releasing molecules in aqueous environments. Under such conditions, ligand exchange with
water would likely influence the CO release reactivity.

3. CO Production from 3-Hydroxy-4-oxoquinolines via Cofactor-Free Enzyme-Catalyzed
Reactions and in Metal-Containing Synthetic Systems

3.1. Enzyme-Catalyzed Reactions

The cofactor-free bacterial 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (Hod) from Arthrobacter ilicis
Rü61a and 1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase (Qdo) from Pseudomonas putida 33/1 catalyze
the insertion of dioxygen at C2 and C4 of the 3-hydroxy-4-oxoquinoline substrates resulting in the
release in CO (Scheme 11(top)) [73–77]. In terms of sequence, these enzymes are rare examples of
dioxygenases that belong to the α/β hydrolase family. Hod and Qdo do not contain a cofactor
or metal ion but have a catalytically required histidine residue (His251 in Hod; His244 in Qdo).
The enzyme-bound monoanion of 1H-3-hydroxy-4-oxoquinaldine is proposed to undergo single
electron transfer to O2 in the rate-determining step to produce a triplet superoxide complex (3I1,
Scheme 11(bottom)). An internal electron transfer leads to a closed-shell singlet (1I1). Attack of the
peroxide terminal oxygen at C4 followed by formation of a peroxide bridge between C2 and C4 leads
to the cyclic species from which CO extrusion can occur to give N-acetylanthranilate anion. This
reaction pathway is consistent with 18O2 labeling studies, which showed that the catalytic reaction of
Hod results in incorporation of two labeled oxygen atoms. It should be noted that the substrates for
Hod and Qdo exhibit similar reactivity under basic, aerobic conditions (vide infra). The role of the
enzyme in these systems may be to provide a low-dielectric reaction environment that is optimal for
positioning the substrate and for electron transfer to O2 and C-O bond formation.
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Scheme 11. (top) Reaction catalyzed by 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (R = -CH3;
Hod) and 1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase (R = -H; Qdo). (bottom) Proposed reaction
pathway of Hod based on kinetic, computational and spectroscopic studies.
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3.2. Synthetic Systems

While not structurally relevant to the active site chemistry of Hod, copper complexes containing
a 1H-2-phenyl-3-hydroxy-4-oxoquinolinate ligand have been shown to undergo O2-dependent CO
release [78]. As shown in Scheme 12, similar to the reactivity of Cu(II) flavonolato complexes, these
complexes undergo stoichiometric CO release from each 3-hydroxy-4-oxoquinoline ligand upon
heating in DMF.
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Scheme 12. Reactions of a Cu(II) bis 1H-2-phenyl-3-hydroxy-4-oxoquinolinate complex with O2 to
release CO [78].

A non-heme iron catalyst has been reported by Speier, et al. to mediate the O2-dependent cleavage
of 3-hydroxyflavone and 1-H-2-phenyl-3-hydroxy-4-oxoquinoline to produce CO [79]. At 100 ◦C in
DMF and with a ratio of 1:25 between the complex, [Fe(III)(O-bs)(salen)] (Scheme 13), and the substrate,
catalytic dioxygenation occurs to give the products, O-benzoylsalicylic acid and N-benzoylanthranilic
acid in 78% and 64% yield, respectively, with concomitant release of CO. Initial rate studies showed
that 3-hydroxyflavone is three-times more reactive than 2-phenyl-3-hydroxy-4(1H)-quinoline toward
O2. As expected, increasing the basicity of the flavonol increases the rate of the O2 reaction. These
reactions proceed by single electron transfer (SET) wherein the metal-coordinated deprotonated
substrate provides an electron for the reduction of O2. Superoxide formation was detected using
nitroblue tetrazolium (NBT) as a scavenger to produce formazan. Proceeding through the reaction
pathway as shown in Scheme 13, an endoperoxide intermediate is formed that undergoes C-C and
O-O bond cleavage to release CO and generate an enzyme-type organic byproduct. The formation of
O-benzoylsalicylate or N-anthranilate as products enhances the rate of reaction through coordination
to the Fe(III) center as previously described.
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3.3. Summary

Overall these combined studies indicate that 3-hydroxy-4-oxoquinoline derivatives undergo
enzyme-catalyzed or metal-promoted reactions to release N-benzoylanthranilic acid and an equivalent
of CO. This clean reactivity suggests that 3-hydroxy-4-oxoquinolines may also be useful as a
CO-releasing motif. Notably, the slower rate of CO release of 2-phenyl-3-hydroxy-4(1H)-quinoline
derivatives versus 3-hydroxyflavones upon reaction with O2 indicates that the heteroatom within the
pyrone ring is a key factor in determining the rate of CO release.

