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Toll-Interacting Protein Regulates
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Kathy D. McCoy,4,6 Dominique Velin,1,2 and Michel H. Maillard1,2,7,9,*

SUMMARY

Expression of Toll-interacting protein (Tollip), a potent TLR modulator, decreases in patients with in-

flammatory bowel diseases (IBD), whereas Tollip�/� mice are susceptible to colitis. Tollip expression

was shown to be reduced in sporadic adenoma . In contrast, we found variable Tollip expression in pa-

tients with colitis-associated adenomas. In Tollip�/�mice challenged to develop colitis-associated can-

cer (CAC), tumor formation was significantly reduced owing to decreased mucosal proliferative and

apoptotic indexes. This protection was associated with blunt inflammatory responses without signif-

icant changes in microbial composition. mRNA expression of Cd62l and Ccr5 homing receptors was

reduced in colons of untreated Tollip�/� mice, whereas CD62L+ CD8+ T cells accumulated in the pe-

riphery. In Tollip-deficient adenomas Ctla-4 mRNA expression and tumor-infiltrating CD4+ Foxp3+

regulatory T cell (Treg) were decreased. Our data show that protection from CAC in Tollip-deficient

mice is associated with defects in lymphocyte accumulation and composition in colitis-associated ad-

enomas.

INTRODUCTION

Patients with inflammatory bowel diseases (IBD) with long-standing and extensive colitis are at higher risk

of developing a distinct type of colorectal cancer, termed colitis-associated cancer (CAC) (Canavan et al.,

2006; Rutter et al., 2004). Although CAC etiology is complex and still incompletely understood, compro-

mised epithelial integrity and deregulated Toll-like receptors (TLRs)-mediated microbiota sensing are

important risk factors (Danese and Mantovani, 2010). Disruption of this microbiota sensing mechanism

either at the receptor level or via downstream adaptor molecules, such as Myd88 ablation, results in

increased production of pro-inflammatory cytokines and colitis development (Rakoff-Nahoum et al.,

2004), favoring CAC onset (Lowe et al., 2010; Salcedo et al., 2010).

Dysbiosis and abundance of specific microbiota members can also influence carcinogenesis. Genomic

analysis of human CRC biopsies detected a high prevalence of bacterial species such as Fusobacterium

nucleatum and Bacteroides fragilis and have the ability to aggravate tumor propensity in mice (Kostic

et al., 2012; Toprak et al., 2006). Consistently, blocking of TLR/MyD88-mediated sensing abrogated colo-

rectal carcinogenesis (Rakoff-Nahoum and Medzhitov, 2007).

Regulation of NF-kB activity is essential to avoid spontaneous and prolonged inflammatory responses

upon receptor binding. In mice lacking IkB kinase b (IKKb), CAC susceptibility (Greten et al., 2004) was

attributed to enhanced NF-kB-mediated IL-6 production and activation of STAT3-dependent epithelial

neoplastic changes (Bollrath et al., 2009). Similarly, ablation of TLR4 or chemokine receptor signals results

in impaired immune cell infiltration and protection of mice against CAC (Popivanova et al., 2009; Katoh

et al., 2013; Fukata et al., 2007). Consistently, lack of negative regulators of innate immune signals, such

as A20, single immunoglobulin receptor related molecule (SIGIRR), and interleukin receptor associated ki-

nase-M (IRAK-M), was shown to enhance susceptibility to CAC in both humans and mice (Shao et al., 2013;

Xiao et al., 2007; Kesselring et al., 2016; Begka et al., 2016). In CAC, although epithelial changes are essen-

tial to promote colon cancer, immune cell recruitment into the inflamed mucosa fuels tumor growth

through perpetuation of inflammation (Greten et al., 2004). Regulatory T cells (Tregs) control intestinal

inflammation, but their contribution in colorectal carcinogenesis remains elusive and controversial (White-

side, 2012; Ladoire et al., 2011).
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Toll-interacting protein (Tollip) is an intracellular, ubiquitously expressed adaptor protein, initially

described as a negative regulator of NF-kB signaling (Burns et al., 2000; Bulut et al., 2001). Upon activation

of IL-1R, TLR2, and TLR4, Tollip recruits interleukin receptor associated kinase 1 (IRAK1) but inhibits its

disassociation, depending on the stimulus strength, thus resulting in discontinuation of NF-kB pathway

(Bulut et al., 2001; Burns et al., 2000; Zhang and Ghosh, 2002; Begka et al., 2016). Tollip also regulates

the turnover of ubiquitinated receptors, such as IL-1R and TGFb-RI, through clathrin-mediated endosomal

trafficking and sorting to late endosomes (Brissoni et al., 2006; Zhu et al., 2012; Begka et al., 2016).

We have previously shown that Tollip deficiency increases susceptibility of mice to a dextran sodium sulfate

(DSS) colitis model (Maillard et al., 2014). Tollip ablation resulted in disruption of tight junctions and

increased intestinal permeability upon acute DSS chemical injury, whereas non-hematopoietic expression

of Tollip partially restored disease susceptibility (Maillard et al., 2014). Tollip has also been linked to human

IBD as its gene lies within one of the IBD susceptibility loci (van Heel et al., 2004; Ishihara et al., 2009). In

addition, Tollip expression was downregulated in biopsies from both active and inactive colonic segments

from patients with ulcerative colitis (UC) and Crohn’s disease (CD) compared with healthy subjects (Fer-

nandes et al., 2016).

Despite the demonstrated role of Tollip in colitis, its influence on inflammation-associated cancer remains

unknown. In this study, we report that Tollip promotes colitis-driven carcinogenesis. We found that Tollip-

deficient mice fail to mount efficient chronic inflammatory responses resulting in reduced tumor risk. Those

global defects were also accompanied by qualitative changes in cellular composition with a reduction in

tumor-infiltrating regulatory T cells.

RESULTS

Variable Tollip mRNA Expression in Patients with CAC

Although Tollip expression is decreased in sporadic colorectal cancer (CRC) adenomas (Pimentel-Nunes

et al., 2012), there are no data available for human colitis-associated cancer (CAC) lesions. Given the link

between inflammation and inflammation-driven cancer, we hypothesized that Tollip should be downregu-

lated in CAC lesions. Therefore, we investigated TollipmRNA expression in patients with IBD with active or

quiescent UC or CD, as well as in CAC or sporadic CRC adenomas, compared with adjacent non-tumorous

(NT) mucosal biopsies from sporadic CRC. Consistent with previous reports, we observed reduced Tollip

mRNA expression in mucosa of patients with quiescent and active UC and CD compared with the control

NT mucosal biopsies (Figure 1). Moreover, Tollip expression was downregulated in paired mucosal sam-

ples of sporadic CRC adenomas compared with NT normal adjacent mucosa (Figure 1). Surprisingly, Tollip

expression in patients with CAC was variable and not significantly decreased, as we initially hypothesized.
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Figure 1. Tollip Expression in Biopsies from Patients with IBD and Colon Cancer

qRT-PCR analysis of TollipmRNA expression relative toGapdh in active and inactive gut segments from patients with UC

and CD. n = 14 and n = 8 for UC and n = 15 and n = 10 for CD, respectively. Tollip expression was also assessed in biopsies

from adenomas developed in patients with IBD (CAC, n = 6) and sporadic colorectal cancer (CRC, n = 10). As control, RNA

extracts from the non-tumoral colon adjacent to the CRC (n = 10) were taken. Data are mean G SEM. Differences

were analyzed by one-way ANOVA test for CAC versus non-active UC and CAC versus non-active CD; p = 0.0497 and

p = 0.0458, were calculated, respectively. Differences between CRC and NT were analyzed by Wilcoxon matched-pairs

test, p = 0.0020. *p < 0.05, **p < 0.01.
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Figure 2. Tollip Deficiency Attenuates Colitis-Associated Carcinogenesis

(A) Tollip�/� and WT littermates C57BL/6 mice received a single intraperitoneal AOM injection (10 mg/kg) followed by

three cycles of 2.5% DSS in drinking water. Unchallenged Tollip�/� and WT littermates were used as controls. On day 63,

mice were subjected to colonoscopy to assess adenoma development and size.

(B) An endoscopic score was determined according to a standardized grading system (Becker et al., 2005). Representative

endoscopic images from AOM/DSS exposed WT (upper panel) and Tollip�/� littermates at day 63. Tumors are depicted

with blue arrows and ulcer formation with green arrowheads.

(C) Endoscopic tumor number and score in AOM/DSS-exposed WT and Tollip�/� littermates and unchallenged animals.

Each dot represents data from an individual mouse. Data are mean G SEM; n = 3–5 for unchallenged and n = 8–14 for

treated groups. Differences were analyzed by Mann-Whitney test. p = 0.0318, p = 0.0106, for tumor number and score,

respectively.

(D) Macroscopic evaluation of adenomatous lesions in excised colons from treated Tollip�/� and WT littermates.

(E and F) Quantification of overall macroscopic tumor number and size in AOM/DSS exposed Tollip�/� and WT

littermates. Data are mean G SEM; n = 8–14. Differences were analyzed by Mann-Whitney test, p = 0.0299

for macroscopic tumor number. Differences were analyzed with multiple t tests for macroscopic tumor size; p = 0.02 and

p = 0.0001 for <2 and 2–4 mm, respectively.
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Tollip expression was higher in 2/6 CAC samples, histologically characterized as adenocarcinoma,

compared with 4/6 CAC samples of low-grade dysplastic lesions, as well as with patients with quiescent

and active UC and CD, whereas it was comparable with NT normal adjacent mucosa biopsies (Figure 1).

In summary, Tollip expression is differentially regulated in CAC lesions compared with sporadic adenomas.

We decided to further investigate the role of Tollip in an in vivomouse model of chronic colitis-associated

cancer onset, in which adenomas do not develop a differential dysplastic grade.

