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Simple Summary: Cancer cell surface–exposed calreticulin (ecto-CRT) is the primitive form of signal
during immunogenic cell death (ICD). It is a well-known candidate to allow “eat-me” signal from
dying cells, which further contributes to their perception in directing the immune system. Various
forms of anticancer agents and ionizing radiation can facilitate the ICD via ecto-CRT exposure.
We engineered CRT-specific human fibronectin domain III (FN3) monobodies (FN3-CRT-Rluc8)
fused with peptide sequences for CRT imaging. We assessed the theragnostic use of engineered
monobodies for ecto-CRT imaging during ICD for early therapeutic prediction response. Our findings
demonstrated that engineered monobodies could involve in targeting dying cells via anticancer-
related immunogenic chemotherapeutic treatments, and the obtained imaging results could be used
to detect pre-apoptotic cells in ICD. Our data provides the novel FN3-based ecto-CRT imaging
method and enables the early immuno-therapeutic response predictions, thereby facilitating early
determinations in cancer chemotherapies.

Abstract: Surface-exposed calreticulin (ecto-CRT) plays a crucial role in the phagocytic removal of
apoptotic cells during immunotherapy. Ecto-CRT is an immunogenic signal induced in response
to treatment with chemotherapeutic agents such as doxorubicin (DOX) and mitoxantrone (MTX),
and two peptides (KLGFFKR (Integrin-α) and GQPMYGQPMY (CRT binding peptide 1, Hep-I))
are known to specifically bind CRT. To engineer CRT-specific monobodies as agents to detect im-
munogenic cell death (ICD), we fused these peptide sequences at the binding loops (BC and FG)
of human fibronectin domain III (FN3). CRT-specific monobodies were purified from E. coli by
affinity chromatography. Using these monobodies, ecto-CRT was evaluated in vitro, in cultured
cancer cell lines (CT-26, MC-38, HeLa, and MDA-MB-231), or in mice after anticancer drug treatment.
Monobodies with both peptide sequences (CRT3 and CRT4) showed higher binding to ecto-CRT than
those with a single peptide sequence. The binding affinity of the Rluc8 fusion protein–engineered
monobodies (CRT3-Rluc8 and CRT4-Rluc8) to CRT was about 8 nM, and the half-life in serum and
tumor tissue was about 12 h. By flow cytometry and confocal immunofluorescence of cancer cell
lines, and by in vivo optical bioluminescence imaging of tumor-bearing mice, CRT3-Rluc8 and CRT4-
Rluc8 bound specifically to ecto-CRT and effectively detected pre-apoptotic cells after treatment
with ICD-inducing agents (DOX and MTX) but not a non-ICD-inducing agent (gemcitabine). Using
CRT-specific monobodies, it is possible to detect ecto-CRT induction in cancer cells in response to
drug exposure. This technique may be used to predict the therapeutic efficiency of chemo- and
immuno-therapeutics early during anticancer treatment.
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1. Introduction

Immunogenic cell death (ICD) is a form of apoptotic cell death resulting in a regulated
activation of the immune response and is generally caused by endoplasmic reticulum
(ER) stress–associated apoptosis [1]. Calreticulin (CRT) is a chaperone with a molecular
weight (MW) of 46 kDa that is abundantly localized to the ER lumen, highly bound with
Ca2+, and involved in various cellular processes associated with Ca2+ signaling in the
control of cellular responses [2,3]. Mammalian CRT proteins in various species are highly
conserved [4,5]. CRT exposed on the cell surface of the plasma membrane (ecto-CRT) is
a primitive pro-phagocytic signaling protein [6]. The cell surface expression of ecto-CRT
is highly induced by chemo-, radio-, and ablative immunotherapies [7,8]. Expression of
ecto-CRT serves as an “eat-me” signal on the cell surface, resulting in ICD. Immunogenic
antitumor agents including doxorubicin (DOX) and mitoxantrone (MTX) induce ICD via
ecto-CRT [9–16]. Conversely, gemcitabine (GEM), a non-immunogenic drug, does not result
in the translocation of CRT to the plasma membrane and fails to induce ICD [17–20]. Most
importantly, ecto-CRT can also be used as a marker for the prediction of early therapeutic
responses to anticancer agents [8,10,19], which has a significant impact on the development
of cancer immunotherapies.

Fibronectin (FN) is a high MW (~500 kDa) glycoprotein found in plasma and extracel-
lular matrix (ECM) and specifically binds to integrins associated with membrane-spanning
receptor proteins [21,22]. FN contains three types of repeated domains, including an
arginine–glycine–aspartic acid (RGD) motif that is related to signaling events occurring
via integrin activation [23,24]. The structure of the FN type III domain (FN3) is well de-
fined [25]. This domain is a monomeric structure with seven antiparallel β-sandwiches
and three loops (BC, DE, and FG) with variable length and sequence [26–28]. This domain
is found in various proteins in animals and is structurally similar to immunoglobulin-like
regions of antibodies. This domain has become one of the most widely used biological
scaffolds to generate new binding proteins (monobodies) [25,29]. As scaffolds for artificial
binding proteins, monobodies can be used to overcome many of the disadvantages of
antibodies, such as their large molecular size and structural complexity [30,31]. Among
them, the VEGFR2-targeted monobody CT-322 has been tested in phase 2 clinical trials [32],
but showed poor efficacy in recurrent glioblastoma possibly due to a lack of clinical effect
from inhibiting VEGFR2 [33]. In spite of these clinical failures, researchers have shown
continued interest in developing safe monobodies [32,34,35]. These results validate the use
of the FN3 domain as a protein-binding scaffold.

