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ABSTRACT

We have studied the stimulation of topoisomerase
IV (Topo IV) by the C-terminal AAA+ domain of FtsK.
These two proteins combine to assure proper chro-
mosome segregation in the cell. Stimulation of
Topo IV activity was dependent on the chirality of
the DNA substrate: FtsK stimulated decatenation
of catenated DNA and relaxation of positively
supercoiled [(+)ve sc] DNA, but inhibited relaxation
of negatively supercoiled [(�)ve sc] DNA. The DNA
translocation activity of FtsK was not required for
stimulation, but was required for inhibition. DNA
chirality did not affect any of the activities of FtsK,
suggesting that FtsK possesses an inherent Topo IV
stimulatory activity that is presumably mediated
by protein–protein interactions, the stability of
Topo IV on the DNA substrate dictated the effect
observed. Inhibition occurs because FtsK can strip
distributively acting topoisomerase off (�)ve scDNA,
but not from either (+)ve scDNA or catenated DNA
where the enzyme acts processively. Our analyses
suggest that FtsK increases the efficiency of
trapping of the transfer segment of DNA during the
catalytic cycle of the topoisomerase.

INTRODUCTION

Accurate replication of DNA and faithful segregation of
the newly replicated sister chromosomes to the daughter
cells are required to ensure stable inheritance of the
genetic material. In prokaryotic cells, the DNA replication
machinery induces positive supercoiling ahead of the
fork. These positive linkages can also diffuse behind the
replication machinery to take the form of precatenanes
(interwindings of the two partially replicated sister mole-
cules) that are converted to catenanes (interwound, fully
replicated sister DNA duplexes) at the end of the replica-
tion (1). Accumulation of positive supercoils blocks

replication fork progression and catenanes prevent segre-
gation of the genetic information if they are not removed
(2). In Escherichia coli, two essential type II DNA topoiso-
merases, DNA gyrase and topoisomerase IV (Topo IV),
manage DNA topology during replication. Gyrase intro-
duces negative supercoils into the DNA to compensate for
the accumulation of the positive supercoils ahead of the
fork (3); whereas the primary role of Topo IV, which can
contribute to replication fork progression by relaxing
positive supercoils, is to unlink the catenated chromo-
somes (4–6).
Type II DNA topoisomerases transiently cleave both

strands of a segment of a DNA duplex, termed the gate
(G) segment and, in the presence of ATP, pass another
segment [the transport (T) segment] of either the same
(e.g. during superhelical DNA relaxation) or a different
duplex (e.g. during decatenation) through the break
followed by religation of the cleaved DNA (7). The
enzyme efficiently removes replication catenanes and
relaxes positive supercoils, but is considerably less active
on negatively supercoiled [(�)ve sc] DNA (4,8,9). Topo IV
is composed of a dimer of ParE, which contains the
ATPase domain, and a dimer of ParC, which contains
the DNA binding, DNA cleavage and religation
domains (9). The ParC subunit includes a globular
C-terminal domain (CTD) that adopts a unique structural
fold termed a b-pinwheel (10,11). Truncation of the ParC
CTD ablates the preference of the enzyme for replicative
catenanes and positive supercoiled DNA (11).
Several proteins can modulate the activities of Topo IV.

SeqA, which prevents overinitiation of chromosome
replication, stimulates the relaxing and decatenating
activities of Topo IV (12). MreB, an actin-like cytoskeletal
element, modulates the decatenation activity of Topo IV
in a manner dependent on its polymerization state (13).
We have shown previously that the CTD of FtsK interacts
with the ParC subunit of Topo IV and stimulates its
decatenation activity in vitro (14). FtsK is a bifunctional
protein that links cytokinesis and chromosome segrega-
tion via its N-terminus that is anchored in the cell
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division septum and its cytoplasmic CTD (FtsKC), a
hexameric ATP-dependent DNA translocase that mobi-
lizes chromosomal DNA trapped at mid-cell during
cytokinesis (15). FtsKC is necessary for normal chromo-
some segregation in part, because it is required for
XerCD-catalyzed resolution of chromosomal dimers at
dif (16). This resolution reaction, by the action of FtsKC

at XerCD-dif, can also serve to unlink replication
catenanes if Topo IV activity is impaired (17). Then, the
interaction between FtsK, Topo IV and the XerCD-dif
recombination system may create a complex of enzymes
stationed at mid-cell during cytokinesis that are necessary
for the final topological disengagement of the daughter
chromosomes and the management of errant segments of
DNA, as well as improve the efficiency of these processes
by increases in local concentration and enzymatic activity.
In this report, we extend our understanding of the

mechanism by which FtsKC modulates Topo IV activity.
We show that, in vitro, regulation of Topo IV activities by
FtsKC depends on the DNA subsrate: Topo IV activity on
positive supercoiled DNA or replicative catenanes is
stimulated, whereas its activity on negative supercoiled
DNA is inhibited. This modulation depends on the ParC
CTD. We suggest that this differential activity relates to
the different stability of Topo IV on DNA.