Tollip Ablation Is Protective against Colitis-Associated Cancer

To decipher the role of Tollip in CAC and avoid the variability introduced by human biopsies, we employed

a CAC model in mice lacking Tollip expression. Tollip�/� and wild-type (WT) littermates were challenged

with the azoxymethanone (AOM)/dextran sodium sulfate (DSS) model to recapitulate CAC development

(Figure 2A). Adenoma growth and development were monitored by mouse colonoscopy at day 63 (Figures

2A and 2B). We observed significantly fewer adenomas and reduced endoscopic tumor scores (Becker

et al., 2005) in the AOM/DSS-exposed Tollip�/� compared with WT mice, indicating that Tollip ablation

resulted not only in reduced tumor incidence but also in smaller lesions (Figures 2B and 2C). Consistently,

macroscopic examination of the excised colons demonstrated reduced tumor number upon Tollip ablation

(Figures 2D and 2E). We also observed a significant increase in small (<2 mm) lesions and decrease in larger

(2–4 mm) lesions in Tollip�/� compared with WT mice (Figure 2F), indicating that Tollip ablation results in

the formation of smaller adenomas, in accordance with the observed endoscopic score (Figure 2C). Histo-

logical analyses confirmed the development of adenomatous AOM/DSS-induced polyps (Figure 2G),

whereas frequency of dysplastic low-high grade or adenocarcinoma development was similar between

Tollip�/� and WT mice (Figure 2H). These data, together with our previous findings, suggest that Tollip

has a dual role in favoring CAC development despite being protective against acute colitis.

Tollip Deficiency Is Associated with Reduced Cell Turnover in Colonic Adenomas

Given the protective role of Tollip in colonic epithelium during acute inflammation (Maillard et al., 2014), we

hypothesized that reduced tumor incidence in Tollip�/� mice could be related to defects in cell turnover

rates. To address this hypothesis, we assessed apoptosis during tumor initiation and late tumor stage in

the CAC model. At the beginning of AOM/DSS treatment (day 8) we observed a significant increase in

epithelial apoptotic Tunel+ cells in Tollip-deficient colons (Figures 3A and 3B). However, at late tumor stage

(day 63) the apoptotic index was significantly decreased in both Tollip-deficient adenomas (Figures 3C and

3E) and crypts of adjacent non-adenomatous mucosa of Tollip�/�-treated animals compared with WT-

treated mice (Figures 3D and 3F). Notably, the density of apoptotic cells was higher at the tip of colonic

crypts in acute inflammation/early stage carcinogenesis on day 8 (Figure 3A), whereas analysis of late-stage

carcinogenesis on day 63 showed a shift toward the lamina propria (Figure 3D). The apoptotic index was

similar in unchallenged mice (Figure 3F) and our multi-screen gene analysis showed a downregulation of

additional apoptosis-related genes in Tollip-deficient adenomas compared with WT (Figure S1A). We

also observed a significantly reduced proliferative index in Tollip-deficient compared with WT adenomas

(Figure 3G). We next examined STAT-3 activation (Figures S1B–S1D), along with important upstream and

downstream targets involved with neoplastic properties of the STAT3 pathway (Figure S1E). Immunohisto-

chemical analyses of the active form of STAT3 (P-STAT3) (Figure S1B) and relative P-STAT3 expression

levels, although variable, were comparable between Tollip�/� and WT adenomas (Figures S1C and S1D)

and in colons of untreated animals (Figure S1D). Similarly, Bcl-xL, c-myc, Bax, IL-6, and IL-11mRNA expres-

sion was comparable between Tollip�/� and WT adenomas (Figure S1E). In unchallenged Tollip�/� mice,

Bcl-xL and c-mycmRNA expression was lower in whole colon homogenates compared with WT mice, indi-

cating that the mucosal environment upon homeostatic conditions tends to be skewed toward a pro-

apoptotic response (Figure S1E). However, this was not correlated with an impaired STAT3 signaling during

tumorigenesis as both total and P-STAT3 protein abundance were comparable in Tollip�/� and WT ade-

nomas, as well as in unchallenged mucosa (Figures S1B–S1D). Taken together, these results indicate

Figure 2. Continued

(G) Histological evaluation of tubular adenomas formation by hematoxylin and eosin staining (H&E) in paraffin-embedded

colons of Tollip WT (i–iii) and Tollip�/� treated mice (iv–vi) in increasing magnifications of 103, 203, and 403. Scale bars:

100 mm.

(H) Histopathological score of adenomas in H&E staining of paraffin-embedded colons, LG, low-grade dysplasia; HG,

high-grade dysplasia; ADK, adenocarcinoma. Differences were analyzed by two-tailed unpaired t test. Data are mean G

SEM. n = 8–19. ns p > 0.5, *p < 0.05, ***p < 0.001.
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that Tollip deficiency induces pronounced epithelial apoptosis upon early tumorigenesis but, in the late

tumor stage, Tollip deficiency results in retarded development and progress of adenomas with low turn-

over rates.

Reduced Cancer Risk in Tollip-Deficient Animals Is Not Associated with Changes in Gut

Microbial Composition

Given the role of Tollip as regulator of the Toll/IL-1R signaling and the implication of several of those

pathways in microbiota shaping, we hypothesized that changes in gut microbial composition might ac-

count for reduced cancer occurrence in Tollip-deficient mice. We performed 16S rRNA amplicon

sequencing on feces of co-housed Tollip�/� and WT littermates prior and after AOM/DSS treatment.

There was no difference in microbiota diversity between the two groups both at baseline (Figure S2A)

and after treatment (Figure S2B). As inflammation-induced colon tumorigenesis has been linked with

shifts in microbiota composition, we next addressed differences in microbiota composition between

Tollip�/� and WT littermates. There were no differences in overall microbiota composition both before

(ANOSIM p = 0.474) (Figure S2C) and following AOM/DSS treatment (ANOSIM, p = 0.5083, Figure S2D).

The relative abundance of bacterial taxa at the phylum level was comparable between Tollip�/� and WT

mice both before and after treatment (Figure S2E). Finally, we evaluated changes in specific bacterial

taxonomic groups using differential abundance testing. We detected a minor enrichment of unclassified

genus of Peptococcaceae (p = 0.019, LDA score = 1.5326) in WT mice and Rikenellaceae family of also

unclassified genera and of unclassified families within the Bacteroidales order (p = 0.028) in stools of

Tollip�/� mice (p = 0.034, LDA score = 2.1055 and 2.0850) (Figure S2F) following AOM/DSS treatment.

Finally, AOM/DSS treatment itself led to a decrease in families within the Proteobacteria phylum, inde-

pendently of genotype (Figure S2G). Altogether, these data demonstrate that reduced tumor incidence

upon Tollip deficiency does not correlate with a tumor-protective shift in microbiota diversity or global

composition.

Tollip Modulates Migration Patterns and Cell Infiltration in Colonic Mucosa

We next aimed to investigate whether Tollip ablation could influence mucosal immune inflammation-

related cell composition. Multi-gene RNA screening in healthy colons of unchallenged animals demon-

strated a significant reduction in L-selectin (Cd62L) mRNA expression (Figure 4A), an adhesion molecule

known to regulate trafficking of naive or central memory T (TN or TCM) cells from blood to secondary

lymphoid organs (Masopust and Schenkel, 2013). We also observed a non-significant reduction in several

T cell homing markers such as Cd44, Il7r, and Ccr7, as well as the integrins Itgb2 and Itga4 that form the

heterodimers LFA-1 and the gut-homing a4b7 (Masopust and Schenkel, 2013), respectively (Table S1).

Next, we assessed whether T cell recruitment to the healthy gut mucosa was influenced by Tollip ablation

under basal conditions. We found no differences in the CD3+/CD4+/CD8+ T cell abundance in the colons of

unchallenged mice (Figure 4B). However, investigation of the activation status of Tollip-deficient T cells in

the periphery demonstrated a significant increase in the percentage of CD8+ CD44- CD62L+ TN (naive) cells

in spleen, blood, and peripheral lymph nodes (pLNs) (Figures 4C and 4D). The percentages of CD8+ CD44hi

CD62L� T effector (Teff) (Figures 4C and 4D) and CD4+ CD44- CD62L+ TN and CD4+ CD44hi CD62L� Teff cell

were comparable between Tollip�/� andWT mice (Figures S3A and S3B). Interestingly, we also observed a

significant reduction in Ccr5mRNA expression in Tollip�/� mice (Figure 4A, Table S1), a chemokine recep-

tor known to mediate the recruitment of immune cells upon inflammatory conditions (Griffith et al., 2014).

Collectively, these results suggest that Tollip deficiency favors naive cell accumulation in peripheral

lymphoid organs upon homeostatic conditions.

Tollip Deficiency Impedes Infiltration of CD4+ and Regulatory T Cells in Adenomas

We next questioned whether the altered cell trafficking noted upon Tollip ablation during homeostatic

conditions would impede immune cell accumulation and attenuate inflammatory responses upon AOM/

DSS challenge. Despite Tollip commonly being described as a negative regulator (Zhang and Ghosh,

2002), several pro-inflammatory genes were downregulated in Tollip-deficient compared with WT ade-

nomas (Figure S4A). Investigation of other inflammatory indexes, such as colonic shortening, was moderate

in treated Tollip�/� mice compared with the significantly reduced colon length observed in WT mice (Fig-

ure S4B). We also noticed a significant reduction in CD45+ cells frequency and absolute number infiltrates

in Tollip-deficient adenomas compared with WT (Figure S4C). In addition, we also observed a prominent

reduction of IFNg- and TNFa-producing inflammatory cells infiltration into colons of challenged Tollip�/�

mice compared with WT mice (Figure S4D). Collectively, these data suggest that Tollip aggravates

iScience 23, 100891, March 27, 2020 5



Figure 3. Tollip-Deficient Adenomas Present Reduced Proliferative and Apoptotic Indexes

(A) Tollip�/� and WT C57BL/6 littermates received a single i.p. AOM injection (10 mg/kg). After 5 days mice received oral

treatment of 2.5% DSS in the drinking water and were euthanized on day 8; n = 5–6 mice. Cells apoptosis was quantified

via immunofluorescent analysis of TUNEL+ cells on day 8. DAPI was used for nuclear staining. Scale bars: 100 mm. Insets

show a magnified view of the TUNEL+ apoptotic cells.

(B) Quantification of TUNEL+ apoptotic cells in 203 field for at least three representative pictures/mouse. Data are

mean G SEM. Differences were evaluated with Mann-Whitney test. p = 0.0001.