Luciferase proteins of photo-proteins family can be found in species of marine or-
ganisms, prokaryotes, and some insects. Green bioluminescent Rluc8 protein/enzyme is
normally found in Renilla luciferase and Renilla reniformis, which has a wider bioimaging ap-
plication as reporters in prokaryotes and eukaryotes [36]. The bioluminescence of this Rluc8
is generated via catalyzation of coelenterazine oxidation, thereby releasing the blue light in
a broad range at 480 nm through imidazolopyrazine structure [37,38]. Reports stated that
Rluc8 can be used as a reporter protein to monitor the gene expression in both in vitro and
in vivo models [39–42]. Thus, we chose this Rluc8 as a reporter protein of the study and
demonstrated in vivo bioluminescence imaging potentials of our CRT monobodies.

Lipoprotein receptor–related protein (LRP) is the signaling co-receptor for ecto-CRT. It
consists of two noncovalently attached subunits. LPR binds to the NH2-terminal heparin-
binding domain of CRT [43]. Previously, a CRT-targeting synthetic peptide, Int-α (KLGF-
FKR), was reported, and its dissociation constant (Kd) against CRT was 1.868 µM [8,44,45].
The CRT-binding peptide, Hep-I (GQPMYGQPMY), was also reported to target to CRT
with an efficiency of 34% and 11% in the solid and soluble phases, respectively [43,46,47].
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Although CRT-targeting peptides were easily identified from various library screens and
chemically synthesized, their low affinities have restricted the in vivo application.

In this report, we aimed to generate highly specific CRT-targeting monobodies using
the structurally immobilized CRT-targeting peptides Int-α and Hep-I. After engineering
the monobodies by grafting these peptide sequences at their binding loops (BC and FG),
we characterized them for ecto-CRT targeting efficiency in vitro and in vivo after treat-
ment of tumor-bearing mice with immunogenic and non-immunogenic anticancer agents
(Scheme 1).
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Scheme 1. Schematic representation of the early detection of immunogenic cell death (ICD) in cul-
tured tumor cells and mouse models. After anticancer drug treatment, calreticulin (CRT) translocate
from the endoplasmic reticulum to the plasma membrane of tumor cells (ecto-CRT). Ecto-CRT is
detected with the injected Rluc8-fused CRT monobodies, and the target binding is assessed using a
bioluminescence imaging system. The luminescent signal represents ICD after chemotherapy.

2. Materials and Methods
2.1. Chemical, Reagents, and Cell Lines

The recombinant rabbit calreticulin protein (rCRT, ab15729) was purchased from
Abcam (Cambridge, UK). Mouse colon (CT-26 and MC-38), human cervix (HeLa), and
metastatic breast (MDA-MB-231) cancer cell lines were purchased from the American
Type Culture Collection (ATCC, Manassas, VA, USA). The cells were cultured in DMEM
media (Sigma-Aldrich, Saint Louis, MA, USA) supplemented with 10% fetal bovine serum
(Gibco/Thermo Fisher Scientific, Waltham, MA, USA), 100 IU penicillin/streptomycin
solution (Sigma-Aldrich, Saint Louis, MA, USA), and non-essential amino acids (Sigma-
Aldrich). Phosphate-buffered saline (PBS) was purchased from Invitrogen/Thermo Fisher
Scientific (Waltham, MA, USA). ELISA kits (coating buffer, ELISA/ELISPOT diluent, pre-
titrated avidin-horseradish peroxidase (HRP), and TMB solution) were purchased from
Invitrogen/Thermo Fisher Scientific. Various antibodies used in this study were purchased
from Abcam and Thermo Fisher Scientific. All other chemicals for cloning and molecular
biology experiments were purchased from Thermo Fisher Scientific unless otherwise
specified. All transformations and plasmid purifications during cloning were performed
using E. coli DH5α (Enzynomics, Daejeon, Korea) cultured in LB medium and selected
with kanamycin (50 µg/mL). pETh-FN3(DGR) (named #DGR), an expression vector for
FN3 with the RGD sequence mutated to DGR, was described, and it was expressed and
purified as a negative control for the monobodies [48,49].
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2.2. Construction of Monobody Expression Vectors

Among the three loops within FN3 for target binding, two loops (BC and FG) have
a much longer length for sequence grafting [50,51]. We replaced these wild-type loop
sequences with Hep1 and Int-α peptides to construct the monobody genes. Using these
sequences, we designed polymerase chain reaction (PCR) primers. Each loop fragment
was amplified using the KOD plus PCR kit (Toyobo, Osaka, Japan). Primer sets for BC
loops with Hep-1 and Int-α were termed BC-F: BC-Hep-1 and BC-F: BC-Int-α, respectively.
The DE loop was amplified with DE-F:DE-R primer sets. Primer sets for FG loops with
Hep-1 and Int-α were FG-Hep-1: 94 old-R and FG-Int-α: 94 old-R, respectively. After
agarose gel separation and purification of PCR fragments, monobody genes were amplified
with the 94 old-F: 94 old-R primer set against a mixture of BC, DE, and FG fragments.
The amplified fragments were digested with Nhe1 and BamH1 enzymes and cloned into
the same sites of the pETh vector [52]. The resulting plasmids were named according to
insertion peptide sequences in FG and BC loops as pETh-CRT1, pETh-CRT2, pETh-CRT3,
pETh-CRT4, pETh-CRT5, and pETh-CRT6, respectively (abbreviated as CRT1–CRT6).