4. CO Production from 3-Hydroxyflavones and 3-Hydroxy-4-oxoquinolines via Base-Catalyzed
and Non-Redox Metal Assisted Reactions

4.1. 3-Hydroxyflavones

Speier, et al. have previously summarized base-catalyzed flavonol oxygenation that results in
CO release in protic solvents as well as non-redox metal-assisted CO release reactions in a variety
of solvents [56,80–82]. Briefly, flavonol oxygenation under these conditions (40–90 ◦C) proceeds via
one of two mechanistic pathways: single electron transfer (SET) (Scheme 14(Path a)) or a one-step
electrophilic reaction of triplet oxygen with the flavonolate ion (Scheme 14(Path b)). The former
was found to occur in aprotic solvents via SET from the flavonolate ion to triplet O2, yielding a
flavonoxy radical and superoxide ion, which subsequently undergo fast radical-radical coupling
to give a 2-hydroxyperoxyflavan-3,4-dionate intermediate. The resulting species then undergoes
an intramolecular nucleophilic attack at C4 leading to the formation of an unstable endoperoxide
that decomposes into depside (O-benzoylsalicylate) and CO [81]. In the case of the electrophilic
reaction between oxygen and the flavonolato ion, a detailed mechanistic study was carried out with
4’-substituted flavonol derivatives in 50% DMSO-H2O in the pH range 6.4–10.8 to map out the reaction
pathway [82]. This reaction showed specific base catalysis. A linear Hammett plot yielded a negative
reaction constant (ρ = −0.50) implying that a higher electron density on the flavonolate ion makes
it more nucleophilic thus facilitating electrophilic attack by O2. Both oxygenation pathways yield
stoichiometric formation of CO and depside and/or its hydrolysis byproducts (salicylic acid and
benzoic acid).

Farmer, et al. have reported the base-catalyzed reaction of HNO with quercetin [83]. Above
pH 7, this reaction occurs to give 3,4-dihydroxybenzonitrile, a cleavage product indicating that the
regioselectivity observed in the reaction catalyzed by the Mn-containing QDO from Bacillus subtilis
(Scheme 4) is maintained in the base-catalyzed reaction. Kinetic and thermodynamic studies by Kumar
and Farmer have provided evidence that the base-catalyzed reaction between HNO and quercetin
occurs via single electron transfer (SET) [83]. It is notable that this reaction occurs orders of magnitude
faster than the corresponding dioxygenation. This has been attributed to the difference in driving force
for SET in the rate-determining step.

4.2. 3-Hydroxy-4-oxoquinolines

For 3-hydroxy-4-oxoquinoline derivatives, a mixture of products resulting from endoperoxide
or 1,2-dioxetane species forms, with the ratio depending on the solvent. CO release only occurs via
the reaction involving the endoperoxide, with the 1,2-dioxetane undergoing C-C bond cleavage to
give a phenylglyoxalic acid derivative (Scheme 14). A long-lived radical is observed in the reaction
of 1-H-2-phenyl-3-hydroxy-4-oxoquinoline with O2 providing evidence for a single electron transfer
pathway in the oxygen activation step [84].
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4.3. Summary

Overall, the 3-hydroxyflavone derivatives exhibit cleaner reactivity under base-catalyzed
conditions, whereas 3-hydroxy-4-oxoquinoline derivatives exhibit competing formation of 1,2-dioxetane
species. This suggests that 3-hydroxyflavones may be more reliable CO release agents under
biological conditions.