(C and D) (C) Immunofluorescent evaluation of apoptosis by TUNEL staining in adenomas and (D) normal adjacent

mucosa of AOM/DSS-exposedmice. DAPI was used for nuclear staining. Scale bars: 100 mm. Insets show amagnified view

of the TUNEL+ apoptotic cells.

(E andF) (E)QuantificationofTUNEL+apoptotic cells in adenomasand (F)normal adjacentmucosaof treatedaswell as in colonsof

untreatedmice in 103 field view for at least three representative picturespermouse.Data aremeanG SEM.n=5–14. Differences

were analyzed by Mann-Whitney test. p = 0.0059 and p < 0.0001 for adenomas and normal mucosa crypts, respectively.

(G) Representative immunohistochemical Ki67 and nuclear staining with hematoxylin in adenomas of paraffin-embedded

colons from AOM/DSS-treated mice. Scale bars: 100 mm. Analysis of proliferative index by measuring the percentage of

surface of Ki67/nuclear staining ratio specifically for the adenomas by ImageJ algorithm Immunoratio. Counting was

performed in 103 field view for at least three representative pictures/adenoma. Data are mean G SEM. n = 5–7 mice and

n = 21–34 adenomas. Differences were analyzed by Mann-Whitney test, p = 0.0357. **p < 0.01, ***p < 0.001, and ****p <

0.0001.
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inflammatory responses at late tumor stage development (day 63), whereas no differences in CD45+ fre-

quency and infiltration were observed in pLNs, mLNs, ileum, and spleen (Figure S5A).

Given our observation of reduced immune cell infiltration in Tollip�/� adenomas (Figure S4C), we further

questioned whether reduced CD45+ cell accumulation was associated with defects in CD3+ T cell
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Figure 4. Tollip Deficiency Alters Migration Patterns upon Homeostatic Conditions

(A) Volcano plot depicts differential gene expression in colonic mucosa of untreated Tollip�/� and WT littermates (data

obtained from three biological replicates per group).

(B) Flow cytometry analysis of colonic lamina propria T cells frequency and absolute cell numbers in untreated Tollip�/�

and WT littermates. Data are mean G SEM. n = 5–7 mice.

(C) Representative FACS plots of CD44+ and CD62L+ T cells frequencies in spleen and blood, pre-gated on CD8+ T

lymphocytes.

(D) Flow cytometry analysis of naive and effector CD8+ T cells frequencies isolated from peripheral (pLN) and mesenteric

(mLN) lymph nodes, spleen, and blood. Data are mean G SEM; n = 4–5 mice. Differences were analyzed by one-way

ANOVA test. p = 0.045, p = 0.0031, and p = 0.0015 values were calculated for pLN, spleen, and blood, respectively. *p <

0.05, **p < 0.01.
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Figure 5. Tollip Deficiency Impairs T Regulatory Cells Accumulation into Colitis-Associated Adenomas

(A) Representative FACS plots of tumor-infiltrating T cells and analysis of CD3+, CD4+, and CD8+ T cells frequencies and

absolute cell numbers isolated from adenomas of Tollip�/� and WT mice. Data are mean G SEM; n = 6 mice. Differences

were analyzed by multiple t test. p = 0.03 and p = 0.003 values were calculated for CD3+ and CD4+ T cell frequencies, and

p = 0.004 and p = 0.004 values were calculated for CD3+ and CD4+ T absolute cells numbers, respectively.

(B) Cell typemRNA profiling scores for CD45+, T cells, and T regulatory (Treg) cells are calculated for adenomas and colon

mucosa of treated and untreated Tollip�/� and WT mice.

(C) Volcano plot depicts differential gene expression in adenomas of AOM/DSS-exposed Tollip�/� versus WT littermates

(data obtained from three biological replicates per group).
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infiltration. As expected, we observed a marked colon-specific decrease in the frequency and number of

CD3+ T cell infiltrates in Tollip�/� compared with WT adenomas (Figure 5A). This decrease was mainly due

to reductions in CD4+ T cells frequency and infiltrates (Figure 5A). Importantly, this defect was only seen in

the colonic adenomas but not in peripheral lymphoid organs (Figure S5B), suggesting that the observed

changes are restricted to the mucosal environment during carcinogenesis.

To further investigate this reduced colon-specific infiltration of inflammatory cells, we performed a

multi-screen RNA analysis. In line with the flow cytometry data (Figure S4C), a lower CD45+ mRNA

cell score was predicted for the challenged Tollip�/� compared with WT mice (Figure 5B), indicative

of attenuated inflammatory responses. Tollip expression was used as internal control and was, as ex-

pected, not expressed in Tollip-deficient samples (Figure 5C). We observed a non-significant trend of

reduced expression of genes relevant to the immune cells homing to inflammatory sites in colons of

treated Tollip�/� versus WT mice (Table S2). Additionally, we found a significant reduction in expres-

sion of three key T cell receptor signaling-associated genes in Tollip-deficient adenomas (Tanoue

et al., 2016; Hill et al., 2002; van de Ven and Borst, 2015), namely, Ctla4, Cd27, and Ptpn22 (Figure 5C,

Table S2).

Ctla4 is a costimulatory molecule that prevents excessive T cell activation upon TCR ligation. It has

also been shown to be constitutively expressed on regulatory T cells (Sansom, 2000). Given the

observed reduction in Ctla4 expression in Tollip-deficient adenoma, we hypothesized that defects

in immunosuppressive pathways could be observed upon Tollip ablation. Indeed, cell type mRNA

profiling suggested reduced T lymphocytes and regulatory T cell abundance in both whole colon ho-

mogenates of unchallenged and adenomas of AOM/DSS-challenged Tollip�/� mice (Figure 5B).

Accordingly, we noted a significant reduction in Foxp3 mRNA expression in both healthy mucosa

and adenomas of Tollip�/� compared with WT mice (Figure 5D). Furthermore, TGF-b but not Il10

mRNA expression was downregulated in Tollip-deficient adenomas (Figure 5D). Consistently, we

found a significant decrease in phospho-Smad2 and total Smad2 protein abundance that are known

downstream effectors of TGF-b (Figure 5E). Altogether, those data demonstrate that Tollip ablation

leads to reduced immunoregulatory T cell accumulation and blunted TGF-b/TGFbR-mediated

responses.

Finally, we sought to determine the Treg frequencies and cell numbers systemically (Figure S5C) and in ad-

enomas (Figure 5F). Indeed, we wanted to examine whether reduced CD3+ T cell accumulation in ade-

nomas was also associated with an imbalance between effector and regulatory T cells. In association

with our prior results, we detected reduced CD4+ Foxp3+ and CD4+ Foxp3+ CD25+ frequencies and cell

numbers infiltrating Tollip-deficient adenomas compared with WT (Figure 5F). Conversely, no differences

in Treg frequency or cell number were noted in other lymphoid organs (Figure S5C). Altogether, our data

show that Tollip deficiency leads to reduced CD3+ T cell accumulation in colonic adenoma together with a

local imbalance between effector and regulatory T cells.

Collectively, these data suggest that decreased adenoma risk in Tollip-deficient mice is associated with

impeded immune cell infiltration and attenuated inflammatory responses together with abrogated Treg

infiltration.

Figure 5. Continued

(D) Relative mRNA expression of Foxp3, TGF-b, and IL-10 analyzed by real-time PCR.Gadph was used as a house keeping

gene. Data are mean G SEM; n = 5–19 samples. Differences were analyzed by two-tailed unpaired t test. p = 0.0228 for

colons of untreated mice and p = 0.0027 Foxp3 values for adenomas were calculated and p = 0.0317 for TGF-b for

adenomas.

(E) Immunoblot analysis for phosphorylated Smad-2 (P-Smad-2, band at 60kD) and total Smad-2 (band at 60kD) protein

extracted from whole colon homogenates from tumors (T) of both treated mice. b-Actin (at 42 kD) was used as a loading

control. The pre-stained protein ladder appears before the protein bands of interest. The molecular bands of 100, 55, and

35 kD are noted in the pre-stained protein ladder that appears before the protein bands of interest. The same

nitrocellulose membrane was used for the immunoblotting of all three markers.

(F) Representative FACS plots of tumor-infiltrating CD4+ CD25+ Foxp3+ T regulatory cells and analysis of CD4+ Foxp3+

and CD4+ CD25+ Foxp3+ Treg cells frequencies and absolute numbers isolated from adenomas of Tollip�/� andWTmice.

Data are meanG SEM; n = 6mice. Differences were analyzed by t test. p = 0.023 and p = 0.0041 values were calculated for

Treg frequencies and absolute cell numbers, respectively. *p < 0.05, **p < 0.01.
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DISCUSSION

Aberrant activation of TLR and NF-kB signaling modifies risk of colitis and cancer development in mice

(Shao et al., 2013; Xiao et al., 2007; Kesselring et al., 2016; Begka et al., 2016). Tollip is an intracellular

adaptor able to negatively regulate IL-1R and TLR2/TLR4-mediated NF-kB activation and to promote

tolerance in intestinal epithelial cells (IECs) (Bulut et al., 2001; Burns et al., 2000; Otte et al., 2004). We

hypothesized that Tollip deficiency would promote CAC risk, based on our previous findings (Maillard

et al., 2014) and what had been previously reported on other innate negative regulators (Salcedo

et al., 2010; Xiao et al., 2007; Begka et al., 2016). However, we observed that Tollip�/� mice were partially

protected against CAC and that Tollip expression tended to be downregulated in dysplastic lesions from

patients with UC.

Although prominent epithelial damage was observed early on the AOM/DSS regime, this only evolved to

blunted tumor development characterized by reduced cell turnover. This could be in part due to a reduced

number of surviving epithelial cells subjected to AOM-inducedmutagenesis. Although increased epithelial

apoptosis activates STAT3-mediated pro-repair and neoplastic responses (Bollrath et al., 2009), histolog-

ically we did not find any difference in STAT3 protein expression. Similarly, analysis of STAT3 activation

pathway showed that it remained unchanged upon Tollip deficiency.