CRT3 and CRT4 monobody genes fused with the Rluc8 reporter gene were con-
structed with the exponential mega-priming (EMP) PCR method [53]. First, the monobody
megaprimers were amplified against the pETh-CRT plasmid with the T7-F: FG-R primer
set for 30 cycles. After purification in agarose gels, EMP PCR was performed with the
T7-F: T7-R primer set using a mixture of the megaprimers and pETh-E1-Rluc8 [52]. The
amplified PCR fragments were phosphorylated with polynucleotide kinase, digested with
DpnI, and ligated with T4 DNA ligase. Finally, they were transformed into E. coli DH5α
competent cells. The resulting plasmids were pETh-CRT3-Rluc8 (CRT3-Rluc8) and pETh-
CRT4-Rluc8 (CRT4-Rluc8), respectively. All primers used in this study are listed in Table
S1. All plasmids constructed in this study were confirmed through sequencing analysis
(Figure 1A).

2.3. Purification of Monobodies

Production of recombinant monobody (CRT-Rluc8) in E. coli BL21(DE3) strain (In-
vitrogen/Thermo Fisher Scientific). After transformation with the plasmids described
above, bacteria were cultured in LB broth containing kanamycin (50 µg/mL). Bacteria
were cultured overnight, and 10 mL of the culture was used to inoculate 1 L of fresh LB
broth and grown at 37 ◦C. At an optical density at 600 nm (OD600) of 0.6, 1 M isopropyl-
β-D-thiogalactopyranoside (IPTG) was added to a final concentration of 0.5 mM, and
the bacteria were further cultured at 37 ◦C for 4 h. Bacteria pellets were harvested by
centrifugation (8000× g at 4 ◦C). The pellets were re-suspended in ice-cold lysis buffer
(50 mM NaH2PO4, 300 mM NaCl, and 10 mM imidazole; pH 8.0) containing 100 µg/mL of
lysozyme solution and further incubated for 30 min on ice. After gentle sonication on ice,
bacteria were centrifuged at 12,000× g for 20 min at 4 ◦C, and the supernatants were col-
lected. Large-scale monobody purification was done with His GraviTrap affinity columns
(GE Healthcare, Chicago, IL, USA) using these supernatants, and the excess imidazole after
affinity chromatography was removed using a PD-10 desalting column (GE Healthcare,
Chicago, IL, USA).

2.4. Western Blot Analysis

Monobodies expressed in bacteria were detected by Western blot analysis. Original
western blots can be found at Figure S11.The bacterial pellets or purified proteins were sep-
arated with 10% sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE)
and transferred to nitrocellulose (NC) or polyvinylidene fluoride (PVDF) membranes (Bio-
Rad, Des Plaines, IL, USA). The membranes were soaked in 5% skim milk in Tris-buffered
saline containing 0.1% Tween 20 (TBS-T) for 1 h and then incubated with a mouse anti-His
tag monoclonal antibody (1:1000 dilution; Abcam) for 4 h at room temperature. After
washing three times with TBS-T, the membranes were incubated with an HRP-conjugated
goat anti-mouse IgG antibody (1:5000 dilution; Abcam) for 1 h at room temperature. The
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His-tagged proteins were visualized using an enhanced chemiluminescence (ECL) West-
ern blotting luminol reagent (Thermo Fisher Scientific) and recorded using the LAS-3000
chemiluminescence detection system (Fuji, Osaka, Japan).

To detect ecto-CRT on the plasma membrane, cancer cells were treated with anticancer
agents [GEM (15 µM), MTX (3 µM), and DOX (25 µM)] for 4 h at 37 ◦C. Pre-apoptotic
cells were collected and the proteins on the cell surface were isolated using the Plasma
Membrane Protein Extraction Kit (Abcam). After the extracted proteins in the plasma
membrane were quantified by bicinchoninic acid (BCA) assay, they were separated using
10% SDS-PAGE and transferred to PVDF membranes. The membranes were incubated with
a CRT-specific primary antibody (1:1000 dilution; Abcam) overnight at 4 ◦C, followed by in-
cubation with an HRP-conjugated secondary antibody (1:5000 dilution; Invitrogen/Thermo
Fisher Scientific) for 30 min at room temperature. The ecto-CRT levels in drug-treated cells
were measured and the relative levels were calculated by normalization to the levels in
PBS-treated control cells using intensity ratio of each band via applying the densitometric
quantifications [8,14].