5. CO Production from 3-Hydroxyflavones via Photochemical Reactions

Photooxygenation of flavonols is another reaction pathway that results in CO release. It is
known that unsubstituted 3-hydroxyflavone (3-HflH) will undergo incorporation of both oxygen
atoms of O2 and expulsion of CO in the presence of a photosensitizer, or via direct illumination
using UV light (Scheme 15 (top)) [85,86]. The latter is suggested to proceed via the reaction of
a tautomeric triplet state (formed via excited state intramolecular proton transfer, ESIPT) with
ground state 3O2 to give a 5-membered cyclic endoperoxide intermediate from which CO extrusion
occurs [87–89]. A similar reaction pathway has been recently proposed for the photooxygenation
of 4′-diethylamino-3-hydroxyflavone [90]. Notably, 3-hydroxyflavone is also known to undergo
photoinduced rearrangement in the absence of O2 (Scheme 15 (bottom)) in apolar, polar aprotic and
polar protic solvents, to give a 3-hydroxy-3-aryl-indane-1,2-dione product [91–94]. In some cases,
the indane-1,2-diones releases CO to form a 3-arylphthalide (Scheme 15).

Our laboratory has recently demonstrated that divalent metal complexes of the general formula
[(L)Zn(3-Hfl)]ClO4, containing a coordinated 3-hydroxyflavonolato ligand and supported by a
chelating nitrogen donor ligand (L), undergo clean UV- or visible light-induced reactivity in the
presence of O2 to produce one equivalent of CO (determined by GC head space analysis) and a metal
carboxylate (depside) complex (Scheme 16) [95–99]. The reaction quantum yield (Table 1) for CO
release from these complexes depends on the ligand secondary environment of the metal complex
or solvent conditions, and on the divalent metal ion present. Divalent zinc 3-hydroxyflavonolato
complexes of a variety of supporting chelate ligands exhibit reaction quantum yields for CO release that
can be tuned from ~0.0003 to 0.012 [95,98,99]. Encapsulation of the Zn(II)-flavonolato moiety within a
hydrophobic microenvironment produced the highest reaction quantum yield whereas positioning the
Zn(II) 3-hydroxyflavonolato unit within a hydrogen bond donor pocket produced the least reactive
complex. The latter may be explained in that hydrogen-bonding involving either rigid donors in the
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secondary environment, or a hydrogen bond donor solvent (e.g., H2O), provides additional pathways
for non-radiative decay thus leading to excited state quenching and a less efficient CO release [98].
Su, et al. recently reported a series of zinc flavonolato complexes supported by tetradentate tripodal
nitrogen donor ligands that are similar to those reported by our laboratory and release one equivalent
of CO upon visible light illumination [100]. We note that Protti, et al. previously reported that the
presence of O2 enhanced the photodecomposition of simple [Zn(3-Hfl)]+ species but did not report CO
production [101].
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The coordination of the 3-hydroxyflavonolato ligand to heavy closed shell metal ions (CdII < HgII,
and PbII) produced relatively high quantum yields (>0.20) for CO release [95,96]. Conversely,
coordination of the 3-hydroxyflavonolato anion to Mn(II), Co(II), Ni(II), or Cu(II) yielded complexes
with low CO release reaction quantum yields (typically ~0.005) due to quenching of the excited state by
the open-shell first row metal ion [96]. Despite the low reactivity, these complexes can serve as catalysts
for the UV light-induced oxidative degradation of 3-hydroxyflavone to give O-benzoylsalicylic acid
and CO [96]. While multiple catalysts for the thermal O2-dependent degradation of 3-hydroxyflavone
with CO release have been reported [79,102,103], to our knowledge this is the only light-driven catalytic
reaction reported to date. We also note that a Ag(I) 3-hydroxyflavonolato complex, [Ag(3-Hfl)(PPh3)2],
was recently reported to undergo visible light-induced oxygenation to yield a depside complex [104].
No reaction quantum yield or CO quantification was reported for this reaction.
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Table 1. Quantum yields of UV- or visible light-induced quantitative CO-releasing reactions of divalent
metal 3-hydroxyflavonolato complexes.

