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Abstract: There is little consensus regarding the impacts of physical activity and nutrient intake
on bone mineral density (BMD) in subjects with high or low levels of arterial stiffness. This study
was performed to investigate whether physical activity and nutrient intake are associated with
BMD in middle-aged women with high levels of arterial stiffness. The study population consisted
of middle-aged women aged 40–64 years (n = 22). BMD was assessed by dual-energy X-ray
absorptiometry. Carotid-femoral pulse wave velocity (cf-PWV) was used as an indicator of arterial
stiffness. Subjects were divided into two groups by median cf-PWV. Physical activity in free-living
conditions was evaluated using a triaxial accelerometer. Nutrient intake was also measured using
the brief-type self-administered diet history questionnaire. In the High-PWV group, BMD showed a
significant negative correlation with age. Using a partial correlation model, BMD was associated with
the number of steps and unsaturated fatty acid intake in the High-PWV group. These results suggest
that BMD in middle-aged women with high levels of arterial stiffness may be associated with both
the number of steps and nutritional intake. Recommendations of physical activity and nutritional
intake for the prevention of osteopenia should include consideration of arterial stiffness.

Keywords: osteoporosis; nitric oxide; sedentary; hypertension; walking; oleic acid; linoleic acid;
inflammation; antioxidant; postmenopausal women

1. Introduction

Osteoporosis, a chronic disease characterised by reduced bone mineral density (BMD), is one of the
most prevalent factors contributing to fractures, mortality and mobility limitation in the elderly [1], and
the prevalence in women is two- to sixfold higher than in men [2,3]. Treating established osteoporosis
is difficult because drugs available for the prevention of osteoporosis may have long-term adverse
effects and are often expensive. It is essential to prevent the development of this disease in the aging
society. Age-related reductions in BMD are generally accelerated in women after menopause [2,3].
Age-related bone reduction occurs at a higher rate in middle age than in old age. Therefore, it
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is necessary to prevent bone loss in middle age. In general, age-related reductions in BMD are
multifactorial. Therefore, optimisation of lifestyle-related factors known to influence BMD is an
important strategy. Physical activity and adequate nutrition are key lifestyle approaches for the
prevention of osteoporosis [4–8]. Although several studies have reported protective factors for BMD in
middle-aged women, these findings remain controversial. Wolff et al. investigated the randomized
controlled trials and nonrandomized controlled trials on the effects of exercise training programs on
bone in women. As a result, the treatment effects for the nonrandomized controlled trials were almost
twice as high as those for the randomized controlled trials [9]. This evidence suggests that exercise is
most effective if they are individually tailored and include appropriate types and doses.

Arterial stiffness and Atherosclerosis can be focused as one of the factors of these disagreements.
Because recent studies also suggested that there is potential for cross-talk between arterial systems
and bone metabolism [10–12]. Atherosclerosis is a chronic inflammatory disease characterised
by the accumulation of oxidised lipoproteins in the arterial wall [13,14]. Relations between
endothelial dysfunction, cholesterol elevation, inflammation, thrombosis and atherogenesis have
been established [15]. For example, arterial stiffness and Atherosclerosis have been implicated as
a potential contributor to bone health due to the potential effects of nitric oxide (NO) [16–20] and
atherogenic materials (e.g., oxidative stress) [21,22] on osteocyte function. Therefore, reducing arterial
stiffness may also influence bone health in women with progressing arteriosclerosis.

Physical activity and nutrient intake are modifiable factors that influence arterial stiffness. Habitual
physical activity has a positive effect on arterial distensibility [19,23–27]. Boyle et al. provided evidence
for the deleterious impact of short-term reductions in daily activity on vascular health [25], as well as
evidence that arterial stiffness increases with age in sedentary women. Significant age-related increases
in arterial stiffness, however, are not observed in women with high levels of physical activity [23].
Light physical activity has also been shown to be associated with attenuation of arterial stiffening in
sedentary individuals [26].

Kahwati et al. reported that neither vitamin D, calcium, nor combined supplementation was
associated with reduced fracture incidence in healthy adults without known nutrient deficiency [4].
Avenell et al. evaluated vitamin D for preventing fractures and reported that vitamin D was beneficial
in populations at high-risk of fracture but not low-risk populations [28]. These studies indicated
that nutrients may have effects only in specific populations. Therefore, it is important to assess
the differences in nutritional effects on BMD in groups with different characteristics. Kruger and
Horrobin reported that essential fatty acid-deficient animals develop severe osteoporosis coupled
with increased renal and arterial calcification. They suggested that the interaction between essential
fatty acids and calcium or vitamin D metabolism may be associated with osteoporosis and ectopic
calcification [29]. Many studies have focused on the quantity and type of dietary fat, as well as its
effects on arterial stiffness [30–34]. Cross-sectional data suggest that saturated fats adversely affect
vascular function, whereas polyunsaturated fatty acids (PUFAs) have beneficial effects [33]. Hu et al.
suggested that dietary strategies are effective in preventing arterial disease if they include a substitution
of saturated fatty acids and increased consumption of unsaturated fatty acids from fish or plant
sources [30]. Physical activity and nutrient intake are considered to be modifiable factors that influence
arterial stiffness.

There is limited consensus, however, on the effects of physical activity and nutrient intake on
individuals with high or low levels of arterial stiffness. The effects of these types of physical activity
and nutrition intake on BMD remain unclear. This pilot study was performed to investigate whether
physical activity and nutrient intake are associated with BMD in middle-aged women with high levels
of arterial stiffness.
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2. Materials and Methods

2.1. Subjects

Middle-aged women younger than 65 years of age were recruited from local communities
for this study. Data related to sociodemographic characteristics (date of birth), medical history
(hypertension, hyperlipidaemia, diabetes mellitus, stroke, heart disease, renal failure and arthralgia),
current smoking status and alcohol intake and current medications (name and dosage) were collected
during the screening visit. Women with any medical considerations, including taking specific drugs or
supplements (osteoporosis, hypertension, hyperlipidaemia, diabetes mellitus, stroke, heart disease,
renal failure, arthralgia and history of fracture in the previous 12 months) that could affect bone
metabolism were excluded. The study population included seven subjects with SBP > 140 mmHg,
but they had not received medical treatment. Ten women fulfilled the exclusion criteria. All subjects
provided written informed consent after being informed of the benefits and risks of the investigation.
This study was approved by the Ethics Committee of Ritsumeikan University (Approval Number:
BKC-IRB-2012-032). All participants reviewed and signed informed consent forms in accordance with
the Declaration of Helsinki.

