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Abstract

The paper demonstrates that minute-to-minute metabolic response to meals

with different macronutrient content can be measured and discerned in the

whole-body indirect calorimeter. The ability to discriminate between high-car-

bohydrate and high-fat meals is achieved by applying a modified regulariza-

tion technique with additional constraints imposed on oxygen consumption

rate. These additional constraints reduce the differences in accuracy between

the oxygen and carbon dioxide analyzers. The modified technique was applied

to 63 calorimeter sessions that were each 24 h long. The data were collected

from 16 healthy volunteers (eight males, eight females, aged 22–35 years).

Each volunteer performed four 24-h long calorimeter sessions. At each session,

they received one of four treatment combinations involving exercise (high or

low intensity) and diet (a high-fat or high-carbohydrate shake for lunch). One

volunteer did not complete all four assignments, which brought the total

number of sessions to 63 instead of 64. During the 24-h stay in the calorime-

ter, subjects wore a continuous glucose monitoring system, which was used as

a benchmark for subject’s postprandial glycemic response. The minute-by-

minute respiratory exchange ratio (RER) data showed excellent agreement

with concurrent subcutaneous glucose concentrations in postprandial state.

The averaged minute-to-minute RER response to the high-carbohydrate shake

was significantly different from the response to high-fat shake. Also, postpran-

dial RER slopes were significantly different for two dietary treatments. The

results show that whole-body respiration calorimeters can be utilized as tools

to study short-term kinetics of substrate oxidation in humans.

Introduction

The recent surge of interest in metabolic flexibility (MF)

and its quantification (Kelley and Mandarino 2000; Gal-

gani et al. 2008; Sparks et al. 2009a; Stull et al. 2010; Bat-

taglia et al. 2012; Dube et al. 2014; Kahlhofer et al. 2014;

Prior et al. 2014) revitalized attention to the problem of

short-term measurements of substrate oxidation and

energy expenditure in humans. Metabolic flexibility was

brought into focus after the metabolic inflexibility of

oxidative fuel selection has been linked to obesity, insulin

resistance, and type 2 diabetes (Kelley and Mandarino

2000; Galgani et al. 2008). Metabolic flexibility is usually

measured as hour-to-hour fluctuations of the respiratory

quotient (RQ) in skeletal muscle or, at a whole-body

level, as day-to-day difference in RQ or respiratory

exchange ratio (RER) (Galgani et al. 2008). While these

long-term measurements can capture only linear varia-

tions in substrate oxidation, the short-term RQ/RER

kinetics can reveal nonlinear dependences and offer new

insights into short-term oxidative dynamics in humans.

Since indirect calorimetry remains the “gold” standard to

study metabolism, several new techniques have been pro-

posed to calculate instantaneous gas exchange rates

obtained in metabolic chambers (Ortigues et al. 1997;

Nguyen et al. 2003; Granato et al. 2004; Tokuyama et al.
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2007, 2009; Brychta et al. 2009; Gribok et al. 2013). All

published methods demonstrated their ability to recover

short-term dynamics of gaseous exchange rates such as

rates of oxygen consumption or carbon dioxide produc-

tion; however, none were proven to be a reliable tool for

recovery of short-term substrate oxidation data such as

RER. The difficulty of recovering substrate oxidation

kinetics has two facets: first, the RER is a ratio of two

variables and thus its accuracy depends not only on the

uncertainty in the gaseous exchange rates but also on

their absolute values (Taylor 1997; Gribok et al. 2013),

making it more difficult to estimate RER for low-level

activities and during sleep. Second, the accuracy of oxy-

gen and carbon dioxide concentration sensors used in the

mass spectrometers differ greatly. Differences can be as

high as 30 times, with carbon dioxide device being the

more accurate analyzer. The difference emerges from the

different dynamic range of two gasses that need to be

measured.

The availability of a relatively simple analytical tool to

measure minute-to-minute substrate oxidation would

greatly enhance our ability to study key mechanisms of

metabolic flexibility such as the rate of change in sub-

strate oxidation, its response to different macronutrients,

and ultimately its short-term kinetics. Having accurate

substrate oxidation time series data would also provide

an opportunity to analyze metabolic flexibility in the fre-

quency domain, like it is currently performed for heart

rate variability and continuous glucose signals. While

metabolic response to meals is of great importance, the

short-term response to different exercise challenges would

be of great interest also, since along with the caloric

intake, physical activity is the second most important fac-

tor in metabolic regulation, weight gain/loss, and obesity.

Even though literature mostly agrees on what metabolic

flexibility is, the opinions on how to measure it vary quite

widely. According to Kelley and Mandarino (2000), meta-

bolic flexibility is the ability of an organism to switch

“oxidative energy sources” in response to insulin stimula-

tion or exercise challenge. However, the majority of

papers on MF (Ukropcova et al. 2007; Sparks et al.