Compound Absorption Max. (nm) Quantum Yield for CO Release Reference

[(6-Ph2TPA)Zn(3-Hfl)]ClO4 420 0.09(1) a,c [63,95,97]
[(6-Ph2TPA)Zn(3-Hfl)]ClO4 420 0.012(2) b,c; 0.006(1) b,d [98]
[(6-Ph2TPA)Cd(3-Hfl)]ClO4 430 0.28(2) a,c [95,97]
[(6-Ph2TPA)Hg(3-Hfl)]ClO4 415 0.31(2) a,c [95,97]
[(6-Ph2TPA)Mn(3-Hfl)]ClO4 415 0.005 a,c [96]
[(6-Ph2TPA)Co(3-Hfl)]ClO4 430 0.005 a,c [96]
[(6-Ph2TPA)Cu(3-Hfl)]ClO4 428 0.005 a,c [96]
[(6-Ph2TPA)Ni(3-Hfl)]ClO4 415 0.008 a,c [96]
[(6-Ph2TPA)Pb(3-Hfl)]ClO4 406 0.21(6) a,c [97]
[(TPA)Zn(3-Hfl)]ClO4 415 0.006(1)b,c [98]
[(bnpapa)Zn(3-Hfl)]ClO4 401 0.00027(1) b,c [98]
{[(bpy)Zn(3-Hfl)]2}(ClO4)2 414 0.004(1) b,c [99]
[Ru(η6-p-cymene)Cl(3-Hfl)] 472 0.001(1) b,c [105]

a 300 nm; b 419 nm; c In CH3CN; d 1:1 DMSO:H2O.

We have also explored the visible light-induced CO release reactivity of the [Ru(η6-p-cymene)
(CH3CN)(3-Hfl)]OTf complex (Scheme 17) [105], as such complexes are promising for anticancer
applications [106–108]. The combined results from product identification (ESI-MS), CO quantification,
and 18O-isotope labeling studies upon illumination with UV (300 nm) and visible (419 nm) light in
CH3CN show that oxygenation of the flavonolato ligand occurs in a dioxygenase-type manner with
release of CO. However, the amount of free CO generated was found to depend on the wavelength
of illumination, with UV light leading to higher yield (0.70 eq CO). This is because the Ru(II) center
acts as a trap for the released CO and UV light enables photodissociation of the metal carbonyl moiety.
The quantum yield for CO release from [Ru(η6-p-cymene)Cl(3-Hfl)] upon illumination at 419 nm is
0.001(1) which is among the lowest values measured to date for divalent metal 3-hydroxyflavonolato
complexes (Table 1).
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[(6-Ph2TPA)Cd(3-Hfl)]ClO4 430  0.28(2) a,c [95,97] 

[(6-Ph2TPA)Hg(3-Hfl)]ClO4 415  0.31(2) a,c [95,97] 

[(6-Ph2TPA)Mn(3-Hfl)]ClO4 415 0.005 a,c [96] 

[(6-Ph2TPA)Co(3-Hfl)]ClO4 430  0.005 a,c [96] 

[(6-Ph2TPA)Cu(3-Hfl)]ClO4 428 0.005 a,c [96] 

[(6-Ph2TPA)Ni(3-Hfl)]ClO4 415 0.008 a,c [96] 

[(6-Ph2TPA)Pb(3-Hfl)]ClO4 406  0.21(6) a,c [97] 

[(TPA)Zn(3-Hfl)]ClO4 415 0.006(1)b,c [98] 

[(bnpapa)Zn(3-Hfl)]ClO4 401  0.00027(1) b,c [98] 

{[(bpy)Zn(3-Hfl)]2}(ClO4)2 414 0.004(1) b,c [99] 

[Ru(η6-p-cymene)Cl(3-Hfl)] 472  0.001(1) b,c [105] 

a 300 nm; b 419 nm; c In CH3CN; d 1:1 DMSO:H2O. 
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Scheme 17. Reactivity of RuII 3-hydroxyflavonolato complex with O2 upon illuination with visible
light (λill = 419 nm) [105].

Farmer, et al. have recently synthesized and characterized a series of Ru(II) bipyridine-ligated
3-hydroxyflavonolato complexes and investigated the mechanistic details of their light-driven
reactivity [109,110]. Illumination into distinct excitation bands at low temperature leads to products of
two different reaction pathways (Scheme 18). Specifically, upon excitation at wavelengths longer than
400 nm, the complexes undergo 1,2-addition of dioxygen, generating a 1,2-dioxetane intermediate
that results in the formation of a RuII-coordinated α-ketoacid complex. This complex is proposed to
release CO gas to form a Ru(II) depside complex as determined by ESI-MS and deoxymyoglobin assay.
Illumination of the same complex through a 310 nm notch pass optical filter, yields product mixtures
derived from 1,3-addition of dioxygen, specifically depside coordinated to Ru(II) and CO. The authors
suggest that the observed reactivity patterns are attributed to flavonol tautomeric biradicals [110].
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6. Visible Light-Induced CO Release from Extended 3-Hydroxyflavone and
3-Hydroxybenzo[g]quinolone Frameworks