2.2. Dual-Energy X-Ray Absorptiometry

Body composition was assessed by dual-energy X-ray absorptiometry (DXA) using enCORE
software (Lunar Prodigy; GE Healthcare, Buckinghamshire, UK). Subjects fasted overnight and did not
perform any exercise in the morning before measurements were taken. In this study, BMD values were
derived from total-body DXA scans. Total-body BMD is not an appropriate surrogate for diagnosing
osteoporosis or assessing fracture risk [35] because the relationship between total-body BMD and
fracture risk has not been adequately defined. On the other hand, Looker et al. suggested that these
data provide a unique opportunity to assess differences in BMD between groups across the entire
skeleton [36], and it may be useful when investigating the effects of nutrient intake and physical activity,
such as aerobic exercise or walking. Total-body and regional BMD, fat mass and fat-free mass (FFM)
were analysed. All scans were performed and analysed by a single trained and licensed technician who
was blinded to participant group allocation. Body mass index (BMI) was determined by dividing body
weight in kilograms (kg) by height in meters squared (m2). Skeletal muscle mass index was calculated
by dividing the appendicular fat-free mass (FFM) in kilograms (kg) by height in meters squared (m2).

2.3. Measurement of Arterial Stiffness and Blood Pressure

Pulse wave velocity (PWV) is considered to be an indirect indicator of arterial stiffness, reflecting
vascular damage. Subjects rested for 15 minutes in the supine position before carotid-femoral PWV
(cf-PWV), brachial-ankle PWV (ba-PWV) and blood pressure measurements were taken. The cf-PWV,
ba-PWV and blood pressure were measured simultaneously using a vascular testing device (form
PWV/Ankle brachial index (ABI); Omron Colin, Kyoto, Japan). The cf-PWV was measured using
applanation tonometry, with an array of 15 transducers (form PWV/ABI), as described previously [37–39].
The distance travelled by each pulse wave was assessed by a random zero-length measurement on
the surface of the body using a non-elastic tape measure. Pulse wave transit time was determined
by measuring the time delay between the proximal and distal foot waveforms. The foot of the wave
was identified as the commencement of the sharp systolic upstroke, which was detected automatically.
In this study, the coefficient of variation for interobserver reproducibility of cf-PWV was 4.7%. The mean
values of systolic and diastolic blood pressure in the right and left arms were calculated for analysis.

2.4. Analysis of Blood Samples

Blood was drawn from subjects in the seated position. Fasting (>12 h) blood samples were
collected by venipuncture in tubes with or without ethylene diamine tetraacetic acid (for plasma or
serum). Blood samples were centrifuged at 1500 rpm for 15 min and were stored at −20 ◦C. The serum
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concentration of triglycerides was determined using commercial kits (Mitsubishi Chemical Medience,
Tokyo, Japan). Serum high-density lipoprotein cholesterol (HDL-C) was measured by an enzymatic
method (Mitsubishi Chemical Medience). Fasting plasma glucose (FPG) was measured by the glucose
dehydrogenase method. Whole-blood glycohemoglobin A1c (HbA1c) was measured by an enzymatic
method (Glycohemoglobin A1c kit; Mitsubishi Chemical Medience).

2.5. Evaluation of Physical Activity

The duration and intensity of physical activity in free-living conditions were evaluated using a
triaxial accelerometer (Active Style Pro HJA-350IT; Omron Healthcare; Muko, Kyoto, Japan) [40,41].
The accelerometer was attached to the waist of each subject during waking hours for 7 days, including
both weekdays and weekends. Valid data were those that included at least 10 hours of wearing
time. The criterion for acceptable pedometer data was that data were collected at least three days per
week, including at least one weekday and one weekend day. The Omron Active Style Pro HJA-350IT
measures activity intensity over a 60-s period and estimates the metabolic equivalents of the task
(METs). Steps and total minutes spent in moderate to vigorous physical activity (MVPA; ≥ 3 METs)
taken per day were used as physical activity outcome measures.

2.6. Nutrient Intake

Nutrient intake was measured using the brief-type self-administered diet history questionnaire
(BDHQ), which is a fixed-portion questionnaire that assesses dietary intake during the previous
month [42,43]. The unadjusted intakes of energy and nutrients measured by the BDHQ were calculated
using an ad hoc computer algorithm based on the Standard Tables of Food Composition in Japan.
Intakes of saturated fatty acids, monounsaturated fatty acids (MUFAs), PUFAs, n-3 fatty acids and n-6
fatty acids were calculated in grams per day using the food list section of the BDHQ. Total energy was
calculated in kilocalories per day from BDHQ responses. Questionnaires indicating an extreme energy
intake of greater than two standard deviations were considered to be invalid and were excluded.

2.7. Other Variables

Covariates were measured at the same time as the DXA assessment and included age (years) and
height (cm). Height without shoes was measured using a stadiometer.