2.5. Measurement of Binding Affinity

The binding affinities of Rluc8-fused CRT monobodies were measured by enzyme-
linked immunosorbent assay (ELISA), as described previously [54,55]. At first, monobodies
(0–10 µM) were added to 96-well microtiter plates (Corning, NY, USA). After incubation
overnight at 4 ◦C, the wells were aspirated to remove the monobodies and washed four
times with 250 µL PBS containing 1% Tween 20 (PBS-T) using an automated plate washer.
Then, 200 µL of 1× ELISA/ELISPOT diluent buffer (Invitrogen/Thermo Fisher Scientific)
was added to the wells. After incubation at room temperature for 1 h, the buffer was
removed by aspiration and the wells were washed three times with PBS-T. Next, 100 µL
of 10 µM rCRT in 1× ELISA/ELISPOT diluent buffer was added, and the plates were
incubated at room temperature for 2 h and washed three times. To detect rCRT bound
to monobody, 100 µL of rabbit anti-CRT antibody (1:500 dilution in 1× ELISA/ELISPOT
buffer) was added to the wells. After incubation at room temperature for 2 h, the wells
were washed three times with PBS-T, and 100 µL of biotin-conjugated anti-rabbit antibody
(1:1000 dilution; Invitrogen/Thermo Fisher Scientific) was added. After incubation at
room temperature for 1 h, the wells were washed five times with PBS-T. Finally, 100 µL
of avidin-HRP (1:8000 dilution; Invitrogen/Thermo Fisher Scientific) was added to each
well and the plates were incubated at room temperature for 30 min. Plates were then
dried using absorbent paper to remove any residual buffer. After washing, 100 µL/well of
TMB solution (Invitrogen/Thermo Fisher Scientific) was added to each well and the plates
were incubated at room temperature for 15 min. To stop the color reaction, 50 µL/well of
stop solution (0.5 M H2SO4) was added. The color intensity at OD450 was measured on a
microtiter plate reader.

2.6. Confocal Immunofluorescence Imaging Analysis of Ecto-CRT

The cultured cancer cells were grown on a glass coverslip for 48 h and treated with
anticancer agents (15 µM GEM, 3 µM MTX, or 25 µM DOX) for 4 h [8]. The cells were
fixed with cold acetone for 10 min and incubated with 1% bovine serum albumin (BSA) in
PBS for 10 min. Then, the cells were incubated with a mouse anti-CRT antibody (1:1000
dilution; Abcam) for 2 h on ice. After washing with PBS five times, the cells were incubated
with an Alexa Fluor 488-conjugated anti-mouse IgG (H + L) Cross-Adsorbed antibody
(1:2000 dilution; Thermo Fisher Scientific) for 1 h on ice and washed five times. To stain
cell membranes, the cells were also incubated with Alexa Fluor 555-conjugated wheat
germ agglutinin (WGA) (1:5000 dilution; Thermo Fisher Scientific). Finally, the cells
were mounted using DAPI anti-fade mounting solution (Thermo Fisher Scientific). The
fluorescence signals were imaged using an LSM510 confocal microscope and analyzed
with ZEN-LSM imaging software (ZEISS, Jena, Germany).
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2.7. Flow Cytometry Analysis

To measure the competitive binding between rCRT protein and cellular ecto-CRT, flow
cytometry was performed as described [56–58]. Briefly, the cells were treated with DOX
for 4 h. The cells detached from dishes (1 × 105) were mixed with 10 µM rCRT. To these
mixtures, monobodies were added (100 nM) and the cells were incubated for 1 h on ice.
After washing with PBS, the cells were sequentially stained with a monoclonal anti-His
tag monoclonal antibody (1:500 Abcam) and an Alexa Fluor 488-conjugated secondary
antibody (Thermo Fisher Scientific) on ice for 1 h.

2.8. Monobody Stability Assay

To measure monobody stability in serum, 150 µL of Rluc8-fused monobody in PBS
(60 µg) was mixed with an equal volume of mouse blood serum and incubated at 37 ◦C
for various incubation times on 96-well black plates (Thermo Fisher Scientific). The bi-
oluminescence activity was measured after adding 10 µL of 40 µg/mL coelenterazine
(Biotium, Fremont, CA, USA) using an Orion L Microplate Luminometer (Berthold Detec-
tion Systems, Pforzheim, Germany) and an Infiniti M200 laser scanner (Tecan, Männedorf,
Switzerland). Heat-inactivated serum was used as a negative control.

2.9. Mouse Models of Anticancer Therapy

BALB/c and C57BL/6 mice (female, 6 weeks old) were purchased from the Orient
Company (South Korea). The animal studies reported here were done in accordance with
the general principles and procedures outlined in the National Institutes of Health (NIH)
Guidelines for the Care and Use of Animals [59], and all protocols were approved by the
Animal Care and Use Committee of Chonnam National University (permit number: HCRL
16–001). BALB/c and C57BL/6 mice (n = 9 per group) were subcutaneously implanted
with CT-26 or MC-38 tumor cells (1 × 106 cells in 100 µL PBS) on the right flank. When the
tumor size reached approximately 100 mm3, the anticancer agents (GEM, 15 mg/kg; DOX,
10 mg/kg; MTX, 2 mg/kg) were intraperitoneally administered to the mice three times in
2-day intervals. The therapeutic effects of the anticancer agents were measured based on
changes in the tumor volumes and weights [8].