2009a; Meex et al. 2010) examine DRQ (insulin-stimu-

lated RQ – fasting RQ) as an index of MF. While being a

valid measure of the change in substrate oxidation, the

index tells nothing about the rate of change in substrate

oxidation. As an example, heart rate, whether it is

200 bpm or 60 bpm, is an important indicator of physio-

logical status (Cole et al. 1999); however, the recovery

rate also provide valuable diagnostic and prognostic

information about the subject. Some authors do not

explicitly calculate DRQ, but still use the terminology. For

example, Prior et al. (Prior et al. 2014) studied the

changes in RQ from a fasted state to various low-intensity

exercise sessions which they considered “metabolic flexi-

bility during exercise”. One recent study defined MF as

the change in non-protein RQ (ΔNPRQ) at the end of a

refeeding diet period compared to the end of a caloric

restriction diet period (Kahlhofer et al. 2014). Other

researchers investigated how subjects adapt their fat oxi-

dation to a high-fat diet and consider this metabolic flexi-

bility (Battaglia et al. 2012; Dube et al. 2014).

Bergouignan et al. (2013) has also pointed out the variety

of MF definitions and came up with another way to mea-

sure MF – by the variance of NPRQ and the variance of

insulin.

Metabolic flexibility studies typically use the eug-

lycemic-hyperinsulinemic clamp to assess insulin sensitiv-

ity during a fasted or insulin-stimulated state. RQ is then

measured under fasting and insulin-stimulated conditions

by calorimetry (room, hood) or via blood samples, and

the RQ values would be averaged over a certain period of

time. Unlike the euglycemic-hyperinsulinemic clamp,

room calorimetry alone is noninvasive and allows the

subject to be ambulatory. It also allows for a more physi-

ological response, whereas in the clamp technique, insulin

and glucose are infused via a catheter, and blood mea-

surements would determine the amount of glucose to

infuse from outside the body.

The primary goal of this study was to determine

whether the whole-body calorimeters can be used as tools

to study short-term changes in substrate oxidation in

humans, and the secondary goal was to demonstrate that

the advanced deconvolution techniques can be sensitive

enough to differentiate RER response to meals with dif-

ferent macronutrient content and to different exercise

routines. To achieve these goals, a protocol was designed

to examine the subjects’ RER responses to two different

nutritional and exercise challenges. The main focus of this

paper is the RER response to diet.

Materials and Methods

Participants

The study protocol described in this paper was approved

by the MedStar Health Research Institute Institutional

Review Board and all volunteers provided written,

informed consent. This study was registered at clinicaltri-

als.gov as NCT01987388.

Subjects were recruited from the area around the Belts-

ville Human Nutrition Research Center (BHNRC) and at

the University of Maryland via fliers and emails. Volun-

teers were required to complete a health history question-

naire and come to the Center for a health screening.

During this visit, their height, weight, and blood pressure

were measured and body mass index (BMI) was
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calculated. The volunteers also provided a blood and

urine sample to perform the following tests: lipid panel,

comprehensive metabolic panel, complete blood count

(CBC), thyroid-stimulating hormone (TSH), fasting glu-

cose, and urinalysis. Based on the lab results, it was deter-

mined whether a volunteer was eligible to participate. Of

the eligible volunteers, 16 (eight men and eight women)

were selected to take part in the study (Table 1). Volun-

teers were nonsmokers, and had no history of diabetes,

cancer, or metabolic disorders.

Prior to the calorimeter stays, subjects reported to the

Center to perform a VO2peak test. A metabolic cart

(TrueOne� 2400; Parvo Medics, Inc., Sandy, UT) was

used to determine the oxygen consumption of the air

flowing through the facemask. The test results were used

to set the exercise intensity level for each participant for

the calorimeter exercise protocols.

On the subjects’ third or fourth calorimeter stay, a

dual-energy X-ray absorptiometry (DXA) scan was per-

formed to determine their percent body fat (Hologic

QDR Discovery A, Hologic, Bedford, MA).

Study protocol

The 24-h calorimeter protocol consisted of 2 days. On

Day 1, the subjects came to the Center in the morning to

consume breakfast and receive a packed lunch to take

with them. Subjects were provided a base diet on Day 1

(~58% carbohydrates, 25% fat, and 17% protein). Sub-

jects returned to the Center at ~4:15 PM. They were fitted

with an ambulatory monitoring device (EquivitalTM EQ01

LifeMonitor; Hidalgo Limited, Cambridge, UK) and a

continuous glucose monitoring system (CGMS; iPro2,

Medtronic MiniMed, Northridge, CA) which records

subcutaneous glucose concentration. According to

manufactures website, the accuracy of iPro2 is 9.9% for

adults and 10.1 for children. The ambulatory monitoring

device measures and records heart rate, respiration rate,

skin temperature, body heat flux, activity, body core tem-

perature, and body orientation. To measure the heat flux,

two high-resolution thermistors and a comparator circuit

were used to measure the temperature difference between

the front and the rear of the sensor electronics module.