Following epithelial destruction andmicrobial incursion, infiltrating leukocytes not only support anti-micro-

bial responses but also fuel tumorigenesis via excessive cytokine and growth factor production (Danese

and Mantovani, 2010; West et al., 2015). Interestingly, Tollip deficiency led to poor leukocyte recruitment

to tumoral tissues despite prominent epithelial disruption at early stages of acute DSS-induced injury. Our

findings correlate with prior reports on TLR4 signaling, in which Tollip actively participates. Indeed, TLR4

deficiency promoted colitis induction but attenuated tumor development and growth due to reduced

leukocyte infiltration into inflamed mucosa (Fukata et al., 2005, 2007).

Consistently, Diao and colleagues reported decreased numbers of Ly-6G+ cells infiltrating the colonic mu-

cosa of Tollip�/� mice upon acute colitis. In addition, Tollip-deficient CCR5+ neutrophils accumulated in

the blood due to decreased chemotactic receptor FPR2 levels, indicating defective migration of these cells

into inflamed colonic mucosal sites (Diao et al., 2016). CCR5 is an inflammatory chemokine receptor

enabling recruitment of diverse immune cell types (Griffith et al., 2014). In a phase I clinical trial of metasta-

tic colorectal cancer, drug-induced blockade of CCR5+CD4+ and CD8+ lymphocyte infiltration with mara-

viroc reduced interaction of lymphocytes with MFs, leading to reduced inflammation and better clinical re-

sponses (Halama et al., 2016). Ablation of chemokine receptors, such as CCR2 and CXCR2, was shown to

severely abrogate leukocyte infiltration, resulting in reduced inflammation-driven colon cancer (Popiva-

nova et al., 2008, 2009; Katoh et al., 2013). Notably, we demonstrated a pronounced decrease in Ccr5

expression in the colonic mucosa of unchallenged Tollip �/� mice, indicating a potential correlation be-

tween Tollip-Ccr5 expression and modulation of leukocytes trafficking, which deserves further study.

Tollip ablation influenced not only chemokine receptors expression but also lymphocyte homing mole-

cules causing altered T cells migratory patterns. As such, a pronounced Cd62l mRNA decrease in colonic

mucosa correlated with increased accumulation of naive CD8+ CD62L+ T cells in the blood of Tollip�/� un-

challenged mice. This effect was even more pronounced in Tollip-deficient adenomas, where we observed

a prominent reduction in CD3+ T lymphocyte infiltrates. This colon-specific reduction was restricted to

colorectal carcinogenesis, as it could not be detected in peripheral lymphoid organs or upon homeostatic

conditions. Remarkably, decreased CD3+ T lymphocyte infiltration was mainly due to reduced CD4+

Foxp3+ Treg cells recruitment in the tumor microenvironment. In line with this observation, we observed

a significant decrease in Ctla4 mRNA expression in Tollip-deficient adenomas, a receptor expressed on

Treg cells. Finally, defects in TGFbR signaling activation further argued for reduced immune-suppressive

responses in tumor microenvironment upon Tollip ablation. We suggest that, already during homeostasis,

Tollip ablation predisposes leukocytes accumulation in the periphery. In addition, Tollip deficiency also af-

fects leukocyte recruitment, predominantly Treg cells, to adenomatous lesions.

Although Treg cells are key factors of intestinal homeostasis and protect against colitis (Mottet et al., 2003;

Tanoue et al., 2016), their role in colitis-induced cancer was recently associated with poor prognosis

(Pastille et al., 2014). As such, depletion of Tregs during acute CAC resulted in increased intestinal inflam-

mation, whereas ablation of Tregs at late CAC state promoted CD8+-induced IFNg/granzyme
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B antitumoral responses, resulting in hindered tumor progress (Pastille et al., 2014). Hence, our observa-

tions support the concept that reduced Treg infiltration upon Tollip ablation into the inflamed colonic mu-

cosa might underlie early CAC events by facilitating epithelial destruction, whereas attenuated cell infiltra-

tion, due to Tollip ablation, on late CAC phase seems to play a protective role, resulting in reduced immune

suppressive responses and partial protection from CAC onset and development.

The exact molecular mechanisms through which Tollip may alter leukocytes migratory capacity remains un-

known. Several studies have shown that Tollip promotes endosomal trafficking of receptors for either lyso-

somal degradation or nuclear translocation (Brissoni et al., 2006; Zhu et al., 2012; Ciarrocchi et al., 2009). As

such, Tollip deficiency resulted in impaired trafficking and accumulation of IL-1R in late endosomes (Bris-

soni et al., 2006). Therefore, we hypothesize that Tollip deficiency may impair endosomal trafficking of

several chemokine receptors and T cell homing factors, such as CCR5 and CD62L.

Altogether, our human and murine data indicate that Tollip plays a dual role in being protective against

colitis while exacerbating colitis-induced cancer in mice. Our findings implicate Tollip in the expression

of several homing/trafficking molecules of relevance to anti-tumoral immunity, including T lymphocytes

and Treg subset infiltration. Thus, shifts in anti-tumoral immunity profile together with defects in TGFbR

signaling underlie partial protection from colitis-associated cancer. Future studies should assess the role

of Tollip in the turnover of inflammatory and suppressive receptors, as well as in leukocyte migration to in-

flammatory and cancerous sites.

Limitations of the Study

Our initial findings using human samples were only exploratory due to limited sample size. This was in part

due to the rare incidence of colitis-associated cancer in human subjects and also to a limited number of

patients screened in the GETAID cohort. In addition, samples obtained from the SIBDCS were only taken

in active versus inactively inflamed colon segments prompting us to complete our dataset with samples

coming from different sources.

To explore the mechanisms underlying colitis-associated cancer development, we employed the widely

accepted and established AOM/DSS mouse model. Although this model is thought to most closely reflect

human CAC development, kinetics of adenoma development is more rapid in mice than in humans, putting

some limitations in the analyses of cell-recruitment dynamics in tumors. Moreover, AOM/DSS-treated mice

mostly develop non-invasive adenomas, whereas in humans the carcinogenic process may evolve to a fully

blown invasive adenocarcinoma. As Tollip expression may be different between low-grade and advanced

adenomas, more detailed analyses could not be done in the mouse setting.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Figure S1. STAT3 pathway is functional upon Tollip deficiency. Related to Figure 3.  
A. Heat map of apoptotic genes immune profiling panel for both untreated and treated Tollip-/- and WT 

mice for days 0 and 63 (data obtained from three biological replicates per group), respectively. B. 
Representative immunohistochemical P-STAT3 and nuclear staining with hematoxylin in adenomas of 
paraffin-embedded colons from AOM/DSS-treated Tollip-/- and WT mice. Scale bars: 100 µm. C. 
Immunoblot analysis for phosphorylated STAT3 (P-STAT3 2 bands at 86, 79kD) extracted from whole 

colon homogenates from tumors (T) of AOM/DSS-treated Tollip-/- and WT mice. β-actin (at 42kD) was 

used as a loading control. The molecular bands of 100, 70 and 55kD are noted in the pre-stained 

protein ladder that appears before the protein bands of interest. The same nitrocellulose membrane 

was used for the immunoblotting of all three markers. Relative protein expression was defined by the 

densitometry ratio of P-STAT3 / β-actin. Data are mean ± SEM. n= 23 adenomas. Differences were 

analyzed by Mann-Whitney test. ns, p=0.1612 D. Immunoblot analysis for P-STAT3 (2 bands at 86, 
79kD) and total STAT3 (2 bands at 91 and 86kD) extracted from whole colon homogenates from 

tumors (T) of both treated Tollip-/- and WT mice or from untreated animals (H2O group). β-actin (at 

42kD) was used as a loading control. The molecular bands of 100, 70 and 55kD are noted in the pre-

stained protein ladder that appears before the protein bands of interest. The same nitrocellulose 

membrane was used for the immunoblotting of all three markers. Relative protein expression was 

defined by the densitometry ratio of P-STAT3/Total STAT-3. Differences were analyzed by Mann-

Whitney test. ns, p=0.8857 and p=0.5320 values were calculated for (T) groups and untreated mice, 

respectively. E. Relative mRNA expression of Bcl-xL, c-myc, Bax-α, Il-6, and Il-11 were analyzed by 
real-time PCR. Gadph was used as a house keeping gene. Data are mean ± SEM. n= 5-19 samples. 

Differences were analyzed by two-tailed unpaired t-test. p=0.015 for Bcl-xL, p=0.0167 for c-myc and 

p=0.0324 for IL-11 of colon homogenates of untreated mice. ns p > 0.5, *p < 0.05. 
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Figure S2. Reduced tumor incidence in Tollip deficient mice does not correlate with altered 

microbiota composition and bacterial diversity. Related to Figure 2. 16S RNA analysis was 

performed in stool samples collected prior to AOM/DSS treatment and after CAC development (day 63) 

for co-housed Tollip-/- and WT littermate mice, respectively.  A-B. Analysis of α-diversity was estimated 

by using Shannon index for stool samples of unchallenged and treated Tollip-/- and WT mice. Data are 

mean ± SEM. n= 10-20 and n= 8-14 mice, respectively. Differences were analyzed by Mann-Whitney 
test. C-D. Analysis of β diversity between stool samples of unchallenged and treated of Tollip-/- and WT 

by principal coordinates of analysis (PCoA) based on a 97% OTUs similarity with weighted Unifrac. 

ANOSIM p=0.474 and p=0.5083, n= 10-20 and n= 8-14 mice, for unchallenged and treated of Tollip -/- 

and WT, respectively. E. Evaluation of taxonomy differences in the phylum level prior and post treatment 

in the stool of Tollip deficient and WT littermates. F. Histogram of LDA scores for differentially abundant 

genera in stool samples between treated of Tollip-/- and WT mice. Blank spaces represent unclassified 

genera within Bacteroidales and Rikenellaceae families. G. Cladogram presentation of differences in 
L7 species level for untreated Tollip WT vs treated WT and for untreated Tollip-/- vs treated Tollip-/- mice. 