2.8. Statistical Analysis

Outcome measures included BMD (arm, spine, pelvis, leg and total body), physical activity
and nutritional intake. Fat intake was defined as SFA, MUFA and PUFA in grams per day. Fat
intake was then adjusted for total energy intake with the residual method [44]. In this method,
energy-adjusted nutrient intakes are computed as the residuals from the regression model with total
caloric intake as the independent variable and absolute nutrient intake as the dependent variable.
Potential differences between the Low- and High-PWV groups were assessed using the independent
t-test. All measurements and calculated values are expressed as the means ± standard deviation.
Correlation analyses of total-body and regional BMD with study variables were performed using
Pearson’s correlation analyses. Partial correlations were adjusted for age and BMI and used to examine
the relationships between BMD, physical activity and nutritional intake. All analyses were performed
using SPSS (version 19; IBM, Chicago, IL, USA). Statistical significance was set at α < 0.05.

3. Results

We assessed cf-PWV to evaluate arterial stiffness (median cf-PWV = 1053 cm/s). All subjects were
classified into two groups by cf-PWV (Low- and High-PWV groups). Descriptive characteristics for
Low- and High-PWV groups, as well as all subjects, are shown in Tables 1–3. Clinical features were
similar for Low- and High-PWV groups, except for arterial stiffness parameters (Table 1). Findings
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regarding physical activity and nutrient intake were similar in both Low- and High-PWV groups,
except for SFA intake (Tables 2 and 3).

Table 1. Subject characteristics at baseline for the whole study group and for Low- and High-PWV
groups separately.

All (n=22) Low (n=11) High (n=11)
Varieties Mean ± SD Mean ± SD Mean ± SD

p

Age (yrs) 55.1 ± 6.2 55.4 ± 5.4 54.8 ± 7.1 0.84
BMI (kg/m2) 20.0 ± 1.9 20.2 ± 1.7 19.8 ± 2.1 0.57

Body fat percentage (%) 26.4 ± 6.0 27.2 ± 4.7 25.7 ± 7.3 0.58
SMI (kg/m2) 5.7 ± 0.5 5.8 ± 0.3 5.7 ± 0.7 0.60

BMD (g/cm2)
Total body 1.036 ± 0.107 1.078 ± 0.103 0.994 ± 0.099 0.07

Arm 0.734 ± 0.068 0.745 ± 0.061 0.722 ± 0.075 0.44
Spine 0.941 ± 0.149 0.979 ± 0.155 0.903 ± 0.140 0.24
Pelvis 0.989 ± 0.128 1.034 ± 0.106 0.945 ± 0.138 0.10

Leg 1.083 ± 0.122 1.132 ± 0.103 1.033 ± 0.124 0.06

Atherosclerosis parameter
cf-PWV (cm/s) 1071 ± 145 953 ± 70 1189 ± 94 <0.01 **
ba-PWV (cm/s) 1472 ± 375 1251 ± 219 1693 ± 374 <0.01 **
SBP (mmHg) 126 ± 25 111 ± 17 142 ± 22 <0.01 **
DBP (mmHg) 75 ± 14 67 ± 11 82 ± 12 <0.01 **

Biochemical parameter
Total cholesterol (mg/dl) 228 ± 37 221 ± 38 235 ± 36 0.38

Triglyceride (mg/dl) 77 ± 35 74 ± 30 80 ± 41 0.66
HDL cholesterol (mg/dl) 87 ± 20 86 ± 21 88 ± 19 0.87
LDL cholesterol (mg/dl) 125 ± 35 120 ± 37 131 ± 34 0.46

HDL percentage (%) 39 ± 10 40 ± 10 38 ± 9 0.68
Blood sugar (mg/dl) 88 ± 6 87 ± 4 89 ± 8 0.39

HbA1c (%) 5.1 ± 0.3 5.0 ± 0.3 5.2 ± 0.4 0.24

Data are presented as means ± SD. BMI, body mass index; SMI, skeletal mass index; BMD, bone mineral density;
SBP, systolic blood pressure; DBP, diastolic blood pressure; cf-PWV, carotid-femoral pulse wave velocity; ba-PWV,
brachial-ankle pulse wave velocity. Potential differences between the Low- and High-PWV groups were assessed
using the independent t-test. **, p < 0.01.

Table 2. Physical activity parameters for the whole study group and Low- and High-PWV
groups separately.

All (n=22) Low (n=11) High (n=11)
Varieties Mean ± SD Mean ± SD Mean ± SD

p

Accelerometry parameter (/day)
Total MVPA ( MET * hour) 5.1 ± 2.4 5.7 ± 2.6 4.6 ± 2.1 0.30

Locomotive 2.0 ± 0.8 2.1 ± 0.7 1.9 ± 1.0 0.47
Non-Locomotive 3.1 ± 2.2 3.6 ± 2.6 2.7 ± 1.8 0.37

Steps 7349 ± 1663 7467 ± 1238 7231 ± 2061 0.75

Data are presented as means ± SD. MVPA, moderate-to-vigorous physical activity. Potential differences between the
Low- and High-PWV groups were assessed using the independent t-test. *, p < 0.05.
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Table 3. Nutritional parameters for the whole study group and Low- and High-PWV groups separately.

All (n=22) Low (n=9) High (n=11)
Varieties Mean ± SD Mean ± SD Mean ± SD

p

Nutritional parameters (/day)
Protein (g) 68.6 ± 11.3 70.4 ± 14.9 67.2 ± 8.1 0.55

Fat (g) 53.5 ± 8.5 50.9 ± 8.5 55.7 ± 7.0 0.18
SFA 14.5 ± 3.7 12.7 ± 2.8 15.9 ± 3.3 0.03 *

MUFA 19.1 ± 3.5 18.2 ± 4.1 19.8 ± 2.5 0.29
PUFA 12.7 ± 2.2 12.9 ± 2.2 12.6 ± 2.2 0.75

n-3 fatty acids 2.6 ± 0.6 2.8 ± 0.7 2.4 ± 0.5 0.21
n-6 fatty acids 10.1 ± 1.9 10.1 ± 1.9 10.1 ± 1.8 0.96

Carbohydrate (g) 238 ± 22 242 ± 28 234 ± 17 0.45
Sodium (mg) 3737 ± 606 3915 ± 673 3592 ± 529 0.24