The heat flux devices have been compared to calibrated

ceramic heat flow disks (Concept Engineering, Old Say-

brook, CT) and they have been shown to have a propor-

tional relationship. These measurements were used to

correlate subject’s activity levels with calorimeter vari-

ables. Both devices were worn throughout the entire stay

and were removed upon exiting the calorimeter. The sam-

pling period of the ambulatory monitoring device was

15 sec, while the continuous glucose monitor (CGM) col-

lected data every 5 min. The volunteers entered the

calorimeter room at 4:30 PM to start the 24-h calorimeter

session. They consumed dinner in the calorimeter at

approximately 6 PM. They had to finish dinner by 6:45 PM

to ensure that they were fasted for 12 h before their base-

line blood draw the following morning. On Day 2 at

~7:15 AM, the subjects received a standard breakfast of

waffles and syrup, which contained 91 g of carbohydrates

(Table 2). They had 15 min to consume breakfast. Blood

samples were collected before and 30, 60, 90, and

120 min after breakfast and lunch to measure glucose,

insulin, and nonesterified fatty acids. Homeostatic model

assessment – insulin resistance (HOMA-IR) was calcu-

lated as described in (Matthews et al. 1985).

Between breakfast and exercise, the subjects had per-

sonal time to browse the Internet, watch TV, or read.

During each calorimeter stay, at approximately 10 AM, the

participants performed one of the two exercise treatments

on the treadmill (Smooth Fitness 7.1HR; Smooth Fitness,

Mt. Laurel, NJ) either high intensity – short duration

(HI) or low intensity – long duration (LI). HI was per-

formed at 85% of the subjects’ VO2peak and involved 4–
5-min sessions on the treadmill with 5 min of rest in

between. LI was one 40 min session on the treadmill at

65% of the subjects’ VO2peak. Staff monitored the exer-

cise sessions to record the start and stop times of the

Table 1. Physical characteristics of the subjects. Mean � SEM.

Males

(n = 8)

Females

(n = 8) Range

Age (years) 29 � 2 25 � 1† 22–34

BMI (kg/m2) 25.3 � 1.6 24.1 � 1.2 19.3–31.0

VO2peak

(mL/kg/min)

43.7 � 4.8 38.9 � 2.1 29.3–63.6

% Body fat* 19.5 � 2.8 28.2 � 2.4† 9.2–37.6

Fasting glucose

(mg/dL)

90 � 2 84 � 3 71–99

Blood pressure

(mmHg)

119 � 5 121 � 7 100–157

70 � 3 70 � 3 58–83

HOMA-IR 1.53 � 0.43 1.70 � 0.39 0.47–4.49

*One female subject dropped before completing a DXA scan.
†Significantly different (p < 0.05).

Table 2. Day 2 standardized menu with macronutrient content.

Energy

(kcal)

Carbohydrate

(g)

Fat

(g)

Protein

(g)

Waffles and syrup 486 91 11 8

High-CHO shake 548 123 3 7

High-fat shake 519 12 51 7
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sessions and to ensure that the subjects were not strug-

gling or having difficulty using the treadmill.

They subjects received a standard lunch at approxi-

mately 12 PM which consisted of either a high-fat (HF) or

high-carbohydrate (HC) shake (Table 2). They were

required to consume the shake in 15 min, and first and

last bite times were recorded. The subjects left the

calorimeter room at around 4:30 PM on day two.

During the whole study, each subject participated in

four treatment combinations:

• A: low intensity – long duration/high-fat shake

• B: high intensity – short duration/high-fat shake

• C: low intensity – long duration/high-carbohydrate

shake

• D: high intensity – short duration/high-carbohydrate

shake

The treatment sequence was developed using two

4 9 4 Latin Squares for each gender. Subjects were then

randomly assigned to a treatment sequence. Eight men

and seven women completed the study. One woman

dropped out of the study after completing three out of

four treatments and did not complete a DXA scan. Her

results for the treatments that she did complete were

included in the analysis.