2.10. In Vivo and Ex Vivo Optical Bioluminescence Imaging Using CRT-Binding Monobodies

In vivo optical bioluminescence imaging analysis using Rluc8-fused CRT monobodies
was performed before and after anticancer drug treatment. In brief, 2 days after the last
administration of anticancer agents, monobodies (60 µg in 100 µL PBS) were intravenously
injected into the mice. After 6, 12, and 24 h, coelenterazine (400 ng/100 µL in PBS) was
intravenously injected into the mice, and the bioluminescent signal was immediately
measured. Later, to evaluate the biodistribution of monobodies ex vivo, tumors and other
organs were collected and analyzed using the IVIS Lumina imaging system (PerkinElmer,
Waltham, MA, USA). The tumor area signals were calculated, and corresponding photon
signals were quantified.

2.11. Statistical Analysis

All experiments were done in triplicate (n = 3) and the values from all experiments
are expressed as the mean± standard deviation (SD). Statistical analysis was done with
two-way ANOVA using GraphPad Prism 5.0. p-values < 0.05 (significant), p < 0.01 (very
significant), and p < 0.001 (extremely significant) are indicated on the graphs using the
symbols *, **, and ****, respectively.

3. Results
3.1. Translocation of CRT to the Plasma Membrane after Treatment with Anticancer Drugs That
Induce ICD

The anticancer agents MTX and DOX are known to cause the translocation of CRT to
the plasma membrane during the pre-apoptotic stage (ecto-CRT) and to induce ICD [8].
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By contrast, GEM does not induce ecto-CRT during the pre-apoptotic stage even though it
induces cell death. To evaluate ecto-CRT on the plasma membrane during pre-apoptosis,
CT-26 and MC-38 cells were treated with these anticancer agents for 4 h (Figure 1). Through
Western blot analysis of CT-26 plasma membrane fractions, after MTX and DOX treatment,
ecto-CRT was significantly increased (2.04-fold and 2.14-fold, respectively) compared with
non-treated controls (Figure 1A,B). In MC-38 cells as well, ecto-CRT significantly increased
after MTX and DOX treatment (2.25-fold and 2.39-fold, respectively), compared with non-
treated controls. However, the ecto-CRT level did not increase during pre-apoptosis in
GEM-treated cells. This result was similar by flow cytometry analysis (Figure 1C,D) and by
confocal immunofluorescence imaging (Figure S2). Moreover, DOX and MTX significantly
increased the expression of ecto-CRT in HeLa and MDA-MB-231 cells (Figure S1). These
data indicate that DOX and MTX induced ecto-CRT exposure on the plasma membrane in
the early (pre-apoptotic) phase of ICD.
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primer set for 30 cycles. After purification in agarose gels, EMP PCR was performed with 
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Figure 1. Measurement of ecto-CRT during immunogenic cell death (ICD) in cancer cells after anticancer drug treatment.
Cancer cells lines, including CT-26 and MC-38, were treated with anticancer drugs at the indicated concentrations for 4 h
and ecto-CRT (CRT translocated from the ER to the plasma membrane) was measured during the pre-apoptotic stage.
(A) Western blot analysis. The membrane fractions were isolated and separated by SDS-PAGE. Ecto-CRT was detected
with an anti-CRT antibody. (B) Quantitation of Western blot analysis. The ecto-CRT detected in (A) was quantitated
and the relative levels are shown. (C) Flow cytometry analysis of ecto-CRT. Cells were treated with anticancer drugs
and stained with an anti-CRT antibody. (D) The mean fluorescence intensities (MFIs) of the samples shown in (C) were
measured and the relative levels were plotted. Second Ab is used as control of the background fluorescence signals. Data
represent the mean ± standard error (n = 3). *** p < 0.001 and ns = non-significant. (MTX, mitoxantrone; DOX, doxorubicin;
GEM, gemcitabine).

3.2. Design and Characterization of CRT-Binding Monobodies

Two peptides (Int-α and Hep-I) have been described to bind CRT [45,60,61]. Three
loop sequences (BC, DE, and FG) of monobodies are responsible for target binding, and two
of the loops (BC and FG) have a much longer length [62]. Therefore, we replaced the wild-
type sequences with the Int-α and Hep-I peptide sequences at these loops. The engineered
monobodies were named CRT1–CRT6. It should be noted that the RGD sequence at the FG
loop was changed to DGR (a scrambled sequence of RGD) because this motif is responsible
for integrin binding [63]. In this study, wild-type FN3 with a DGR sequence (named #DGR)
was used instead of RGD as a negative control monobody. The amino acid sequences of all
monobodies were clearly aligned, as shown in Figure 2A.
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Figure 2. Engineering of calreticulin (CRT)-targeting monobodies. (A) Amino acid sequence alignment of monobodies
(CRT1–CRT6). The sequences at the BC, DE, and FG loops are known to be related to target binding. The wild-type
sequences at the BC and FG loops of FN3 were exchanged with those of the CRT-binding peptides Int-α (KLGFFKR) and
Hep-I (GQPMYGQPMY). CRT5, CRT6, and FN3(DGR) contain DGR instead of RGD at the wild-type FG loop sequence (red
boxes). At their C-termini, all monobodies carry His tags. Their assumed MWs are approximately 12 kDa. (B) Monobody
expression in transformed E. coli BL21(DE3). With (+) or without (−) IPTG induction, bacteria transformed with pETh
expression vectors were separated by SDS-PAGE. M, size marker (kDa). (C) Western blot analysis with an anti-His tag
antibody. FN3(DGR) is indicated as #DGR.