Potassium (mg) 2864 ± 711 3011 ± 925 2744 ± 509 0.42
Calcium (mg) 564 ± 148 580 ± 194 550 ± 105 0.67

Magnesium (mg) 261 ± 62 278 ± 81 246 ± 40 0.26
Phosphorus (mg) 1064 ± 201 1103 ± 268 1031 ± 137 0.45

Iron (mg) 8.3 ± 2.1 9.0 ± 2.5 7.7 ± 1.5 0.18
Zinc (mg) 8.1 ± 0.9 8.5 ± 1.0 7.9 ± 0.8 0.17

Copper (mg) 1.2 ± 0.2 1.2 ± 0.2 1.1 ± 0.2 0.10
Manganese (mg) 3.5 ± 0.8 3.5 ± 0.8 3.4 ± 0.9 0.80
β-carotene eq (mg) 4842 ± 2377 5739 ± 3025 4107 ± 1532 0.13

Vitamin D (µg) 14.2 ± 8.7 17 ± 12 12 ± 4 0.24
α-tocopherol eq (mg) 9.3 ± 1.9 9.7 ± 2.1 9.0 ± 1.7 0.41

Vitamin K (µg) 324 ± 154 382 ± 168 277 ± 132 0.13
Vitamin B1 (mg) 0.8 ± 0.1 0.9 ± 0.2 0.8 ± 0.1 0.68
Vitamin B2 (mg) 1.4 ± 0.3 1.4 ± 0.4 1.4 ± 0.3 0.93

Niacin (mg) 17.3 ± 4.1 18.0 ± 5.4 16.7 ± 2.7 0.49
Vitamin B6 (mg) 1.4 ± 0.3 1.5 ± 0.4 1.3 ± 0.3 0.27
Vitamin B12 (µg) 8.8 ± 4.3 9.9 ± 5.6 7.8 ± 2.6 0.29

Folic acid (µg) 401 ± 130 444 ± 158 366 ± 99 0.19
Pantothenic acid (mg) 6.7 ± 1.2 6.9 ± 1.5 6.5 ± 1.0 0.56

Vitamin C (mg) 146 ± 57 158 ± 69 136 ± 46 0.41
Suger (g) 13.4 ± 6.6 11.0 ± 6.1 15.3 ± 4.2 0.08

Alcohol (g) 5.4 ± 10.4 10.8 ± 12.8 0.9 ± 1.4 0.02
Genistein (mg) 20.8 ± 14.2 24.7 ± 14.5 17.6 ± 13.6 0.27

Data are presented as means ± SD. SFA, saturated fatty acid; MUFA, onounsaturated fatty acid; PUFA,
polyunsaturated fatty acid; Eq, equivalents. Potential differences between the Low- and High-PWV groups
were assessed using the independent t-test. *, p < 0.05.

Table 4 summarises the results of correlation analysis regarding the relationships between clinical
features and BMD. Total-body, arm and leg BMD were negatively associated with age in all subjects
(r = −0.44, r = −0.60, r = −0.51, respectively). Similar results were observed in the High-PWV group.
In all subjects, the spine and pelvis BMD were associated with BMI (r = 0.46, r = 0.49, respectively).

In this study, age was associated with total and non-locomotive MVPA in all subjects (r = 0.49,
r = 0.46, respectively) and BMI was associated with locomotive MVPA (r = 0.52). Similar results were
observed in the High-PWV group. BMI and body fat were associated with total MVPA (r = 0.66,
r = 0.68, respectively). In the Low-PWV group, age was associated with total and non-locomotive
MVPA (r = 0.64, r = 0.63, respectively, p < 0.05). To exclude the possible effect of age on physical
activity, we performed partial correlation analysis.

In the High-PWV group, using a partial correlation model, the number of steps taken showed a
significant association with leg BMD (r = 0.67) when adjusted for age and BMI (Table 5). Significant
associations were observed between MUFA and total-body, spine and pelvis BMD (r = 0.82, r = 0.88,
r = 0.72, respectively). Similarly, PUFA results were associated with total-body, arm, spine and pelvis
BMD (r = 0.80, r = 0.77, r = 0.88, r = 0.74, respectively). Moreover, α-tocopherol equivalents (Eq) results
were associated with total-body, arm, and spine BMD (r = 0.68, r = 0.71, r = 0.72, respectively).
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Table 4. Correlation coefficients between analysed characteristics variables and bone mineral density.

All (n=22) Low (n=11) High (n=11)
Varieties TB Arm Spine Pelvis Leg TB Arm Spine Pelvis Leg TB Arm Spine Pelvis Leg

Age −0.44 * −0.60 ** −0.28 −0.37 −0.51 * −0.21 −0.33 −0.11 −0.41 −0.31 −0.74 ** −0.79 ** −0.47 −0.42 −0.75 **
BMI 0.39 0.37 0.46 * 0.49 * 0.42 0.34 0.18 0.33 0.30 0.42 0.41 0.48 0.57 0.59 0.39
SMI 0.12 0.16 −0.03 −0.04 0.34 0.16 0.05 −0.09 −0.12 0.18 0.06 0.19 −0.05 −0.08 0.15

Body fat 0.27 0.23 0.42 0.52 * 0.18 0.31 0.23 0.40 0.40 0.44 0.20 0.21 0.42 0.56 0.25
Atherosclerosis parameter

cf-PWV −0.23 −0.03 −0.03 −0.14 −0.34 −0.01 0.18 0.22 0.41 0.11 0.37 0.24 0.47 0.24 −0.04
ba-PWV −0.02 0.11 0.29 0.14 −0.20 0.33 0.38 0.58 0.54 0.32 0.30 0.24 0.63 0.46 −0.05

SBP −0.10 −0.01 0.11 −0.14 −0.28 0.28 0.37 0.57 0.46 0.33 0.17 0.00 0.23 −0.07 −0.23
DBP 0.04 0.19 0.19 0.05 -0.03 0.19 0.24 0.41 0.42 0.27 0.53 0.47 0.48 0.28 0.31