Description of the calorimeter chamber

The Beltsville Human Nutrition Research Center (indi-

rect, open-circuit, room-size chamber) is a “push” type

calorimeter with total physical volume of 21,000 L

designed to comfortably house subjects for at least 24 h

while measuring the subject’s respiratory gas exchange

rates, energy expenditure, and respiratory quotient. Cur-

rently, BHNRC has three identical chambers each

equipped with furniture, a personal computer, TV, tread-

mill, and a “Murphy Style” folding bed. The air is thor-

oughly mixed inside the chamber by a ceiling fan.

The mole fractional concentrations of nitrogen, oxygen,

argon, helium, methane, and carbon dioxide in the incur-

rent and excurrent air are measured every 80 sec using a

multiple-gas analyzer (model MGA-1200; Perkin-Elmer

Industrial Instruments, Pomona, CA). The data are later

resampled for analysis to have 1 min sampling period. This

device is a multiple collector mass spectrometer designed

to measure the partial pressure of helium [2% full scale

(FS)], methane (1% FS), nitrogen (100% FS), oxygen (22%

FS), carbon dioxide (2% FS), and argon (2% FS)] in air

within 0.1% FS. The multiple-gas analyzer can accurately

measure differences in nitrogen concentration (60.003%

FS; as determined from changes in inlet air composition

over 24 h and differences in inlet and outlet air composi-

tion during equilibrium), FO2 (60.02% FS), and FCO2

(60.03% FS) in chamber air so that oxygen depletion and

carbon dioxide accumulation can be determined. The

chamber air flow rate that is, inlet dry air flow rate at stan-

dard temperature and pressure, is measured every 5 sec

using a laminar flow element (CME Vol-O-Flow11–25–
300A; Aerospace Control Products, Davenport, IA), and a

1-min average (typically 1.5 L/sec) is determined. The

accuracy of the flow meter is 0.5% of the FS (300 L/min)

according to manufacturer’s specifications. The volumetric

flow rate is a function of the pressure drop across the lami-

nar flow element (Pd; electronic manometer, Datametrics,

Wilmington, MA), the inlet air temperature (Ti; model

RTDPR-14–2–100, Omega Engineering, Stamford, CT),

the absolute air pressure (Pi; model PX623–020A10CV,
Omega Engineering), and the inlet water vapor fraction

(FH2Oi; model 1200APS dew point hygrometer, General

Eastern Instrumentation, Watertown, MA). A complete

description of the calorimeter system is available (Seale

et al. 1991) with the only major change being rewriting of

the software using LabViewTM (National Instruments

Corp, Austin, TX) and relocating to a new facility). Overall

system performance is routinely checked by burning a

known amount of pure ethanol in calorimeter chambers.

The major advantage of the metabolic chamber over meta-

bolic cart is that, provided an accurate deconvolution algo-

rithm is deployed, it can measure minute-by-minute

metabolic response in near-free living conditions for 24 h

or longer. Such measurements would be prohibitive with

the cart due to constraints imposed on the subject.

Concentrations’ data deconvolution using
augmented regularization

The molar balance equation for gaseous exchange rates in

the calorimeter can be formulated as, (Brown et al. 1984;

Moon et al. 1995):

Rgas ¼ Finair �
Cin
N2

Cout
N2

� Cout
gas

 !
� Fin

air � Cin
gas

� �

þ V
dCout

gas

dt
� V � C

out
gas

Cout
N2

� dC
out
N2

dt

(1)

where Rgas is the rate of gas production (CO2 and CH4)

or gas consumption (O2) by the subject in the chamber

in liters (L) per minute (min) (L/min). Fin
air is the mea-

sured inlet air flow rate in L/min, Cin
gas and Cout

gas are the

measured mole fractional concentrations of O2, CO2, or

CH4 in the inlet and outlet air, and V is the volume of

the chamber in liters. Both, Finair and V have been

corrected to standard temperature, pressure, and dry

(STPD) conditions. The inlet Cin
N2

and outlet Cout
N2
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nitrogen concentrations in Eq. 1 are given by

Cin
N2

¼ 1� Cin
O2

� Cin
CO2

and Cout
N2

¼ 1� Cout
O2

� Cout
CO2

The

ratio HF ¼ Cin
N2

Cout
N2

is called Haldane factor and is used to cal-

culate incurrent or excurrent flow rates when only one of

them is measured (Brown et al. 1984; Moon et al. 1995).

Notice, that the rate Rgas is negative for O2 as the oxygen

is actually consumed, not produced. Assuming that nitro-

gen is neither consumed nor produced by the subject in

the chamber, hence its concentration’s derivative is practi-

cally zero, we can neglect the last term V � C
out
gas

Cout
N2

� dC
out
N2

dt in the

Eq. 1 thus simplifying it to:

Rgas ¼ Fin
air � Cout

gas �HF� Cin
gas

� �
þ V

dCout
gas

dt
(2)

and subsequently Eq. 2 is used in all our calculations.