 

Figure S3. Unchanged CD4+ T lymphocytes accumulation in the periphery of Tollip deficient 

mice upon homoeostasis. Related to Figure 4.  A. Representative FACS plots of CD44 CD62L 

pre-gated on CD4+ T cells from spleen homogenates and blood. B. Flow cytometry analysis of naïve 

and effector CD4+ T cells frequencies isolated from peripheral (pLN), mesenteric (mLN) lymph nodes, 

spleen and blood. Data are mean ± SEM. Differences were analyzed by Mann-Whitney test. n= 3-5 
mice, ns, p>0.5. 
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Figure S4. Tollip is required for the induction of non-resolving inflammatory responses. Related 
to Figure 5.  A. Heat map of inflammatory genes immune profiling panel for both untreated and treated 

Tollip-/- and WT mice for days 0 and 63 (data obtained from three biological replicates per group). B. 
On day 63, colon length was evaluated for both untreated and AOM/DSS-treated Tollip-/- and WT mice. 

Data are mean ± SEM. Differences were analyzed by Mann-Whitney test, n= 5-22 mice, p=0.0013. C. 
Flow cytometry analysis of CD45+ cells frequencies and absolute cell number infiltrating the adenomas 

of Tollip-/- and WT mice. Data are mean ± SEM. Differences were analyzed by Mann-Whitney test, n=6 
mice, p=0.0087 and p=0.0043 values were calculated for CD45+ frequency and absolute number 
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values, respectively. D. Flow cytometry analysis of adenoma-infiltrating CD45+ inflammatory cells (T 

and B cell lineage negative cells) cell frequency and absolute cell number that produce IFNγ and TNF 

in AOM/DSS-treated Tollip-/- and WT mice. Data are mean ± SEM. Differences were analyzed by two-

way ANOVA test. n=6 mice, p=0.0060 and p=0.018 values were calculated for IFNγ+ and TNFα+ 

producing cells, respectively. *p < 0.05, **p < 0.01. 

 

Figure S5. No alterations in leukocytes accumulation in the periphery of treated Tollip deficient 
mice. Related to Figure 5. A-B-C. Flow cytometry analysis of CD45+, CD3+ T cells and T regulatory 

CD4+Foxp3+ cell frequencies and absolute numbers infiltrates in peripheral (pLN) and mesenteric (mLN) 

lymph nodes, ileum and spleen of treated Tollip-/- and WT mice. Data are mean ± SEM. Differences 

were analyzed with Mann-Whitney test, n=6 mice, ns, p>0.5. 
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Table S1. Related to Figure 4.  Differential expression values of multi-RNA immune analysis in colon 
homogenates of untreated Tollip-/- and WT mice on day 63 (data obtained from three biological 

replicates per group). 

 
 

  

Table S1

Tollip-/-  vs 
Tollip+/+  H2O

Log2 
fold 

change
P-value BH.p.value

Cd62l -1.57 5.76E-05 0.0196

Ccr5 -0.879 8.79E-05 0.0196

Tollip -1.2 0.000223 0.033

Ptpn22 -1.04 0.000556 0.0531

Il10ra -0.65 0.000596 0.0531

Pax5 -1.32 0.00168 0.109

Cd44 -0.443 0.00173 0.109

Il7r -0.972 0.00196 0.109

Itgb2 -0.403 0.00255 0.119

Mx1 -0.789 0.0028 0.119

Itga4 -0.581 0.00303 0.119

Ccr7 -0.994 0.00322 0.119

Csf2rb -0.897 0.00467 0.154

Tlr9 -0.586 0.00488 0.154

Tnfrsf1b -0.641 0.0052 0.154

Tnfsf14 -0.794 0.00575 0.155

Cd53 -0.76 0.00592 0.155

Btla -0.859 0.00714 0.16

Ifi204 -0.749 0.00725 0.16

Cxcr4 -0.933 0.00734 0.16

Tollip-/-  vs 
Tollip+/+ 
AOM/DSS

Log2 
fold 

change
P-value BH.p.value

Tollip -1.46 5.76E-05 0.0193

Ctla4 -2.06 8.67E-05 0.0193

Cd27 -1.3 0.000156 0.0231

Ptpn22 -1.08 0.000447 0.0497

Map4k1 -0.931 0.000626 0.0557

Itgb2 -0.469 0.00102 0.0637

Cd3e -0.843 0.00116 0.0637

Itga4 -0.676 0.00123 0.0637

Il10ra -0.576 0.00129 0.0637

Traf1 -0.691 0.00151 0.0671

Cd19 -1.4 0.00188 0.0716

Ccr5 -0.543 0.00204 0.0716

Sh2d1a -1.27 0.00228 0.0716

Ccl12 1.44 0.00242 0.0716

Vcam1 -0.855 0.00253 0.0716

Syk -0.807 0.00286 0.0716

Ccr7 -1.01 0.00288 0.0716

Tlr2 -0.25 0.00305 0.0716

Btla -0.989 0.00332 0.0716

Il27ra -0.832 0.00334 0.0716
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Table S2. Related to Figure 5. Differential expression values of multi-RNA immune analysis in colon 
homogenates of AOM/DSS-treated Tollip-/- and WT mice on day 63 (data obtained from three biological 

replicates per group). 
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Transparent Methods 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 

Rat Anti-Mouse CD45 Monoclonal Antibody, Biotin 
Conjugated, clone 30-F11 

BD Biosciences Cat# 553078, 
RRID:AB_394608 

Armenian Hamster Anti-Mouse CD3e, Monoclonal 
Antibody, PE-Cyanine5 Conjugated, clone 145-2C11 

BD Biosciences Cat# 553065, 
RRID:AB_394598 

Rat Anti-Mouse CD19 Monoclonal Antibody, FITC 
Conjugated, Clone 1D3 

BD Biosciences Cat# 553785, 
RRID:AB_395049 

Rat Anti-Mouse CD25, Monoclonal Antibody, 
Phycoerythrin Conjugated, Clone PC61 

BD Biosciences Cat# 553866, 
RRID:AB_395101 

Rat Anti-Mouse CD11b Monoclonal Antibody, PerCP-
Cy5.5 Conjugated, Clone M1/70 

BD Biosciences Cat# 561114, 
RRID:AB_2033995 

Rat Anti-Mouse Ly-6C Monoclonal Antibody, FITC 
Conjugated, Clone AL-21 

BD Biosciences Cat# 553104, 
RRID:AB_394628 

Rat Anti-Mouse Ly-6G Monoclonal Antibody, 
Phycoerythrin Conjugated, Clone 1A8 

BD Biosciences Cat# 551461, 
RRID:AB_394208 

Rat Anti-Mouse Ly-6G, Ly-6C Monoclonal Antibody, 
Biotin Conjugated, Clone RB6-8C5 

BD Biosciences Cat# 553124, 
RRID:AB_394640 

Rat Anti-Mouse IFN-gamma Monoclonal Antibody, FITC 
Conjugated, Clone XMG1.2 

BD Biosciences Cat# 554411, 
RRID:AB_39537 

Rat Anti-CD4, Monoclonal Antibody, FITC Conjugated, 
Clone RM4-5 

BD Biosciences Cat# 553046, 
RRID:AB_394582 

Rat Anti-Mouse IL-17A, Monoclonal Antibody, FITC 
Conjugated, Clone TC11-18H10 

BioLegend Cat# 506907, 
RRID:AB_536009 

Rat Anti-mouse CD45, Monoclonal antibody, Alexa 
Fluor® 700 Conjugated, Clone 30-F11 

BioLegend Cat# 103127, 
RRID:AB_493714 

Mouse Anti-mouse CD45.2, Monoclonal antibody, 
APC/Cyanine7 Conjugated, Clone 104 

BioLegend Cat# 109824, 
RRID:AB_830789 

Rat Anti-mouse CD3, Monoclonal antibody, Alexa 
Fluor® 700 Conjugated, Clone 17A2 

BioLegend Cat# 100216, 
RRID:AB_493697 

Rat Anti-mouse CD8a, Monoclonal antibody, APC 
Conjugated, Clone 53-6.7 

BioLegend Cat# 100712, 
RRID:AB_312751 

Rat Anti-mouse CD4, Monoclonal antibody, 
Pe/Cyanine7 Conjugated, Clone GK1.5 

BioLegend Cat# 100421, 
RRID:AB_312706 



Mouse anti-human CD4, Monoclonal antibody, 
APC/Cyanine7 Conjugated, Clone RPA-T4 

BioLegend Cat# 300517, 
RRID:AB_314085 

Armenian Hamster Anti-mouse CD11c, Monoclonal 
Antibody, APC Conjugated, Clone N418 

BioLegend Cat# 117310, 
RRID:AB_313779 

Rat anti-mouse Ly-6G/Ly-6C (Gr-1), Monoclonal 
antibody, Pe/Cyanine7 Conjugated, Clone RB6-8C5 

BioLegend Cat# 108416, 
RRID:AB_313381 

Rat anti-mouse F4/80, Monoclonal antibody, 
Pe/Cyanine7 Conjugated, Clone BM8 

BioLegend Cat# 123114, 
RRID:AB_893478 

Armenian Hamster Anti-mouse CD103, Monoclonal 
Antibody, Phycoerythrin Conjugated,  Clone 2E7 

BioLegend Cat# 121406, 
RRID:AB_1133989 

Rat Anti-mouse TNF-alpha, Monoclonal antibody, 
Pe/Cyanine7 Conjugated, Clone MP6-XT22 