Biochemical parameter
Total cholesterol 0.17 0.26 0.44 * 0.39 0.14 0.23 0.34 0.51 0.23 0.21 0.32 0.29 0.54 0.73 * 0.28

Triglyceride 0.09 0.09 0.21 0.29 0.12 −0.34 −0.47 −0.26 −0.29 −0.27 0.50 0.46 0.66 * 0.71 * 0.46
HDL cholesterol −0.09 0.03 −0.13 −0.18 −0.03 −0.26 −0.04 −0.26 −0.38 −0.19 0.11 0.10 0.04 −0.02 0.13
LDL cholesterol 0.21 0.24 0.50 * 0.45 * 0.14 0.44 0.45 0.72 * 0.50 0.37 0.15 0.13 0.39 0.60 * 0.11
HDL percentage −0.14 −0.09 −0.35 −0.34 −0.08 −0.31 −0.17 −0.50 −0.40 −0.25 −0.07 −0.05 −0.26 −0.41 −0.02

Blood sugar −0.27 −0.15 −0.18 −0.21 −0.16 0.00 −0.04 −0.03 −0.19 0.12 −0.35 −0.16 −0.21 −0.15 −0.18
HbA1C −0.27 −0.31 −0.12 −0.36 −0.45 * −0.33 −0.40 −0.09 −0.44 −0.46 −0.08 −0.22 −0.03 −0.21 −0.34

Accelerometry parameter
Total MVPA −0.19 −0.15 0.00 0.04 −0.03 −0.52 −0.40 −0.29 −0.50 −0.39 −0.06 −0.01 0.24 0.39 0.11
Locomotive 0.10 0.18 0.11 0.18 0.34 0.39 0.43 0.47 0.40 0.55 −0.22 −0.01 −0.25 −0.02 0.15

Non-Locomotive −0.24 −0.23 −0.04 −0.02 −0.16 −0.64 * −0.54 −0.43 −0.63 * −0.56 0.05 0.00 0.42 0.48 0.04
Steps −0.01 −0.01 0.01 0.10 0.20 0.20 0.03 0.34 0.22 0.15 −0.20 −0.06 −0.24 0.02 0.22

Nutritional parameters a

Protein −0.15 −0.26 −0.15 −0.15 −0.08 0.02 −0.18 −0.15 −0.15 0.08 −0.51 −0.42 −0.15 −0.32 −0.37
Fat 0.21 0.28 0.18 0.18 0.18 −0.10 -0.11 0.18 0.18 -0.17 0.53 0.35 0.18 0.45 0.39
SFA 0.15 0.27 0.11 0.11 0.15 −0.08 −0.04 0.11 0.11 −0.17 0.42 0.28 0.11 0.35 0.37

MUFA 0.22 0.31 0.21 0.21 0.19 −0.10 −0.04 0.21 0.21 -0.13 0.63 0.47 0.21 0.55 0.45
PUFA 0.20 0.11 0.18 0.18 0.12 −0.07 −0.18 0.18 0.18 -0.15 0.34 0.21 0.18 0.31 0.18

n-3 fatty acids 0.09 −0.14 0.07 0.07 −0.01 0.15 −0.13 0.07 0.07 0.05 0.01 −0.05 0.07 −0.02 −0.06
n-6 fatty acids 0.20 0.18 0.18 0.18 0.14 −0.14 −0.16 0.18 0.18 −0.19 0.41 0.27 0.18 0.38 0.24
Carbohydrate −0.04 0.10 −0.01 −0.01 0.03 0.00 0.15 −0.01 −0.01 0.07 −0.24 −0.11 −0.01 −0.23 −0.17

Sodium -0.21 -0.38 -0.16 −0.16 −0.21 0.02 −0.23 −0.16 −0.16 0.03 −0.47 −0.39 −0.16 −0.33 −0.39
Potassium 0.16 0.06 0.12 0.12 0.20 0.25 0.09 0.12 0.12 0.37 −0.12 −0.08 0.12 −0.02 −0.15
Calcium 0.15 0.01 0.10 0.10 0.20 0.23 0.03 0.10 0.10 0.28 −0.05 −0.10 0.10 −0.01 0.03

Magnesium 0.00 −0.14 −0.02 −0.02 0.05 0.17 0.00 −0.02 −0.02 0.28 −0.39 −0.32 −0.02 −0.24 −0.34
Phosphorus −0.15 −0.26 −0.15 −0.15 −0.08 0.02 −0.18 −0.15 −0.15 0.08 −0.51 −0.42 −0.15 −0.32 −0.37

Iron −0.13 −0.27 −0.18 −0.18 −0.05 −0.05 −0.23 −0.18 −0.18 0.06 −0.52 −0.42 −0.18 −0.41 −0.41
Zinc −0.27 −0.31 −0.18 −0.18 −0.15 −0.18 −0.26 −0.18 −0.18 0.01 −0.46 −0.32 −0.18 −0.17 −0.35

Copper −0.15 −0.27 −0.15 −0.15 −0.10 −0.01 −0.17 −0.15 −0.15 0.10 −0.48 −0.37 −0.15 −0.30 −0.41
Manganese −0.51 * −0.57 ** −0.48 ** −0.48 * −0.43 −0.18 −0.46 −0.48 −0.48 −0.29 −0.74 ** −0.58 −0.48 −0.65 * −0.48
β-carotene eq 0.19 0.10 0.13 0.13 0.26 0.09 −0.01 0.13 0.13 0.30 0.00 0.06 0.13 −0.02 −0.11

Vitamin D −0.02 −0.22 −0.04 −0.04 −0.01 0.17 −0.06 −0.04 −0.04 0.18 −0.61 * −0.49 −0.04 −0.52 −0.46
α-tocopherol eq 0.30 0.21 0.19 0.19 0.33 0.05 −0.06 0.19 0.19 0.21 0.27 0.18 0.19 0.15 0.13