The goal of the following derivation is to demonstrate

that recovering gaseous exchange rates is equivalent to

solving Fredholm integral equation of the first kind. Since

solving an integral equation is usually an ill-posed prob-

lem, the regularization is applied to obtain correct solu-

tion. By rearranging the terms in Eq. 2, we can arrive to

the differential equation in its standard form:

dCout
gas

dt
þ Finair �HF

V
� Cout

gas ¼
Rgas

V
þ Fin

air

V
� Cin

gas (3)

and putting
Finair �HF

V ¼ a yields

dCout
gas

dt
þ a � Cout

gas ¼
Rgas

V
þ Fin

air

V
� Cin

gas (4)

where the time constant of the chamber can be expressed

as T = 1/a.
Supplying Eq. 4 with zero initial conditions we arrive

to the following initial value problem:

dCout
gas

dt
þ a � Cout

gas ¼
Rgas

V
þ Fin

air

V
� Cin

gas;C
out
gas 0ð Þ ¼ Cin

gas 0ð Þ ¼ 0

(5)

This initial value problem has the following actual

solution:

V � Cout
gas �

1

V
�
Z t
0

e�aðt�sÞ � Fin
air sð Þ � Cin

gasðsÞds
2
4

3
5

¼
Z t
0

e�aðt�sÞ � RgasðsÞds (6)

where the left-hand side represents the difference between

outlet and inlet partial gas volumes and the right-hand

side is a convolution integral between chamber’s impulse

response e�at and the gas exchange rate Rgas. Notice that

the left-hand side of Eq. 6 can be measured, while the

right-hand side contains analytically available exponential

function with known decay parameter a, and the

unknown part Rgas, which needs to be found. In practice,

Eq. 6 has to be discretized to turn it into a system of lin-

ear equations. After discretization, the minimization

problem becomes (Tokuyama et al. 2007, 2009; Gribok

et al. 2013):

argmin k P �H � R k2 þ k� k L � R k2� �
(7)

where P is noise-contaminated N 9 1 vector of the par-

tial volumes differentials sampled at times t0, t1, t2,. . .

tN�1, H is a lower triangular N9N matrix of calorimeter

room’s impulse response function, R is an N 9 1 vector

of unknown gas exchange rates sampled at times t0, t1,

t2,. . .tN�1. The trade-off parameter k is the regularization

parameter controlling the degree of smoothness of the

regularized solution, while L is an N � 2 9 N band

matrix of discrete approximation of the second-order

derivative. The k�k denotes Euclidean norm. To be used

in Eq. 7, the P vector was resampled to 1 min intervals.

Notice that expression 7 is a functional, that is it maps

solution vector R into a number.

For this paper, the following algorithm was used to

recover gaseous exchange rates and RER from concentra-

tions measurements:

1 The CO2 production rate: RCO2
was obtained by solving

the minimization problem represented by functional 7.

The regularization parameter kCO2
was selected using

the discrepancy principle (Morozov 1993) with the

upper bound on the noise variance in CO2 concentra-

tions obtained from the previously collected vacant

rooms’ data.

2 Having calculated the CO2 production rate, we used it

as an a priori estimate for the O2 consumption rate,

by including it into minimization algorithm via func-

tional 8. Functional 8 was minimized with respect to

RO2
.

argmin k P �H � RO2
k2 þk� k L � ðRO2

� RCO2
Þ k2� �

(8)

3 Having obtained gaseous exchange rates, RER is calcu-

lated as RCO2
=RO2

.

Notice that functional 8 is minimized for RO2
while

RCO2
is used as an a priory estimate constraining further

the range of possible solutions for RO2
. The use of RCO2
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as an a priori estimate for the RO2
is motivated by the

fact that under aerobic metabolism, the two signals are

highly correlated as increase in one causes corresponding

increase in the other. However, since out of the two sig-

nals, the RCO2
is the more accurate one, it can be used as

an additional constraint for its nosier counterpart - RO2
.

As was pointed out above, the lower accuracy in RO2
is

especially detrimental for RER calculations as RO2
is in the

denominator and its small values can greatly affect the

RER’s estimate.

The analysis of the penalty term in Eq. 8 reveals that

minimizing the second-order derivatives of the difference

between two functions, we maximize their correlation.