After the construction of expression vectors using the pET plasmid with a C-terminal
His tag (pETh) [64], we established bacterial strains for monobody expression after their
transformation into E. coli BL21(DE3). Monobodies were purified with an Ni-NTA affinity
column from IPTG-induced bacterial cultures. The purified monobodies (MW, approxi-
mately 12 kDa) were analyzed by SDS-PAGE and by Western blotting against the His tag
(Figure 2B,C; Table S2).

To determine which monobodies efficiently bound ecto-CRT, CT-26 cells were treated
with 100 nM of each monobody after treatment with anticancer agents that induce ICD
(DOX and MTX) and were analyzed by flow cytometry (Figure S3). Monobodies containing
both peptide (Int-α and Hep I) sequences, CRT3 and CRT4, showed the highest binding to
ecto-CRT in MTX-treated cells (Figure S3A,B). The mean fluorescence intensities (MFIs)
were analyzed and presented in Figure S3 and Table S4. These results indicated that the
CRT3 and CRT4 monobodies bound to ecto-CRT at least twice as strongly as the other mono-
bodies. The results were similar in an analysis of DOX-treated cells (Figure S3C,D). These
results indicate that the CRT-targeted peptide (Int-α and Hep-I) sequences synergistically
increase the binding affinities of the ecto-CRT monobodies.

3.3. Characterization of Rluc8-Fused CRT-Binding Monobodies

Based on the above results, CRT-binding monobodies fused with C-terminal Rluc8
(CRT3-Rluc8 and CRT4-Rluc8, respectively) were generated and purified from E. coli by
large-scale affinity chromatography. The purified Rluc8-fused monobodies had MWs of
approximately 47 kDa (Figure 3A; Table S3). These monobodies showed strong biolumi-
nescent signals in the presence of coelenterazine (Figure 3B).
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typical antibodies [64–68], further demonstrating that the engineered CRT3 and CRT4 
monobodies had strong binding affinities for CRT. 

To verify that the Rluc8-fused monobodies specifically recognize ecto-CRT, com-
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Figure 3. Purification and affinity measurements of Rluc8-fused monobodies. (A) Purification of
Rluc8-fused monobodies. The monobodies expressed in E. coli (47 kDa) were purified with affinity
chromatography, separated by SDS-PAGE (stained with Coomassie dye), and verified by Western
blot analysis (anti-His tag antibody). (B) Luciferase assay with Rluc8-fused monobodies. After
adding coelenterazine, the bioluminescence of the monobodies was measured with an IVIS imaging
system. (C) Binding affinity measurements of monobodies using enzyme-linked immunosorbent
assay (ELISA). Various concentrations of Rluc8-fused monobodies (0–10 µM) were coated onto the
wells of an ELISA plate and 10 µM rCRT was added to each well. rCRT bound to monobodies
was detected with an anti-CRT antibody. The colorimetric reaction represents the amount of rCRT
bound to monobodies. Absorbance values in were plotted against the monobody concentrations
(logarithmic scale).

The Kd values of CRT3-Rluc8 and CRT4-Rluc8 were measured by non-competitive
ELISA assay. This assay results in a colorimetric reaction upon the addition of a substrate
that correlates with the monobody concentration. Kd values of CRT3-Rluc8 and CRT4-
Rluc8 (7.990 ± 0.870 nM and 8.686 ± 0.836 nM) showed efficient CRT binding (Figure 3C).
These values were comparable to the affinities of other monobody proteins and typical
antibodies [64–68], further demonstrating that the engineered CRT3 and CRT4 monobodies
had strong binding affinities for CRT.

To verify that the Rluc8-fused monobodies specifically recognize ecto-CRT, compet-
itive binding analysis of the monobodies was performed by flow cytometry using cells
treated with anticancer agents and rCRT (Figure 4). In CT-26 and MC-38 cells treated
with DOX, the MFI levels of the monobodies decreased about 73% in the presence of
rCRT. FN3(DGR)-Rluc8 (#DGR-Rluc8) was used as a negative control for this experiment.
Similar results were observed in HeLa and MDA-MB-231 cells (Figure S4). In addition,
immunofluorescence imaging analysis of anticancer drug–treated cells was performed
using an anti-CRT antibody and Rluc8-fused monobodies against ecto-CRT. As shown in
Figure S2, MTX and DOX but not GEM and PBS expressed ecto-CRT on the cell surface
during ICD. As expected, CRT3-Rluc8 and CRT4-Rluc8 monobodies efficiently bound to
CT-26 and MC38 cells treated with DOX and MTX, but not GEM, by both flow cytometry
and immunofluorescence imaging analyses (Figures 5 and 6). Similar results were observed
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in HeLa and MDA-MB-231 cells treated with MTX and DOX (Figures S5 and S6). This
clearly indicates that the CRT3 and CRT4 monobodies bind with high affinity to ecto-CRT
expressed on cancer cells undergoing ICD [10,14,69].

3.4. In Vivo Imaging with Rluc8-Fused Monobodies in Animal Models

To assess the efficacy of Rluc8-fused monobodies as in vivo imaging candidates, the
stability of the monobodies was first measured in mouse serum after incubation at 37 ◦C
(Figure 7). CRT3-Rluc8, CRT4-Rluc8, and #DGR-Rluc8 showed similar photon counts at
each time-point, with a maximum value of 2.3 × 107 photons/sec/cm2/sr. Their luciferase
activities decreased to approximately 40% of the control after 12 h and to 24% after 24 h.
This stability data is similar to that of other Rluc8-fused monobodies in mouse serum [52].