Vitamin K 0.06 −0.04 −0.01 −0.01 0.13 −0.02 −0.16 −0.01 −0.01 0.12 −0.21 −0.13 −0.01 −0.13 −0.20
Vitamin B1 0.02 0.00 0.02 0.02 0.09 0.11 0.05 0.02 0.02 0.35 −0.04 0.00 0.02 0.07 −0.10
Vitamin B2 −0.17 −0.28 −0.20 −0.20 −0.09 −0.12 −0.34 −0.20 −0.20 −0.12 −0.36 −0.34 −0.20 −0.25 −0.20

Niacin −0.06 −0.20 −0.07 −0.07 −0.04 0.10 −0.13 −0.07 −0.07 0.12 −0.42 −0.31 −0.07 −0.26 −0.34
Vitamin B6 0.04 −0.07 0.00 0.00 0.07 0.14 −0.04 0.00 0.00 0.23 −0.18 −0.09 0.00 −0.09 −0.17

Vitamin B12 −0.10 −0.28 −0.12 −0.12 −0.10 0.05 −0.21 −0.12 −0.12 0.00 −0.50 −0.36 −0.12 −0.40 −0.34
Folic acid 0.05 −0.06 −0.01 −0.01 0.14 0.15 −0.02 −0.01 −0.01 0.30 −0.37 −0.26 −0.01 −0.36 −0.30

Pantothenic acid −0.27 −0.31 −0.18 −0.18 −0.15 −0.18 −0.26 −0.18 −0.18 0.01 −0.46 −0.32 −0.18 −0.17 −0.35
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Table 4. Cont.

All (n=22) Low (n=11) High (n=11)
Varieties TB Arm Spine Pelvis Leg TB Arm Spine Pelvis Leg TB Arm Spine Pelvis Leg

Vitamin C 0.23 0.14 0.16 0.16 0.30 0.32 0.19 0.16 0.16 0.46 −0.14 −0.09 0.16 −0.12 −0.10
Suger 0.30 0.50 * 0.15 0.15 0.40 0.34 0.59 0.15 0.15 0.40 0.02 0.01 0.15 −0.31 0.14

Alcohol −0.02 −0.18 −0.04 −0.04 −0.09 0.13 0.07 −0.04 −0.04 0.09 0.16 0.07 −0.04 −0.18 0.10
Genistein −0.20 −0.33 −0.17 −0.17 −0.19 −0.13 −0.30 −0.17 −0.17 −0.18 −0.29 −0.25 −0.17 −0.14 −0.21

TB, total-body; BMI, body mass index; SMI, skeletal mass index; cf-PWV, carotid-femoral pulse wave velocity; ba-PWV, brachial-ankle pulse wave velocity; SBP, systolic blood pressure;
DBP, diastolic blood pressure; MVPA, moderate-to-vigorous physical activity; SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; Eq,
equivalents. a All, n = 20; Low-PWV, n = 9; High-PWV, n = 11. Correlation analyses of the relationships between BMD and clinical features. * p < 0.05, ** p < 0.01.

Table 5. Partial correlation coefficients adjusted for age and BMI between physical activity, nutritional parameters and bone mineral density.

All (n=22) Low (n=11) High (n=11)
Varieties TB Arm Spine Pelvis Leg TB Arm Spine Pelvis Leg TB Arm Spine Pelvis Leg

Accelerometry parameter
Total MVPA −0.19 0.02 −0.06 0.06 0.10 −0.59 −0.29 −0.35 −0.40 −0.37 −0.05 0.04 0.12 0.36 0.48
Locomotive 0.00 0.22 −0.09 0.02 0.38 0.29 0.52 0.38 0.41 0.49 −0.39 0.00 −0.63 −0.29 0.41

Non-Locomotive −0.18 −0.06 −0.02 0.06 −0.03 −0.69 * −0.44 −0.46 −0.52 −0.51 0.20 0.04 0.50 0.53 0.21
Steps −0.04 0.06 −0.12 0.04 0.30 0.05 0.05 0.24 0.27 −0.08 −0.12 0.18 −0.37 0.00 0.67

Nutritional parameters a

Protein 0.05 0.02 −0.16 0.03 0.21 0.06 −0.06 −0.18 −0.06 0.20 −0.09 0.24 −0.19 0.25 0.23
Fat 0.13 0.14 0.18 0.21 0.06 −0.15 −0.18 −0.05 −0.10 −0.25 0.77 * 0.58 0.77 * 0.76 * 0.50
SFA 0.07 0.17 0.08 0.11 0.05 0.00 0.03 0.07 0.00 −0.07 0.37 0.13 0.29 0.45 0.28

MUFA 0.09 0.12 0.18 0.21 0.01 −0.16 −0.16 −0.04 −0.04 −0.24 0.82 ** 0.63 0.88 ** 0.72 * 0.45
PUFA 0.17 0.01 0.25 0.25 0.05 −0.28 −0.43 −0.17 −0.29 −0.47 0.80 ** 0.77 * 0.88 ** 0.74 * 0.49

n-3 fatty acids 0.33 0.11 0.29 0.22 0.25 0.13 −0.09 0.08 0.03 0.02 0.66 0.80 ** 0.66 0.54 0.51
n-6 fatty acids 0.09 −0.03 0.20 0.23 −0.03 −0.41 −0.50 −0.25 −0.37 −0.60 0.79 * 0.71 * 0.88 ** 0.75 * 0.45
Carbohydrate −0.15 −0.01 −0.10 −0.05 −0.08 0.05 0.13 0.12 0.31 0.14 −0.62 −0.54 −0.56 −0.71 * −0.48