The regularization parameter kO2
for RO2

can be selected

either by applying the discrepancy principle or by setting

kO2
to match the correlation between two signals obtained

from a more accurate device, for example, a metabolic

cart. During aerobic respiration, RO2
and RCO2

are highly

correlated because increase in consumption inevitably

causes a corresponding increase in production. For this

study, since accurate minute-to-minute gaseous exchange

rates were obtained for each subject during VO2peak

tests, those exchange rates were used to calculate the cor-

relation coefficient, and the regularization parameter kO2

was set to match the correlation coefficient obtained on

the metabolic cart data collected while subjects were

metabolizing aerobically. For the high-intensity exercise

sessions, the regularization parameter was selected using

the discrepancy principle since the subjects were most

likely exercised at levels above their gas exchange thresh-

olds and the correlation coefficient did not reflect the

relationships between gaseous exchange rates.

The performance of the deconvolution algorithm was

previously described in detail in (Tokuyama et al. 2007,

2009; Gribok et al. 2013).

Results

Figure 1 shows concurrent 24-h time series data for oxy-

gen consumption-RO2
, subcutaneous glucose concentra-

tions-CGM, and respiratory exchange ratio-RER. The

curves represent averaged over 16 sessions (15 in case of

treatment combination D) time series for each of the four

treatment combinations. The top panel in Figure 1 shows

the concurrent data for treatment combination A when

the low-intensity long-duration exercise was combined

with a high-fat shake at lunch. Panel B (second from the

top) shows high-fat shake combination with high-inten-

sity short-duration exercise. The bottom two panels, C

and D, show high-carbohydrate shake combined with

low-intensity and high-intensity exercise sessions, respec-

tively. All time series data were resampled to 1 min sam-

pling period using a combination of linear interpolation

and anti-aliasing filter.

Figure 2 shows concurrent time series data for treat-

ment combination D along with time stamps for meals

and exercise activity. Also, the RER postprandial slope is

indicated as a mean to quantify post meal substrate oxi-

dation response.

Figure 3 shows the exercise period for treatment com-

bination D. The time lag s between the peak in oxygen

consumption and peak in RER is typical for high-inten-

sity exercises and is due to excess postexercise CO2 pro-

duction.

Figures 4, 5, 6 show the average RER time series for

different treatment combinations along with 95% point-

wise confidence intervals calculated as mean value � t

(1 � a/2; n � 1)�SE(mean value), where the t(1 � a/2;
n � 1) is the percentile of the Student distribution with

n � 1 degrees of freedom, and SE is the standard error of

the mean value calculated as s/√n with s being sample

Figure 1. Concurrent time series data for four treatment combinations used in the study. A-low intensity/high fat, B-high intensity/high fat, C-

low intensity/high carb, D-high intensity/high carb.
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Figure 2. Concurrent data for treatment combination D, high intensity/high carb.

Figure 3. Exercise period for treatment combination D, high intensity/high carb.

Figure 4. Respiratory exchange ratio (RER) values along with 95% pointwise confidence intervals (CI). B-high intensity/high fat, C-low intensity/

high carb, D-high intensity/high carb.
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standard deviation around the mean value. For this study,

the value of n = 16 for all treatment combinations but D,

where n = 15, due to a subject’s dropout. These confi-

dence intervals are pointwise, not simultaneous, and can

only be used to test statistically significant difference

between the average curves not intracurve variability. The

95% pointwise confidence intervals are shown as shaded

bands around the average curves. Figure 7 shows average

values for postprandial RER slope (0.0049 (SE = 0.0004)

vs. 0.0033 (SE = 0.0004); p = 0.0059) along with standard

error bars. The RER slope was calculated separately for

each calorimeter session. The mean values of the slope

were estimated for high-carbohydrate and high-fat shakes

regardless of the exercise intensity, since there was no sig-

nificant shake*exercise interaction. Thus, the slope values

at Figure 7 are the averages over 32 and 31 sessions with

corresponding error bars. The high-carbohydrate average

is calculated over 31 trials since one subject did not per-

form the D treatment combination. The slope was calcu-

lated the way it is shown in Figure 2. Linear least squares

regression was fitted to the RER data starting at 12:00 pm

and ending at the maximum RER value after lunch. The

dependent or paired-samples t-test was used to check for

differences in RER slopes.

Discussion

For many decades, indirect whole-body respirometry has

been the method of choice to study energy expenditure

and substrate oxidation in humans. The majority of these

studies reported daily averages for such metabolic vari-

ables as energy expenditure and respiratory exchange

ratio. While the daily averages undoubtedly provide valu-

able physiological information, they do not provide

Figure 5. Respiratory exchange ratio (RER) values along with 95% pointwise confidence intervals (CI). A-low intensity/high fat, C-low intensity/

high carb, D-high intensity/high carb.

Figure 6. Respiratory exchange ratio (RER) values along with 95% pointwise confidence intervals (CI). A-low intensity/high fat, B-high intensity/

high fat, C-low intensity/high carb, D-high intensity/high carb.