Next, we assessed therapeutic effects of anticancer agents in tumor-bearing mice
in vivo. After the tumor volumes reached 100 mm3, the mice were administered MTX,
DOX, or GEM (Figures S7 and S8). All the anticancer agents significantly and comparably
suppressed tumor growth in CT-26 and MC-38 tumor-bearing mice. These data confirm
that the anticancer agents at the administered doses had equivalent effects on the inhibition
of tumor growth in mice.
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Figure 4. Monobodies specifically bound to ecto-CRT of cancer cells undergoing ICD. Cancer cells were treated with
DOX and recombinant CRT (rCRT), and stained with Rluc8-fused monobodies. After washing, the cells were analyzed
for monobody binding by flow cytometry. (A) Flow cytometry of CT-26 cells with exposed ecto-CRT mixed with rCRT.
(B) Flow cytometry of MC-38 with exposed ecto-CRT mixed with rCRT. (C,D) Quantitation of (A) and (B). MFI levels of the
monobodies bound to ecto-CRT were calculated relative to #DGR-Rluc8. Data are shown as the mean ± standard error
(n = 3). *** p < 0.001.
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Finally, the targeting potential of the monobodies as in vivo diagnostic agents for
the detection of ICD during chemotherapy was assessed. To do this, CRT3-Rluc8 and
CRT4-Rluc8 (60 ug per mouse) were injected via the tail vein into MC-38 tumor-bearing
mice pre-treated with anticancer agents (Figure 8). The bioluminescence signals from the
injected monobodies were measured for 24 h (Figure 8A). The #DGR-Rluc8-injected groups
did not show any bioluminescence signal in mice receiving any anticancer treatment. By
contrast, significant signals were detected at 6 h, peaked at 12 h, and disappeared at 24 h
in mice treated with DOX or MTX, but not GEM, after the injection of CRT3-Rluc8 or
CRT4-Rluc8 (Figure 8B,C; Figure S9). Next, we measured the monobody biodistribution
in mouse tissues at 12 h after the monobody injection (Figure 8D,E). The bioluminescence
signals from Rluc8-fused monobodies were measured in dissected organs using the IVIS
imaging system. Strong signals were observed in the tumors of mice treated with DOX and
MTX but not GEM after monobody injection. The signal in #DGR-Rluc8-injected tumors
was below the limit of detection. Similar results were obtained in CT-26 tumor-bearing mice
(Figure S10). These results clearly indicate that the engineered CRT3 and CRT4 monobodies
specifically bound to ecto-CRT during ICD. These monobodies can therefore be considered
potential theranostic imaging candidates for the early detection of ICD during anticancer
agents’ treatment.
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Figure 5. Rluc8-fused monobodies efficiently bound cancer cells with exposed ecto-CRT. Cancer cells (CT-26 and MC-38)
were treated with anticancer agents (DOX, MTX, or GEM) for 4 h. Then, cells were stained with monobodies and analyzed
by flow cytometry. (A,C) Flow cytometry of CT-26 cells. (B,D) Flow cytometry of MC-38 cells. PBS as negative control.
Second Ab is used as control of the background fluorescence signals. The increase in MFI is shown relative to the respective
control groups. Data show the mean ± standard error (n = 3). *** p < 0.001, and ns = non-significant.
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microscopy (40×, magnification). The cell membranes were stained with fluorochrome-labeled wheat germ agglutinin 
(WGA) (red). Nuclei was stained with DAPI (blue). Scale bar represents 50 µm. 
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Figure 6. Immunofluorescence imaging analysis of the binding of Rluc8-fused monobodies to ecto-CRT in cancer cells
treated with anticancer drugs. CT-26 and MC-38 cells treated with anticancer agents for 4 h were stained with ecto-CRT
monobodies (CRT-3-Rluc8, CRT-4-Rluc8, and #DGR-Rluc8) and a secondary antibody (green) and observed by confocal
microscopy (40×, magnification). The cell membranes were stained with fluorochrome-labeled wheat germ agglutinin
(WGA) (red). Nuclei was stained with DAPI (blue). Scale bar represents 50 µm.
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Figure 8. Ecto-CRT imaging with Rluc8-fusedmonobodies in tumor-bearing mice after anticancer drug treatment. (A) 
Scheme of anticancer drug administration and imaging conditions. The anticancer drugs were administrated to tu-
mor-bearing mice (n = 3; three injections, every other day). Two days after the last drug treatment, engineered mono-
bodies were intravenously injected into the mice. The bioluminescence imaging analysis was performed at the indicated 
time-points, after coelenterazine administration. (B) In vivo bioluminescence imaging analysis (12 h) with monobodies 
(#DGR-Rluc8, CRT3-Rluc8 and CRT4-Rluc8) in MC-38 tumor-bearing C57BL/6 mice under immunogenic (DOX and 
MTX) and non-immunogenic (GEM) anticancer treatments. (C) Quantification analysis of (B). Quantification analysis was 
not done in mice treated with GEM or PBS because the bioluminescence was below the limit of detection. (D) Ex vivo 
monobody biodistribution in tissues. Various tissues and organs were obtained from mice treated with monobodies and 
imaging analysis was done ex vivo after 12h. (E) Quantification analysis of (D). Data represent the mean ± standard error 
(n = 3). 
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(A) Scheme of anticancer drug administration and imaging conditions. The anticancer drugs were administrated to
tumor-bearing mice (n = 3; three injections, every other day). Two days after the last drug treatment, engineered mono-
bodies were intravenously injected into the mice. The bioluminescence imaging analysis was performed at the indicated
time-points, after coelenterazine administration. (B) In vivo bioluminescence imaging analysis (12 h) with monobodies
(#DGR-Rluc8, CRT3-Rluc8 and CRT4-Rluc8) in MC-38 tumor-bearing C57BL/6 mice under immunogenic (DOX and MTX)
and non-immunogenic (GEM) anticancer treatments. (C) Quantification analysis of (B). Quantification analysis was not
done in mice treated with GEM or PBS because the bioluminescence was below the limit of detection. (D) Ex vivo monobody
biodistribution in tissues. Various tissues and organs were obtained from mice treated with monobodies and imaging
analysis was done ex vivo after 12 h. (E) Quantification analysis of (D). Data represent the mean ± standard error (n = 3).