Sodium 0.07 −0.02 −0.03 0.09 0.16 0.07 −0.10 −0.10 0.06 0.15 0.01 0.34 0.00 0.20 0.19
Potassium 0.21 0.13 0.03 0.09 0.28 0.15 0.08 −0.04 0.05 0.29 0.30 0.53 0.20 0.26 0.24
Calcium 0.26 0.16 0.09 0.17 0.37 0.24 0.17 0.05 0.11 0.36 0.21 0.20 0.13 0.50 0.34

Magnesium 0.10 −0.01 −0.06 0.05 0.20 0.06 −0.02 −0.13 −0.06 0.18 0.17 0.52 0.09 0.38 0.29
Phosphorus 0.05 0.02 −0.16 0.03 0.21 0.06 −0.06 −0.18 −0.06 0.20 −0.09 0.24 −0.19 0.25 0.23

Iron −0.01 −0.12 −0.23 −0.06 0.14 −0.14 −0.25 −0.35 −0.26 −0.02 −0.04 0.37 −0.16 0.10 0.19
Zinc −0.16 −0.13 −0.30 0.06 0.04 −0.16 −0.23 −0.41 −0.16 0.06 −0.17 0.26 −0.13 0.23 0.11

Copper −0.04 −0.13 −0.19 −0.03 0.07 −0.11 −0.22 −0.30 −0.24 −0.01 −0.04 0.37 −0.09 0.10 0.11
Manganese −0.36 −0.34 −0.42 −0.35 −0.18 −0.14 −0.39 −0.21 −0.16 −0.24 −0.52 −0.08 −0.64 −0.44 0.09
β-carotene eq 0.15 0.03 −0.02 0.09 0.25 −0.04 −0.09 −0.20 0.06 0.17 0.16 0.41 0.21 0.01 −0.04

Vitamin D 0.27 0.13 0.10 0.13 0.36 0.28 0.13 0.08 0.20 0.37 −0.20 0.23 −0.21 0.09 0.11
α-tocopherol eq 0.21 0.03 0.10 0.17 0.24 −0.25 −0.31 −0.30 −0.11 −0.12 0.68 * 0.71 * 0.72 * 0.47 0.36

Vitamin K 0.02 −0.10 −0.14 0.01 0.12 −0.26 −0.34 −0.42 −0.38 −0.16 0.07 0.36 0.10 0.25 0.07
Vitamin B1 0.02 0.02 −0.14 −0.02 0.12 −0.03 −0.04 −0.26 −0.07 0.22 0.28 0.49 0.16 0.14 0.19
Vitamin B2 −0.01 −0.05 −0.18 −0.01 0.15 −0.13 −0.28 −0.31 −0.31 −0.10 0.06 0.24 −0.06 0.40 0.39

Niacin 0.11 0.03 −0.05 0.00 0.18 0.10 −0.06 −0.09 −0.05 0.15 0.08 0.51 0.00 0.15 0.27
Vitamin B6 0.11 0.05 −0.08 −0.07 0.18 0.07 −0.02 −0.13 −0.07 0.19 0.07 0.34 −0.06 −0.07 0.09

Vitamin B12 0.18 0.04 0.01 0.03 0.24 0.15 −0.06 −0.04 −0.03 0.14 −0.14 0.28 −0.14 0.12 0.18
Folic acid 0.11 0.01 −0.09 −0.01 0.25 0.04 −0.04 −0.14 0.04 0.22 −0.09 0.25 −0.18 −0.15 0.04

Pantothenic acid −0.16 −0.13 −0.30 0.06 0.04 −0.16 −0.23 −0.41 −0.16 0.06 −0.17 0.26 −0.13 0.23 0.11
Vitamin C 0.27 0.20 0.09 0.12 0.39 0.24 0.18 0.06 0.17 0.40 0.19 0.44 0.13 0.12 0.25

Suger 0.13 0.34 0.04 −0.01 0.25 0.34 0.56 0.45 0.45 0.41 −0.33 −0.45 −0.59 −0.63 −0.11
Alcohol 0.05 −0.11 0.03 −0.17 −0.03 0.04 0.06 0.00 −0.26 −0.03 −0.09 −0.38 −0.36 −0.51 −0.24

Genistein −0.10 −0.23 −0.15 −0.03 −0.08 −0.27 −0.40 −0.34 −0.54 −0.37 0.15 0.35 0.10 0.42 0.31

TB, Total body; cf-PWV, carotid-femoral pulse wave velocity; ba-PWV, brachial-ankle pulse wave velocity; SBP, systolic blood pressure; DBP, diastolic blood pressure; MVPA,
moderate-to-vigorous physical activity; SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acids; Eq, equivalents. a: All n = 20, Low n = 9, High
n = 11. * p < 0.05, ** p < 0.01.



Int. J. Environ. Res. Public Health 2020, 17, 1620 9 of 15

4. Discussion

This study was performed to investigate the associations of physical activity and nutrient intake
with BMD in middle-aged women with high levels of arterial stiffness. To our knowledge, there have
been no previous studies directly comparing physical activity and nutrient intake in middle-aged
women with low and high levels of arterial stiffness.

The main results of our study were as follows: 1) in the High-PWV group, total-body, arm and leg
BMD were negatively associated with age; 2) in the High-PWV group, a positive partial correlation was
found between the number of steps and leg BMD after adjusting for age and BMI; 3) in the High-PWV
group, partial correlations were observed between MUFA, PUFA, α-tocopherol Eq intake and BMD.

In the High-PWV group, BMD was negatively associated with age. Previous studies have
demonstrated that early postmenopausal women can be “fast bone losers” (bone loss > 3% annually)
or “slow bone losers” (bone loss ≤ 3% annually) due to differences in basal bone turnover [45,46].
Sumino et al. reported that PWV was significantly correlated with BMD, but not with age or years since
menopause, based on the results of multivariate regression analysis [47]. In addition, inflammatory
cytokines derived from atherosclerosis can activate osteoclasts and promote bone resorption [21,48],
and endothelial dysfunction due to arteriosclerosis decreases nitric oxide production, which promotes
bone formation [16–20]. These results suggest that middle-aged women with high levels of arterial
stiffness may have a fast rate of bone loss at menopause because the effects of arteriosclerosis and
cytokines were added to the decrease in BMD with aging.