We have prepared a series of new flavonols (1-4) with an additional fused aromatic ring
(Scheme 19) to shift the absorption maximum further into the visible range. [111]. Compound 1, which
ionizes partially in DMSO:PBS buffer at pH = 7.4 [112], has been extensively investigated in terms of
its O2-dependent CO release reactivity. In a range of solvents (Table 2), 1 undergoes dioxygenase-type
quantitative visible light-induced (λill = 419 or 488 nm) CO release, with the reaction quantum yield
(0.006–0.010) depending on the solvent [111,112]. The product generated is an O-benzoylsalicylate
derivative (5). Notably, compound 1 has been recently shown to be amenable to two-photon excitation
at 800 nm to trigger CO release [113]. Prior to CO release, compound 1 can be visualized in cells
via its green emission at ~580 nm (Scheme 19b). This emission, which is from a tautomeric species
resulting from excited state intramolecular proton transfer (ESIPT), is lost upon release of CO, thus
enabling tracking of the intracellular CO release process [111,114]. Compound 1 binds weakly to
bovine serum albumin (Ka = 3.2 × 103 M−1) at the warfarin binding Site I [112]. This interaction with
a protein reduces the quantum yield for CO release (Table 2). Compound 1 is minimally toxic in A549
(IC50 = 41 µM), HUVECs (IC50 = 82 µM), and RAW 264.7 cells (non toxic up to 100 µM) [111,115,116].
Functionalized derivatives of 1 have been used to probe mitochondrial localization of CO release [115],
thiol and H2S sensing [117,118] and H2O2 sensing [113] prior to light-triggered CO release.

The diethylamino-substituted 2 (Scheme 19a; Table 2) exhibits similar quantitative, O2-dependent
visible light-induced (λill = 419 nm) CO release to that found for 1. Notably, the sulfur-substituted 3
(Scheme 19a; Table 2) exhibits a much higher quantum yield (0.426(3)) for CO release in CH3CN with
λill > 546 nm under O2 [111]. Compound 4 exhibits quantitative O2-dependent visible light-induced
CO release under aerobic conditions (λill > 546 nm) but also produces 0.32(7) equivalents of CO
under anaerobic conditions. Both reactions of 4 lead to a mixture of products, with the anaerobic CO
release reaction appearing to involve photoisomerization akin to that observed for 3-hydroxyflavone
(Scheme 15) [92–94]. The mechanism for visible-light induced CO release in 1–4 has not been
computationally examined but may involve the reactivity of a triplet phototautomer formed via
ESIPT reacting with 3O2 [90,114].
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Scheme 19. (a) Extended 3-hydroxyflavone derivatives (1–4). (b, left) Visible light-induced CO release
from 1. (b, right) Individual fluorescence microscopy images of HUVECs incubated with 1 for 4 h. Row
1: Cells exposed to 1 for 4 h. Row 2: Cells from first row illuminated (488 nm light, with a light density
of 42,620 lx). Cells were also co-stained with Hoechst 33342 nuclear dye (blue) to assess cell integrity.
Size of bar = 50 µm.

Zinc complexation of 1–4 provided the first examples of divalent metal flavonolato complexes
(6–13, Scheme 20) that exhibit O2-dependent, quantitative visible light-induced solid-state CO
release [119]. Similar to the solution reactivity of 1–3, these zinc complexes undergo reaction either in
solution or in the solid state to produce Zn(II) O-benzoylsalicylate complexes (Scheme 20) and one
equivalent of CO per flavonolato ligand. The quantum yields for the reactions of 6–9 are enhanced
relative to the free flavonols (Table 2). Limited solubility of the Zn(II) bis-flavonolato complexes 10–13
in common organic solvents enabled the use of 10 as a visible light driven in situ CO release compound
for palladium-catalyzed carbonylation [119].
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Table 2. Quantum yields for photoinduced CO release from extended 3-hydroxyflavones, zinc
flavonolato complexes, and 3-hydroxybenzo[g]quinolone.