2016 | Vol. 4 | Iss. 12 | e12835
Page 8

Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Physiological Reports

published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

Instantaneous Metabolic Response A. Gribok et al.



insights into temporal variability, rate of change, and fre-

quency content of metabolic variables. On the other hand,

the short-term physiological measurements have recently

enjoyed an unprecedented level of success and technologi-

cal advancements. Heart rate variability, continuous glu-

cose monitoring, and core body temperature telemetry

pills are just a few examples of such short-term measure-

ments which are clinically useful and are available as

wearable modalities. However, there is a paucity of stud-

ies that have examined and presented short-term substrate

oxidation response to meals in humans. One notable

exception is (Treuth et al. 2003) where authors present

and analyze hourly average RERs throughout the 24-h

calorimetry study after consumption of the low-fat, high-

carbohydrate and high-fat, low-carbohydrate meals. How-

ever, the data are 1-hour mean values and no pointwise

statistical analysis was performed on time series data to

demonstrate that two meal treatments can be discerned.

The goal of this paper is to address this lack of experi-

mental material and provide data and evidence that the

whole-body calorimeter can be used to study short-term

substrate utilization in humans under different exercise

and dietary treatments.

Figure 1 shows the summary of the time series data for

all four treatment combinations. It is clear that the HC

lunch meal treatments produced significant elevation in

subcutaneous glucose concentrations, as expected. The

rise in glucose concentration after HC lunch is compara-

ble for both HI and LI exercises. Also, since breakfast

contained a significant amount of carbohydrates, the

CGM response after this meal is comparable with the

response to HC lunch treatment. The breakfast macronu-

trient content was identical for all four treatment combi-

nations (Table 2), which produced similar post meal

response shown in Figure 1 with subcutaneous glucose

concentration peaking around 8:00 AM.

To demonstrate the concurrent dynamics of the three

time series in more detail, Figure 2 shows the RER,

CGM, and oxygen consumption rate for only one treat-

ment combination-D. This treatment combination

included high-intensity exercise and high-carbohydrate

lunch. Postprandial elevations in glucose and RER are

clearly visible. Notice, as subjects woke up at around

6:15–6:30 AM, their glucose levels started to rise along

with oxygen production. Consumption of breakfast signif-

icantly accelerated the rise in glucose concentration. Fig-

ure 2 also shows a well-coordinated concurrent rise

between postprandial CGM and RER responses. It is also

clear that the CGM response to meals is significantly

more acute than RER as CGM recovery rate is higher

than RER. For example, after HC lunch shake, the glucose

concentration reaches its maximum and starts to decrease

within an hour, while RER stays elevated for few more

hours and starts to fall off at approximately at 3:00 PM.

By that time, glucose concentration essentially reached its

baseline. The temporal dynamics of RER is especially

important as it allows estimating such important variables

as RER’s rate of change and its correlation with glucose

concentration. The post lunch RER response shows that it

takes about an hour for substrate oxidation to change

from the baseline value of ~0.83 to predominantly carbo-

hydrates utilization with RER = 0.91. Having reached the

maximum value, the RER then remained plateaued for

approximately two hours. The subjects were asked to con-

sume the lunch shakes within 15 min, however, it rarely

took more than 2 min, and thus the HC lunch can be

considered as a nutritional carbohydrate delta function

and its response represent dynamical characteristics of the

system.

Figure 3 shows detailed response to HI exercise chal-

lenge for treatment combination D. This is a zoomed-in

part of exercise in Figure 2. The four 5-min of HI exer-

cise bouts are clearly visible along with four peaks in

RER. The RER and RO2
time series are perfectly negatively

correlated during the exercise. The time lag s between

two signals is due to excess postexercise carbon dioxide

production, which is caused by lactic acid buffering by

sodium bicarbonate (Wasserman et al. 1973; Beaver et al.

1986; Yunoki et al. 1999; Peronnet and Aguilaniu 2006;

Yano et al. 2009). The exercise rate at 85% of VO2peak is

above the lactate threshold for most individuals and this

increase in lactate concentration causes reduction in

bicarbonate concentration in the blood, which in turn

causes elevated CO2 production (Wasserman et al. 1973).

After the exercise, the produced lactic acid is buffered to

CO2 causing the continuous rise in CO2 production rate,

while the oxygen consumption starts to fall. Since

RER = RCO2
/RO2

, the concurrent drop in denominator

and rise in the numerator lead to higher RER values. The

Figure 7. Slope of RER following the treatment lunch. p = 0.0059;

HC, high carbohydrate; HF, high fat, RER, respiratory exchange

ratio. The error bars are the standard errors of the means. The units

of the RER’s slope is changes in RER per minute.
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drop in RER at the beginning of the exercise at around

10:13 AM is attributed to reported (Linnarsson 1974;

Hughson and Inman 1985) CO2 storage at the onset of

constant load exercise. Also, of note is a continuous

downward trend in subcutaneous glucose concentration

which can be attributed to usage of muscle glycogen dur-

ing intensive exercise.