Some studies have highlighted a significant association between the severity of atherosclerosis and
BMD [47,49], with the association being specific to the site of the lesion [50]. Among postmenopausal
women, daily administration of nitroglycerine ointment (NO donor) has been shown to affect arterial
dilation and blood flow, thus increasing bone formation and decreasing bone resorption [51]. These
findings suggest that among women with high levels of arterial stiffness, one of the causes of bone loss
is reduced blood flow, and it is predicted that BMD can be maintained by improving blood flow.

Evans et al. reported that a 9-month walking program with protein supplementation had no effect
on BMD in postmenopausal women [52]. Similarly, Cavanaugh and Cann showed that a 52-week
walking exercise program did not prevent the loss of BMD in early postmenopausal women [53].
In general, walking activity provides only a slight increase in load on the bone compared to resistance
training, and therefore this type of exercise is less effective in promoting bone formation [54,55]. On the
other hand, the positive effects of walking exercise have also been tested in more specific populations.
Yamazaki et al. reported that 12 months of moderate walking exercise in postmenopausal women with
osteopenia or osteoporosis had a positive effect on maintaining BMD and reducing markers of bone
resorption [56]. Kitagawa et al. reported that the number of walking steps showed significant positive
correlations with bone parameters and a significant decrease in bone resorption markers in elderly
women [57]. These studies suggested that the mechanism underlying the positive effect of walking
exercise on BMD appears to involve the suppression of bone resorption. The observations of this study
suggested that walking exercise may maintain or slow the loss of BMD in middle-aged women with
high levels of arterial stiffness due to improved blood flow and reduced bone resorption.

In the High-PWV group, partial correlations were observed between unsaturated fatty acids
(MUFA, PUFA) and α-tocopherol eq intake and BMD. These observations can be explained by
antioxidant and anti-inflammatory effects.

Saturated fatty acids, levels of which were significantly elevated in the PWV-High group,
have been suggested to be atherogenic through induction of endothelial dysfunction [58,59].
Numerous reports have indicated increased oxidative stress and chronic inflammation in patients with
atherosclerosis [60–63]. Inflammatory cytokines (TNF, IL-6, IL-1), which contribute to inflammatory
responses, have been reported to promote osteoclast differentiation [64–67], and oxidative stress was
shown to inhibit osteogenic bone formation and differentiation maturation [21]. The PWV-High group
may have elevated levels of oxidative stress and inflammatory cytokines that resulted in increased
bone resorption and decreased bone formation.
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Oleic acid, a typical monounsaturated fatty acid, and linoleic acid, an n-6 polyunsaturated fatty
acid, have been shown to produce anti-inflammatory cytokines (IL-4, IL-10, IL-13) [33,68]. Moreover,
nitroalkenes generated from oleic acid and linoleic acid under conditions of oxidative stress can exert
anti-inflammatory effects [69].

Zhang et al. investigated whether antioxidant intake was associated with risk of fracture and
whether this association was modified by the smoking status that induces excessive oxidative stress.
The results indicated that vitamin E (antioxidant) intake was associated with reduced risk of fracture
in ever smokers but not in never smokers [70]. Similarly, Melhus et al. examined whether the
dietary intake of antioxidant vitamins may modify the increased fracture risk associated with smoking.
The odds ratio for fracture among recent smokers with a low intake of vitamin E was 3.0. In contrast,
the OR decreased to 1.1 with a high intake of vitamin E. On the other hand, the influence of vitamin E
was less pronounced in former smokers [71].

In addition, Takeshima et al. reported that osteoblast differentiation is inhibited by oxidative stress
and rescued by antioxidant treatment with vitamin E [72]. These studies suggest a role of oxidant stress
in the adverse effects on the BMD, and that insufficient dietary vitamin E intake substantially increases
the risk of fracture in people with high levels of oxidative stress, whereas a more adequate intake
seems to have a protective effect. The above results suggest that UFA and vitamin E may suppress
osteoclast differentiation and activity in the PWV-High group, but not the PWV-Low group, because
the role of UFA and vitamin E intake in BMD may be modified by oxidative stress.

The major limitations of this study were the small sample size, although the nutritional intake
and physical activity of this study may reflect mean values for present Japanese middle-aged
women [42,73–77]. Future studies should investigate the associate physical activity and nutritional
intake to the bone mineral density of women with differences in arterial stiffness with a larger sample
size to evaluate the validity. Second, nutrient intake was self-reported by the participants. Although
BDHQ is the common dietary assessment method used in Japanese studies, it contains a limited list of
food items and is difficult to provide accurate reports of food consumption for the general population.
Therefore, nutrient intake was adjusted for total energy intake with the residual method. Furthermore,
oxidative stress, antioxidant and inflammatory cytokines, as well as nutrients in the blood have not
been investigated. It is unclear whether concentration in blood or dietary intake of these materials is
more important in middle-aged women. Moreover, nutrient interactions may also affect the results.
Further well-designed studies are needed to understand the mechanism and evaluate the effects of
nutrient intake on osteoporosis. Finally, a critical cf-PWV cut-off value of 1000 cm/s has been adopted
for hypertension management or for prediction of the occurrence of cardiovascular events in elderly
people [78–80]. However, the threshold at which arterial stiffness alters osteoporosis has not been
established. Further studies are required to estimate the cut-off value at which arterial stiffness impacts
osteoporosis in postmenopausal women.

5. Conclusions

An understanding of vascular-related bone loss may be necessary for effective and efficient
prevention and treatment of osteopenia in middle-aged women. The recommendation of physical
activity and nutritional intake interventions for the prevention of osteopenia should include
consideration of arterial stiffness.
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