Compound Absorption Maximum (nm) Quantum Yield for CO Release Reference

1 409 b 0.007(3) a,c [111,112]
410 c 0.006(3) a,c [112]
410 d 0.010(3) a,d [112]
410 e 0.0063(1) a,e [112]
410 F 0.0006(1) a,f [112]

2 442 b 0.006(1) a,b [111]
3 478 b 0.426(3) a,b [111]
4 Not determined [111]
6 480 b 0.651(2) a,b [119]
7 524 b 0.583(4) b,g [119]
8 550 b 0.951(4) b,g [119]
9 600 b 0.947(7) b,g [119]

14 445 b 0.0045(1) a,b [116]
a 419 nm; b CH3CN; c 1:1 DMSO:TRIS; d 1:1 DMSO:PBS; e 4% DMSO:PBS + CTAB; f BSA. (40 eq.) in 3.3% DMSO:TRIS;
g White light with 546 nm cut off filters.

The 3-hydroxybenzo[g]quinolone 14 (Scheme 21) was previously reported as a dye [120].
We recently demonstrated that this compound will release one equivalent of CO upon illumination
with visible light to produce a non-emissive depside product [116]. Similar to 1, the presence of 14 in
cells can be tracked via fluorescence prior to CO release. Notably, 14 has a high affinity (KSV 2.9× 106 M−1

(SV = Stern-Volmer)) for bovine serum albumin (BSA) protein, binding at Site I (warfarin binding site).
The binding affinity of 14 for BSA is 900-fold greater than that of 1, indicating that small structural
changes will dramatically influence protein interactions in these bioinspired compounds. Using the
non-covalent protein:14 adduct for visible light-induced CO delivery to cells, we identified a low
IC50 value (24 µM) for the eradication of cancer cells (A549) and potent anti-inflammatory effects,
as measured by complete suppression of LPS-induced TNF-α production at 80 nM in RAW 264.7 murine
macrophage cells [116]. The low IC50 value may be due in part to the known effect of serum albumin
proteins in facilitating the delivery of small molecules to cancer cells via the enhanced permeability
and retention effects [121]. Overall, these initial results indicate that the 3-hydroxybenzo[g]quinolone
framework has significant potential as a novel CO-releasing motif for applications in biological systems.
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7. Concluding Remarks and Future Directions

In this review we have outlined the various reported reaction pathways whereby 3-hydroxyflavone
and 3-hydroxy-4-oxoquinoline compounds undergo CO release. Currently there is a strong interest in
the development of carbon monoxide-releasing molecules (CORMs) that are metal free [20,122,123],
especially those that can be triggered by visible light, which enables localized CO delivery.
An additional desired characteristic for CORMs is a chemical framework that can be structurally
modified to tune various factors including solubility, the rate of CO release, toxicity, and subcellular or
tissue targeting [124]. The studies outlined herein demonstrate that the 3-hydroxyflavone motif will
undergo CO release under a variety of reaction conditions, whether metal-coordinated or metal-free,
and by either thermal or light-induced reaction pathways. The 3-hydroxyflavone framework is
amenable to a variety of structural modifications to tune or augment chemical properties. In this
regard, our lab has recently shown that an extended 3-hydroxyflavone motif can be structurally
modified to enable sub-cellular targeting [115] and fluorescence-trackable small molecule sensing
properties [117,118] prior to CO release. An additional intriguing feature of using 3-hydroxyflavone
derivatives as CORMs is the potential of these compounds to exhibit other advantageous properties
such as anti-inflammatory, antioxidant and anti-cancer effects [125,126] in addition to CO release.
Future work in our laboratory is focused on identifying and investigating these possible dual
activity effects.

Overall, the development of CORMs based on 3-hydroxyflavone and 3-hydroxy-4-oxoquinoline
structural frameworks is in its early stages. Using the knowledge of the studies summarized herein
we anticipate further development of CORMs based on these biologically-relevant structures. In this
regard, a key next step for our laboratory will be evaluation of the CO release reactivity of a range of
3-hydroxyflavone and 3-hydroxy-4-oxoquinoline derivatives under visible light-triggered conditions.
Currently, very little is known regarding the structure/reactivity relationships for light-driven reactions
of these molecules. If compounds with a range of absorption properties and quantum yields can be
developed, this family of compounds could enable controlled, triggered release for the delivery of
specific boluses of CO.
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