4. Discussion

As shown in numerous previous reports, exposure of CRT at the cell surface during
pre-apoptosis is an important hallmark of ICD [70]. This finding may enable us to predict
the efficacy of ICD-inducing anticancer agents at early time-points [71]. In a recent report,
an 18F-labeled CRT-targeted Int-α peptide showed promise as an ecto-CRT imaging agent
in dying tumor cells during ICD-inducing anticancer drug treatment in vivo [8]. Another
report showed that gold nanoclusters conjugated to an anti-CRT antibody could be used as a
probe for near-infrared imaging to detect ecto-CRT in HT-29 colorectal cancer cells [72]. Our
monobodies bound to CRT with a binding affinity comparable with that of the antibody and
were more stable in serum than the peptides. Upon utilizing this CRT, targeting monobodies
to detect ecto-CRT during chemotherapy would envisage the role in the activation of host-
relevant innate and adaptive anticancer immune responses to dying cancer cells, which
could further regulate ICD. These benefits suggest the possibility that the monobodies
could be used clinically to detect ecto-CRT during chemotherapy administration.

Short tumor-binding peptides are considered a promising alternative to monoclonal
antibodies as they can efficiently reach tumor targets due to their small molecular size
and high binding affinity [73]. However, their clinical application as diagnostic agents
are likely to be limited because peptides are sensitive to degradation by proteases in
the circulation, resulting in reduced target binding. This limitation can be overcome by
developing biomolecules with both a stable structure resistant to proteolysis and high-
affinity target-binding sequences. Kadonosono, T. et.al., reported that peptides grafted into
a particular site of a protein scaffold showed improved target affinity and resistance to
proteolysis [74]. The FN3 domain has a stable structure and has been used as a protein
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scaffold for monobodies [25,75]. Yimchuen W. et.al demonstrated that monobodies grafted
with HER2-targeting peptide sequences showed improved resistance to proteolysis and
specific binding to HER2 [76]. In this study, we successfully developed CRT-binding
monobodies by grafting CRT-binding peptide sequences (Int-α and Hep-I) onto the FN3
domain. Monobodies with single peptide sequences showed similar binding to ecto-CRT
on the surface of cancer cells treated with ICD-inducing anticancer drugs (MTX and DOX)
(Figure S3; Table S4). However, monobodies grafted with both peptide sequences (CRT3
and CRT4) bound to ecto-CRT more strongly than the monobodies with single peptide
sequences. Because the two peptides bind to different sites of CRT, these data indicate that
the binding affinities of the CRT3 and CRT4 monobodies were additively increased by the
inclusion of both peptides. Consistent with this, the Kd values of CRT3 and CRT4 were
similar (approximately 8 nM). These two monobodies showed similar stability in serum
(an approximately 12 h half-life). The stability of CRT3 and CRT4 in serum is similar to the
reported stability of monobodies against other targets [52]. Therefore, our peptide-grafted
monobodies showed the expected high affinity and stability. Although our monobodies
bound to ecto-CRT with a sufficiently high affinity to be useful as in vivo probes, it is
expected that higher-affinity CRT-specific monobodies could be isolated if a library is made
from these CRT monobody genes.

CRT monobodies could be applied as a therapeutic agent. ICD is known to occur dur-
ing radio- and immunotherapies as well as chemotherapy [77]. If CRT monobodies fused
with therapeutic biomolecules are developed and administered to tumor-bearing animals
treated with such therapies, the therapeutic efficacy is expected to be enhanced. In models
of tumor therapy using bacteria, various therapeutic biomolecules additively enhanced
the therapeutic efficacy of the bacteria itself [78–80]. The expression and purification of
Rluc8-fused monobodies in E. coli demonstrates the possibility that monobodies coupled
with therapeutic biomolecules could be engineered.

5. Conclusions

Taken together, our data clearly demonstrate the functional properties of engineered
CRT-targeting monobodies to detect ICD during cancer chemotherapy. This strategy
of engineering novel monobodies using peptides may simplify the process required to
generate high-affinity biomolecules for inaccessible or challenging targets.
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