BioLegend Cat# 506324, 
RRID:AB_2256076 

Rat Anti-Mouse FOXP3 Monoclonal Antibody, PE-
Cyanine7 Conjugated, Clone FJK-16s 

eBiosciences, Thermo 
Fisher Scientific 

Cat# 25-5773-80, 
RRID:AB_891554 

Rat Anti-Mouse IL-22 Monoclonal Antibody, 
Phycoerythrin, Clone 1H8PWSR 

eBiosciences, Thermo 
Fisher Scientific 

Cat# 12-7221-82, 
RRID:AB_10597428 

Streptavidin PE-Cy5 100 ug antibody Thermo Fisher 
Scientific 

Cat# 15-4317-82, 
RRID:AB_10116415 

Ki67 antibody-Proliferation Marker, Clone SP6 Abcam Cat# ab16667, 
RRID:AB_302459 

p53 Protein, monoclonal antibody, Unconjugated, Clone 
IMX25 

Vector Laboratories Cat# VP-P952, 
RRID:AB_2336629 

Mouse Anti-Mouse Phospho-p53 (Ser15), monoclonal 
antibody, Clone 16G8 

Cell Signaling 
Technology 

Cat# 9286, 
RRID:AB_331741 

Rabbit Anti-Phospho-Smad2 (Ser465/467) Antibody Cell Signaling 
Technology 

Cat# 3101, 
RRID:AB_331673 

Phospho-Smad2 (Ser465/467) (138D4) Rabbit mAb 
antibody 

Cell Signaling 
Technology 

Cat# 3108, 
RRID:AB_490941 

Phospho-Stat3 (Tyr705) (D3A7) XP Rabbit mAb 
antibody 

Cell Signaling 
Technology 

Cat# 9145, 
RRID:AB_2491009 

Smad2 (D43B4) XP Rabbit mAb antibody Cell Signaling 
Technology 

Cat# 5339, 
RRID:AB_10626777 

Stat3 (C-20) antibody Santa Cruz 
Biotechnology 

Cat# sc-482, 
RRID:AB_63244 

Mouse Anti-Tubulin II, beta Monoclonal Antibody, 
Unconjugated, Clone 7B 

Sigma-Aldrich  Cat# T8453, 
RRID:AB_1841224 

   



Biological Samples   

Human inflammatory bowel disease (IBD) mucosal 
samples 

Bouhnik et al., Gut 
2018 

Groupe d’Etudes et 
de Thérapeutiques 
des Affections 
Inflammatoires du 
tube Digestif 
(GETAID) 

Human colitis-associated cancer (CAC) samples Bouhnik et al., Gut 
2018 

Groupe d’Etudes et 
de Thérapeutiques 
des Affections 
Inflammatoires du 
tube Digestif 
(GETAID) 

Human sporadic colorectal cancer (CRC) samples This paper Lausanne 
Institutional Biobank 
(BIL)/Biobank of 
Lausanne (BbdL) 

Human healthy colon mucosa samples (adjacent to 
CRC samples) 

This paper Lausanne 
Institutional Biobank 
(BIL)/Biobank of 
Lausanne (BbdL) 

Chemicals, Peptides, and Recombinant Proteins 

Azoxymethane (AOM) Sigma-Aldrich A5486 

Dextran sulfate sodium TdB Consultancy 9011-18-1 

Antibody diluent for IHC BD Pharmingen 559148 

Liberase TL research grade Roche Cat# 5401020001 

Dnase I Invitrogen, Thermo 
Fisher Scientific 

Cat# 18047-019 

10X RBC Lysis Buffer eBiosciences, Thermo 
Fisher Scientific 

Cat# 4300-54 

Live/Dead Fixable Aqua Dead Cell Stain Kit  Thermo Fisher 
Scientific 

L34966 

Complete Protease Inhibitor Cocktail Roche 11697498001 

PhosphoSTOP – Phosphatase Inhibitor Cocktail Tablets  Roche 4906837001 

WesternBright ECL HRP substrate Advansta K-12045-D20 

PrimeScriptTM RT Reagent Kit  Takara RR037A 

iQ SYBR Green Supermix Bio-Rad 1708882 



Platinum Taq DNA Polymerase Invitrogen, Thermo 
Fisher Scientific 

10966034 

Critical Commercial Assays 

Vectastain Elite ABC Streptavidin-HRP Kit  Vector Laboratories PK-8200 

DAB Peroxidase (HRP) Substrate Kit (with Nickel), 3,3’-
diaminobenzidine 

Vector Laboratories SK-4100 

DeadEnd Fluorometric TUNEL System Promega G3250 

Foxp3 / Transcription Factor Staining Buffer Set eBiosciences, 
Invitrogen 

Cat# 5523-00 

QIAquick PCR Purification Kit Qiagen 28104 

pGEM T Easy Vector System I  Promega A1360  

Qiamp Fast DNA Stool Mini Kit  Qiagen 51604 

Ion PGMTM Hi-QTM View OT2 400 kit Thermo Fisher 
Scientific 

A29900 

Deposited Data 

Mouse (Tollip) Immune Profiling Panel 
(NS_Immunology_MM_C2269) 

data.mendeley.com https://data.mendele
y.com/datasets/n3k7
5bfy5j/1 

Tollip gut microbiome analysis This paper Available upon 
request 

Experimental Models: Organisms/Strains 

Mouse: C57BL/6J The Jackson 
Laboratory 

JAX: 000664 

Mouse: Tollip-/- Dr. Kimberly Burns Institut de Biochimie, 
Epalinges, 
Switzerland 

Oligonucleotides 

Primers for qRT-qPCR: mouse Gapdh Microsynth Forward: 5'-TCA 
CCACCACCATGG 
AGAAGG-3' and 
reverse: 5'-
GCTAAGCAGTTGG
TG GTGCA-3'   

Primer for qRT-qPCR: mouse Foxp3 Qiagen QT00138369 



Primers for qRT-qPCR: mouse Tgf-b Microsynth Forward: 5’-
GGTTCATGTCATG
GATGGTGC-3’ and 
reverse: 5’-
TGACGTCACTGGA
GTTGTACGG-3’ 

Primers for qRT-qPCR: mouse Il-10 Microsynth Forward: 5’-
ACCTGCTCCACTG
CCTTGCT-3’, and 
reverse: 5’-
GGTTGCCAAGCCT
TATCGGA-3’ 

Primers for qRT-qPCR: mouse Il-6 Microsynth Forward: 5'-
CACGATTTCCCAG
AGAACATGTG -3' 
and reverse: 5'-
ACAACCACGGCCT
TCCCTACTT -3' 

 

Primer for qRT-qPCR: mouse Il-11 Qiagen QT001122122 

Primers for qRT-qPCR: mouse Bcl-xl Microsynth Forward: 5'-
CACTGTGCGTGGA
AA GCCTA-3' and 
reverse: 5'-
AAAGTGTCCCAGC
CGCC-3' 

 

Primers for qRT-qPCR: mouse Bax-a Microsynth Forward: 5'-
GTTTCATCCAGGA
TCGAGCAG-3' and 
reverse: 5'-
CCCCAGTTGAAGT
TGCCATC-3' 

 

Primers for qRT-qPCR: mouse c-myc 

 

Microsynth 

 

Forward: 5'-
TGAGCCCCTAGTG
CTGCAT-3' and 
reverse: 5'-AGCCCG 
ACTCCGACCTCTT-
3' 

 

Primer for qRT-qPCR: human Gapdh Qiagen QT00079247 



Primers for qRT-qPCR: human Tollip Microsynth Forward: 5'-
CAAGAATCCCCGC
TGGAATAAG -3' 
and reverse: 5'-
ATGGCTTTCAGGT
CCTCCTCGC-3' 

Software and Algorithms 

Prism 6.0 GraphPad https://www.graphpa
d.com  

FACS DIVA software  BD Biosciences https://www.bdbiosci
ences.com 

FlowJo v.10 Tree Star https://www.flowjo.co
m 

AxionVision Upright Leica https://www.leicabios
ystems.com 

Adobe Photoshop 
 

https://www.adobe.c
om 

R R foundation for 
statistical 

https://www.R-
project.org 
computing  

QIIME pipeline version 1.9.1 QIIME http://qiime.org 

Fusion Fx  Vilbert Lourmat, 
Germany 

https://www.vilber.co
m/fusion-fx 

nSolver Analysis Software 3.0 with nCounter Advanced 
Analysis (version 1.0.84) 

Nanostring https://www.nanostri
ng.com/products/ana
lysis-software 

Image J Schneider et al., 2012 https://imagej.nih.go
v/ij/ 

ImageJ Immunoratio plugin Tuominen et al., 2010 http://wsiserver.jilab.f
i/old-jvsmicroscope-
software/ 

 

Reagents and antibodies 

AOM was purchased from Sigma-Aldrich and DSS (MW 47,000 Da) from TdB 

Consultancy, Uppsala, Sweden. For immunohistochemistry (IHC) antibody diluent 

was purchased from BD Pharmingen, Ki67 monoclonal antibody (SP6) from Abcam, 



Streptavidin-HRP Vectastain Elite ABC Kit and DAB purchased from Vector 

laboratories and DeadEnd Fluorometric TUNEL System purchased from Promega. 

The antibodies used for western blot: total p53 (IMX25) from Vector laboratories, p-

p53 (16G8), p-Smad2 (S465/476) (138D4), p-Stat3 (Tyr705) (D3A7) from Cell 

Signaling, USA, total Smad2 (D43B4) and total Stat3 (C20) from Santa Cruz and 

tubulin was purchased from Sigma. Protease and PhosphoStop inhibitors were 

purchased from Roche and WesternBright ECL HRP substrate from Advansta. For 

RNA extraction RNeasy Plus Mini Kit was purchased from Qiagen and for RT-qPCR 

PrimeScriptTM RT Reagent Kit was purchased from Takara Bio Inc. and iQ SYBR 

Green Supermix was purchased from Bio-Rad. Primers for Foxp3, TGFβ, Il10 and 

Gapdh were all purchased from Microsynth and human Tollip and Gapdh were both 

purchased from Qiagen. For flow cytometry the following antibodies: CD45-

biotinylated (30-F11), CD3-Pe-Cy5 (145-2C11), CD19-FITC (1D3), CD25-PE (PC61), 

CD11b-PerCy5.5 (M1/70), Ly-6C-FITC (AL-21), Ly-6G-PE (1A8), Gr-1 biotinylated 

(RB6-8C5), Foxp3-Pe-Cy7 (FJK-16s), IFNγ-FITC (XMG1.2), IL-22-PE (1H8PWSR), 

IL-17-FITC (TC11-18H10.1), IL-17-PE (TC11-18H10), Streptavidin PE-Cy5 (2.4G2) 

were all purchased from BD Biosciences and CD45-Al700 (30-F11), CD45.2-APC-Cy7 

(104), CD3-Al700 (17A2), CD8a-APC (53-6.7), CD4-Pe-Cy7 (GK1.5), CD4-APC-Cy7 

(RPA-T4), CD11c-APC (N418), Gr-1 Pe-Cy7 (RB6-8C5), F4-80-PE-Cy7 (BM8), 

CD103-PE (2E7), TNFα-PE-Cy7 (MP6-XT22) were all purchased from Biolegend and 

CD4-FITC (RM4-5) was purchased from Invitrogen. Foxp3 Transcription Factor 

Fixation/Permeabilization Concentrate and Diluent was purchased from eBioscience. 