Figures 4, 5, 6 present the main results reported in this

paper. The upper panel in Figure 4 shows the difference

in dietary treatment response for combinations B and D.

Both treatment combinations included high-intensity

exercise with a high-fat or high-carbohydrate lunch treat-

ments, respectively. Prior to those lunch treatments, both

combinations are identical in terms of exercise and diet-

ary conditions. After 12:00 PM, the RER response for two

treatment combinations starts to diverge with significantly

higher RER values for combination D, which included

high-carbohydrate lunch shake. The shaded areas around

the curves are the 95% pointwise confidence intervals and

they cease to overlap at around 12:30 PM indicating that

the two curves are pointwise statistically different from

that time on with p < 0.01 (Cumming et al. 2007). For

the remainder of the calorimeter session, the 95% confi-

dence intervals are widely separated indicating that the

two curves are statistically different with p � 0.01 (Cum-

ming et al. 2007). The bottom panel in Figure 4 illus-

trates substrate oxidation response for treatment

combinations C and B. The treatment combination C

included low-intensity exercise and high-carb lunch treat-

ment. An important observation is that the metabolic

response to high-carb meal is very similar to the treat-

ment combination D, which demonstrates that substrate

oxidation response does not depend on the intensity of

the preceding exercise. It is also obvious that the two

curves stayed statistically different for the rest of the

calorimeter session. Figure 5 shows concurrent substrate

oxidation response for treatment combinations D and A,

as well as for C and D. Notice, the Y-axis scale on the

bottom panel is different from the top panel. The top

panel demonstrates that the exercise intensity prior to the

meal treatment does not affect the substrate oxidation

response, while the bottom panel shows that the RER val-

ues are statistically different when two different meal

treatments are administered after low-intensity exercise.

Notice that the substrate utilization remained statistically

different for 4 h after the meal treatments. Figure 6 is

presented to demonstrate consistency of the described

approach with respect to dietary responses. The top panel

shows RER time series for treatment combinations C and

D. The only difference between these two combinations is

the exercise intensity; the meal treatments are identical.

Aside from the exercise period, the 95% pointwise confi-

dence intervals significantly overlap indicating that the

two curves are statistically identical and the utilized calcu-

lation technique produce consistent repeatable results.

The bottom panel in Figure 6 demonstrates the same

degree of repeatability for high-fat treatments combined

either with high- or low-intensity exercise. Figure 7 sum-

marizes statistical information on the differences between

metabolic responses to two lunch treatments. The RER

slopes, shown in Figure 2, for two types of dietary

responses were calculated for each calorimeter session.

The average slope for each dietary treatment regardless of

the intensity of the preceding exercise was calculated and

the average values along with standard error bars are

plotted. It can be seen that the slopes are statistically dif-

ferent, demonstrating the sensitivity of the approach to

different macronutrient contents.

The current results indicate that minute-to-minute sub-

strate oxidation response can be effectively measured in

whole-body indirect calorimeter. The results of this study

also demonstrate that the minute-to-minute measure-

ments of substrate oxidation in the whole-body calorime-

ter can be performed with statistically meaningful

consistency. One of the definitions of metabolic flexibility

(Sparks et al. 2009b) is “the capacity for skeletal muscle

to acutely shift its reliance between lipids and glucose

during fasting or in response to insulin, such as in post-

prandial conditions”; however, very few published results

convincingly demonstrated that the “acute” response to

dietary challenges can be effectively measured in the

whole-body calorimeter, yet the whole-body respirometry

remains the “gold standard” technique for metabolic mea-

surements in humans. The ability to measure short-term

substrate oxidation response is essential to understanding

obesity, diabetes, and metabolic disorders. The ability to

measure such response in the whole-body calorimeter also

significantly broadens the spectra of available tools and

allows conducting studies on metabolic response under

nearly free leaving conditions. Additionally, proliferation

of hand held and wearable physiological sensors along

with the arrival of implantable devices raised the problem

of their thorough validation under free living conditions.

The majority of the new wearable devices target whole-

body short-term energy expenditure and metabolism as

one of their major output variables and highly accurate

minute-to-minute calorimeter room measurements may

provide a much needed test bed under free living condi-

tions.

Disclaimer

The opinions or assertions contained herein are the pri-

vate views of the author(s) and are not to be construed as

official or as reflecting the views of the Army or Depart-

ment of Defense.
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