For isolation of immune cells from lamina propria Liberase TL was purchased from 

Roche and DNase I purchased from Invitrogen. RBC lysis buffer purchased from 

eBioscience. See Key Resources Table for more details. 



Human study subjects 

This study protocol was conducted according to the ethical guidelines expressed in 

the Declaration of Helsiki and all including procedures were approved by the ethics 

committee of “Unité de Valorisation des données et des échanitllons biologiques” 

(VDE) of CHUV, the Lausanne Institutional Biobank (BIL) and the Biobank of 

Lausanne (BbdL) and the Groupe d’Etudes et de Thérapeutiques des Affections 

Inflammatoires du tube Digestif (GETAID) from Lyon Sud Hospital in France. All 

patients included in this study gave written informed consent. Biopsy specimens were 

taken during endoscopic examination and tumor resected tissues were obtained from 

surgery. IBD group included biopsies obtained from: 14 non-inflamed and 8 inflamed 

mucosa of active and quiescent ulcerative colitis (UC) patients, 15 non-inflamed and 

10 inflamed mucosae from quiescent and active Crohn’s disease (CD) patients, 

respectively. Tumor groups included biopsies obtained from: 6 CAC patients, 10 

normal adjacent mucosae and 10 CRC tumors paired match biopsies. Normal 

adjacent mucosa biopsies were used in our analysis as a control group upon 

comparison with the other groups.  



Induction of colitis-associated cancer (CAC) 

All animal experiments were approved by the Committee on Animal Experimentation 

of University of Lausanne and performed in compliance with the Swiss Guidelines for 

the Care and Use of Laboratory Animals. Pathogen-free 12-18-week-old males and 

females Tollip-/- mice and Tollip+/+ C57BL/6 littermates were co-housed under specific 

pathogen-free conditions with free access to food and water during the experiments. 

Tollip-/- mice were generated by Dr Kimberly Burns (Institut de Biochimie, Epalinges, 

Switzerland). Mice were injected intraperitoneally (i.p.) with a single dose of 10mg/kg 

of the colonotropic procarcinogen azoxymethane (AOM) (Sigma) dissolved in 

physiological saline. This was followed by 2.5% (wt/vol) dextran sodium sulfate (DSS) 

(MW 47,000 Da, TdB Consultancy, Uppsala, Sweden) oral treatment in the drinking 

water ad libitum. Mice were allowed to drink for seven days, followed by two weeks of 

regular water. This cycle was repeated twice (four days of 2.5% DSS for the second 

and third cycle). Mice were weighted and clinically monitored every other day. 

Development of adenomatous lesions was monitored by mouse colonoscopy at the 

end of the third cycle. After colonoscopy, mice were sacrificed and colons were 

excised for colonic length determination, macroscopic assessment of tumor numbers 

and size with the use of a dissection microscope (Leica model). Resected colons were 

used for histological analysis, mRNA and protein analysis or for examining profiles of 

immune cells by flow cytometry.  

 

Mouse endoscopic system 

Development of adenomatous polyps was monitored at the end of the third cycle of 

CAC model with a high resolution mouse video endoscopic system, termed Coloview. 

Mice were anaesthetized using intraperitoneal injection of Ketamine/Xylazine cocktail 



(87.5 mg/kg Ketamine/12.5 mg/kg Xylazine). The endoscopic equipment consisted of 

a miniature endoscope (scope 2 mm outer diameter, company), a xenon light source 

and an air pump for regulating inflation of the mouse colon (all from Karl Storz, 

Tuttlingen, Germany). The video endoscope was viewed on a color monitor and 

digitally recorded.  

 

Endoscopic score evaluation 

Endoscopic tumor number was assessed by counting the tumors observed during the 

endoscopic procedure. Ulcers were discriminated and not included in this score. 

Tumor sizes were graded (Becker et al., 2005) as follows from 1 to 5: grade 1 (very 

small but still detectable tumor), grade 2 (tumor covering up to one eight of colonic 

circumference), grade 3 (tumor covering up to a quarter of colonic circumference), 

grade 4 (tumor covering up to half of colonic circumference) and grade 5 (tumor 

covering more than half of colonic circumference). The total endoscopic score was a 

sum of the different grades of tumors encountered per mouse.  

 

Histo-pathological analysis  

Resected mouse colon tissues were flushed with PBS 1X after mouse sacrifice. Colon 

tissues were fixed as “Swiss-rolls” in 4% paraformaldehyde at 4°C overnight and were 

paraffin-embedded. Sections of 4 µm were performed for H&E staining. Evaluation of 

dysplasia grades and tumor counts were performed in a blind fashion by a specialized 

pathologist.  

 
Immunohistochemistry 
 
Paraffin-embedded slides of four-micrometer were deparaffinized in xylol and 

rehydrated with ethanol 100 to 70%. Slides were then quenched with 3% H2O2 for 10 



minutes and washed with PBS. Antigen retrieval for rabbit anti-Ki67 monoclonal 

antibody (SP6, Abcam) was performed in 10mM sodium citrate buffer, pH 6.0, with 

0.1% Tween20 for 10 minutes in a pressure cooker and allowed to cool in room 

temperature for 20 minutes. Slides were incubated with Ki67 in IHC antibody diluent 

(BD Pharmingen) and incubated for one hour in room temperature. A biotinylated 

secondary anti-rabbit antibody (Vector laboratories) was added and incubated at room 

temperature for one hour. Streptavidin-HRP (Vectastain Elite ABC Kit; Vector 

laboratories) was added and after 30 minutes the sections were stained with DAB 

(Vector laboratories) and counterstained with Harris hematoxylin. Slides were 

immersed in increasing grades of ethanol (70-100%) followed by xylene baths. Slides 

were mounted with Eukit and pictures acquisition was performed with Leica 

microscope. Ki67 proliferation index was analyzed with Image J and the plugin 

Immunoratio. For the assessment of the apoptotic index, slides of 4 µm were 

deparaffinized as described above and the TUNEL staining was performed by using 

the DeadEnd Fluorometric TUNEL System (Promega) according to manufacturer’s 

recommendations. Pictures acquisition was performed with Upright AxioVision 

microscope. Picture analysis and apoptotic index evaluation was performed with 

Photoshop.  

 

Western Blotting Analysis  

Colonic tissues were mechanically disrupted with an electric pellet pestle motor in 

RIPA lysis buffer supplemented with protease (Roche) and phosphatase 

(PhosphoStop, Roche) inhibitors. Concentration of protein lysates was calculated by 

using the Pierce BCA Protein Assay Kit (Thermo) according to manufacturer’s 

recommendations to ensure equal sample loading. Protein lysates were mixed with 



protein blue and denaturated at 95°C for 5 minutes. 20-30 µg of protein lysates were 

separated on 12% SDS-polyacrylamide gel and transferred on nitrocellulose 

membrane of 0.2 µm (Pall Corporation, Mexico). Membranes were blocked with 5% 

non-fat dry milk or 5% BSA in TBST 1X for one hour in room temperature. Membranes 

were then incubated overnight at 4°C with antibodies to total p53 (IMX25, Vector lab), 

active p-p53 (16G8, Cell Signaling), p-Smad2 (S465/467, 138D4, Cell Signaling), total 

Smad2 (D43B4), active p-Stat3 (Tyr705, D3A7, Cell Signaling, USA) and total Stat3 

(C20) from Santa Cruz and tubulin (Sigma) was used as internal control. Incubation 

with peroxidase conjugated secondary donkey anti-rabbit IgG (GE Healthcare, UK) or 

sheep- anti-mouse IgG (Abcam) antibodies was performed for one hour in room 

temperature. The blotted membranes were treated with WesternBright ECL HRP 

substrate (Advansta, Corporation, USA) and chemiluminescent signal was revealed 

on Fusion Fx (Vilbert Lourmat, Germany). Band densitometry was quantified with 

Fusion software. See Key Resources Table for more details. 

 

RNA extraction and Quantitative RT-PCR 

Dissected colonic tissues were washed and snap frozen in liquid nitrogen. Mechanical 

tissue disruption was performed by using mortar and pestle, while keeping the tissues 

in low temperature with liquid nitrogen. Total RNA isolation was performed by using 

RNeasy Plus Mini Kit (Qiagen, Valencia, CA) according to manufacturer’s 

recommendations. RNA concentration and purity were determined 

spectophotometrically with the NanoDrop machine (ND-1000, Thermo Scientific). One 

microgram of total RNA was reversed transcribed into cDNA using PrimeScriptTM RT 

Reagent Kit (Takara Bio Inc., Otsu, JP) and oligo-dT random primers according to 

manufacturer’s protocol. PCR amplification was performed on a MyiQ iCycler (Bio-



Rad, Hercules, CA) using 96-well microtiter plates. The PCR reaction was performed 

by using the iQ SYBR Green Supermix (Bio-Rad) in duplicates for each sample. PCR 

program included: heating of samples on 95°C for 3 minutes followed by 35 cycles of 

denaturating, primer annealing and extension for 60 seconds. Amplification was 

performed for primers specific for mouse Foxp3, TGFβ, Il10 and Gapdh (all from 

Microsynth) and human Tollip and Gapdh (both from Qiagen). Melting curves of the 

amplified products were used to identify the amplicon. Quantification of messenger 

RNA (mRNA) for each sample was determined by using the standard curve method. 

For constructing the standard DNA curve, amplicons generated for the primers 

mentioned above by RT-PCR were purified on silica columns (QiAquick PCR 

purification, Qiagen) and cloned into pGEM-Teasy (Promega Corp, Madison, WI). 

DH5a-competent cells were used for transforming the ligated fragments and plasmid 

DNA was prepared using silica cartridges (Qiagen). The sequence of the cloned 

amplicons was determined by cycle sequencing. The concentration and purity of DNA 

plasmids were determined spectophotometrically with the NanoDrop machine (ND-

1000, Thermo Scientific). Copy numbers were calculated using the following formula: 

1 µg 1000-bp DNA = 9.1 * 1011 molecules. For each PCR run in the same 96-well 

microtiter plate, serial 10-fold dilution from 107 to 102 of the DNA plasmid were used 

as standard curve together with the unknown samples. The calculated number of 

mRNA copies for the gene of interest was then normalized per million of mRNA copies 

obtained for Gapdh, which was used as a house keeping gene. See Key Resources 

Table for more details. 

 
Isolation of intestinal/ tumor-infiltrating immune cells  
 
Excised colons were open longitudinally and washed with ice cold PBS. Tissues were 

cut into 2cm pieces and incubated for 20 minutes at 37°C in calcium- and magnesium-



free DMEM (Gibco) supplemented with 10 mM EDTA with gentle agitation (80 rpm). 

At the end of incubation tissues were washed with calcium-free PBS until obtaining a 

clear supernatant devoid of epithelial cells. Tissues were then cut into smaller pieces 

of 1 mm and incubated with the digestion mix of Liberase TL (1 Wünsch unil / ml; 

Roche), DNase I (1 U / ml; Invitrogen) and 2% of FBS for 20 min at 37°C under gentle 

agitation (80 rpm). After incubation, the supernatants were harvested in 5 ml of DMEM 

complemented with 10 % FBS, while fresh digestion mix was added into the 

undigested gut fragments. This step was performed three times for a total time of 60 

minutes. At the end of the cycle the cellular suspension was centrifuge and washed 

twice in DMEM and filtered through a 100 µm cell strainer for eliminating any remaining 

debris. The cellular suspension was centrifuged and washed two more times in DMEM 

and filtered through a 40 µm cell strainer. After centrifugation, cells were re-suspended 

in ice cold PBS containing of 2% FBS and 2 mM EDTA until preceding staining with 

fluorescent antibodies. 

 

Isolation of immune cells from peripheral organs 

Dissection of peripheral lymph nodes (pLNs), including inguinal, axillary and brachial, 

mesenteric lymph nodes (mLNs) and spleen was performed. Blood was also collected 

from the animals. Organs were mechanically smashed and homogenized with a plastic 

syringe plunger. The red blood cells (RBCs) in blood and spleens were lysed with RBC 

lysis buffer (eBioscience), following an incubation for 10 minutes. Cell suspension was 

washed with PBS, centrifuged and incubation was repeated until the supernatant was 

devoid of RBCs. The cellular suspensions were centrifuged and washed twice in 

DMEM and filtered through a 40 µm cell strainer. After centrifugation, cells were re-



suspended in ice cold PBS containing of 2% FBS and 2 mM EDTA until preceding 

staining with fluorescent antibodies.  

 

Flow cytometry analysis 

Cells from colon, adenomas, spleen, blood, pLNs and mLNs were re-suspended in ice 

cold PBS containing of 2% FBS and 2 mM EDTA and incubated with Fc blockers 

(2.4G2, BD, San Jose, CA) for 30 minutes. This was followed by one hour incubation 

with the appropriate combination of antibodies, as mentioned in Key Resources Table, 

in ice cold PBS containing of 2% FBS and 2 mM EDTA. For estimating the population 

of T regulatory cells the Foxp3 Transcription Factor Fixation/Permeabilization 

Concentrate and Diluent Kit (eBioscience) was used according to manufacturer’s 

protocol, followed by one hour incubation with the Foxp3-Pe-Cy7 (FJK-16s) antibody.  

For evaluating cytokines production, cells were stimulated for 4 hours with 10 ng / ml 

PMA and 1 µg / ml Ionomycin (both from Sigma-Aldrich) in the presence of 5 µg / ml 

protein transport inhibitor containing Brefeldin A (Golgi Plug, BD Biosciences). After 

staining with antibodies of cell surface markers, cells were incubated and fixed for 20 

minutes with BD Cytofix/Cytoperm Fixation and Permeabilization Solution (BD 

Biosciences), followed by washing with PBS and 1 hour incubation with cytokine-

specific intracellular antibodies, as mentioned in Key Resources Table. Dead cells 

were labeled with Live/Dead Fixable Aqua Dead Cell Stain Kit, as recommended by 

the protocol. Cells were analyzed by flow cytometry on a Fortessa X-20 flow cytometer 

instrument using FACS DIVA software (both from BD Biosciences). Data analysis was 

performed using FlowJo version 10 software (FLOWJO LLC, Ashland, OR). 

  



Mouse Immune Profiling Panel with NanoString analysis 

NanoString nCounter Analysis System for RNA analysis was performed by the 

“Genomics Technology Facility” in University of Lausanne, Unil. Prior to NanoString 

analysis, the quality and nucleic degradation of all samples was determined with the 

sensitive Fragment Analyser technique according to guidelines. Qubit Fluorometric 

Quantification was performed to ensure the exact quantity of 200 ng of RNA 

concentration per sample. Each investigated nucleic acid was targeted by a capture 

and a reporter probe that contain approximately 50 nucleotides that are 

complementary to the region of interest. Each capture probe carried a biotin-tag for 

immobilization and each reporter probe was labeled with a barcode of six fluorophores 

unique for each targeted sequence. The fluorescent barcodes were imaged and the 

software counted and decoded the barcodes. The CodeSet used was GX Assay, 

Mouse Immuno Profiling Panel (NS_Immunology_MM_C2269) including 561 genes 

(14 housekeeping genes) and 14 control RNA skipes. 

NanoString statistical analysis 

Statistical analysis was performed using nSolver Analysis Software 3.0 with nCounter 

Advanced Analysis (version 1.0.84). Normalization and differential expression were 

performed using the methods of Normalization within nSolver advanced analysis and 

Differential expression within nSolver advanced analysis. For Normalization within 

nSolver advanced analysis, normalization by geometric mean of reference 

(housekeeping) genes was performed. Housekeeping genes were automatically 

selected using geNorm algorithm (Vandesompele, 2002). 10 selected genes (out of 

14 housekeeping in the panel). For the Differential expression within nSolver 

advanced analysis, linear regression model of sample group as predictor was used. 

The following comparisons were performed separately by the software, each one 



using a different baseline group. For the baseline “comparisons to non-treated 

Tollip+/+” the following comparisons were performed:  treated Tollip-/-  vs non-treated 

Tollip+/+, non-treated Tollip-/-  vs non-treated Tollip+/+ and treated Tollip+/+ vs non-

treated Tollip+/+. For the baseline “comparisons to treated Tollip+/+” the following 

comparisons were performed: treated Tollip-/-  vs treated Tollip+/+, non-treated Tollip-/-  

vs treated Tollip+/+. For the baseline “comparisons to non-treated Tollip-/-” the following 

comparisons were performed: treated Tollip-/-  vs non-treated Tollip-/-. The results for 

all comparisons mentioned above were ordered from the most statistically significantly 

differentially expressed genes to the least. Gene differential expression by 'Estimated 

log fold-change', 95% confidence interval for the log fold change, p-value and an 

adjusted p-value by the Benjamini-Hochberg method (controlling for false discovery 

rate) were also estimated for all comparisons mentioned above. 

 

Stool collection and microbial DNA extraction 

Stool samples were collected from mice prior to AOM injection and on day 63 after 

CAC induction with the AOM/DSS model but prior to colonoscopy. After collection 

samples were immediately stored at -80°C without additives until processing. DNA 

extraction from samples was performed with Qiamp Fast DNA Stool Mini Kit (Qiagen) 

according to manufacturer’s recommendations. DNA concentration and purity were 

determined spectophotometrically with the NanoDrop machine (ND-1000, Thermo 

Scientific). 

 

16S rDNA sequencing  

The V5/V6 regions of 16S rRNA genes have been amplified by PCR using Platinum 

Taq DNA Polymerase (Invitrogen) and an input of 100 ng fecal DNA. The forward core 

primers have been modified by the addition of a PGM sequencing adaptor (in italic), a 



‘GT’ spacer and unique barcode that allow up to 96 different barcodes: 5′-

CCATCTCATCCCTGCGTGTCTCCGACTCAG BARCODEATTAGATACCCYGGT

AGTCC -3′. They were used in combination with a reverse fusion primer 5′-

CCTCTCTATGGGCAGTCGGTGATACG AGCTGACGACARCCATG-3′. The PCR 

product has a length of 350 bp including adaptor and barcode1,2. Cycling conditions 

consist of an initial denaturation at 94°C for 5 minutes followed by 35 cycles of 1 

minute denaturation at 94°C, 20 seconds annealing at 46°C and 30 seconds 

elongation at 72°C. A final elongation step was performed at 72°C for 4 minutes. 

The PCR products were purified after 1% agarose gel electrophoresis using Gel 

Extraction Kit (Qiagen) according to manufacturer’s instructions. Purity and 

concentration of the amplicon were determined using Qubit 3.0 Fluorometer (Thermo 

Fisher Scientific) prior to library preparation for sequencing on the IonTorrent PGM 

system (Life Technologies). Libraries were diluted according to manufacturer’s 

instructions and processed using the Ion PGMTM Hi-QTM View OT2 400 kit (Thermo 

Fischer Scientific) (for up to 400 bp libraries) and the Ion PGMTM Hi-QTM View 

Sequencing kit (Thermo Fischer Scientific) for sequencing on an Ion 316TM V2 chip 

(Thermo Fischer Scientific)3. All the necessary equipment pieces belong to the Next 

Generation Sequencing platform of the University of Bern. 

Microbiome analysis 

Samples with less than 4000 reads were excluded from the analysis. Data analysis 

was performed using the QIIME pipeline version 1.9.14. Operational taxonomic unit 

(OTU) were picked at a threshold of 97% similarity using usearch61_ref version 

v6.1.5445 followed by taxonomy assignment using the Greengenes database 

(http://greengenes.secondgenome.com). Calculation of the α-diversity, weighted and 

unweighted UniFrac-based PCoA analysis and statistical analysis using Adonis and 



Anosim were performed using the QIIME pipeline version 1.9.14 

Statistical Analysis 

Data were presented as mean of ± SEM and distribution was analyzed with Mann-

Whitney test, t-test and one-way ANOVA using Prism GraphPad (GraphPad Software, 

San Diego, CA), with the limit of significance set at p=0.05. 
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