EXPERIMENTAL PROCEDURES

FtsK expression and purification

Purification of FLAG-FtsK50CK997A was as described by
Aussel et al. (18) and Espeli et al. (14). BL21(�DE3)-
pET11a-His-FtsK50C was grown at 37�C in 20 l of LB
medium to OD600=0.2. The growth temperature was
then reduced to 25�C. When the culture reached an
OD600=0.4, IPTG was added to 0.6mM and growth
was continued for 3 h. Cells were harvested and
resuspended in 100ml of buffer A [50mM Tris–HCl
(pH 7.5 at 4�C), 1mM DTT, 1mM EDTA, 10%
glycerol] containing 0.06% lysozyme, 150mM NaCl and
20mM EDTA. After 10min of incubation at 0�C, triton
X-100 was added to 1.0% and the cell suspension was
incubated for 10min at 25�C, followed by incubation for
10min at 0�C. The soluble lysate was recovered after
centrifugation at 100 000g for 1 h, diluted in buffer A to
50mM NaCl and loaded onto a SP-Sepharose column
(26ml) equilibrated in buffer A+50mM NaCl and 1%
triton X-100. The column was washed with 75ml buffer
A+50mM NaCl and 1% triton and the protein eluted
using a linear gradient (260ml) of 50–500mM NaCl in
buffer A+1% triton X-100. FtsK50CK997A eluted at
240mM NaCl as scored by SDS–PAGE analysis. Peak
fractions were pooled (Fraction 2, 32.5ml, 88mg
protein). After dialysis against buffer B [50mM Tris–
HCl (pH 7.5 at 4�C), 300mM NaCl, 10% glycerol,
0.8% triton X-100], Fraction 2 was applied to a
TALON column (8ml) that had been previously
equilibrated in buffer B. The column was washed with
24ml buffer B and protein was eluted using a linear
gradient (80ml) of 50–400mM imidazole in buffer B.
Peak fractions were pooled (Fraction 3, 4.5ml, 4mg

protein). After dialysis against buffer A, Fraction 3 was
applied to a Heparin agarose column (1ml) that had been
previously equilibrated with buffer A+50mM NaCl and
1% triton X-100. The column was washed with 5ml buffer
A+50mM NaCl and 1% triton X-100 and protein was
eluted using a step gradient of 50–400mM NaCl+1%
triton X-100 in buffer A. Peak fractions were pooled
(Fraction 4, 1ml, 2.63mg protein), dialyzed against
storage buffer [Tris–HCl (pH 7.5 at 4�C), 150mM NaCl,
1mM EDTA, 1mMDTT and 38% glycerol] and stored at
�80�C.

Immunoblotting

Immunoblotting was performed as described in Espeli
et al. (14) with some modifications. An anti-FLAG
antibody conjugated to horseradish peroxidase (1: 250
dilution) in 1� PBS was incubated with the blot for 2 h
at room temperature. The blot was washed four times
quickly, once for 15min and three times for 5min each
with 60ml of 1� PBS, 2% milk, and then FtsK50C was
detected using ECL western blotting detection reagents, as
described by the manufacturer (Amersham Bioscience).

Decatenation of multiply linked DNA dimers

Multiply linked, form II : form II DNA dimers were
prepared as described by Marians (19). Assays were
performed as described in Espeli et al. (14).

Superhelical DNA relaxation

Positively supercoiled [(+)ve sc] DNA was prepared fol-
lowing the protocol of McClendon et al. (20). Reverse
gyrase was a gift of T. S. Hsieh (Duke University
Medical Center). Topo IV was reconstituted by mixing
ParE in 5% molar excess over either the wild-type or
mutant ParC in their storage buffers and incubated at
0�C for 30min. Reaction mixtures (20ml) containing
50mM HEPES–KOH (pH 8.0), 10mM MgOAc, 10mM
DTT, 100 mg/ml BSA, 20mM KCl, 2mM ATP, 5 nM
supercoiled plasmid DNA and the indicated amounts of
Topo IV and FtsK50C were incubated at 37�C for 10min.
EDTA and NaCl were then added to 22 and 330mM,
respectively, and the incubation continued for 3min.
One-sixth volume of a loading dye mixture was added
and the DNA products were analyzed by electrophoresis
through 1% agarose gels for 16 h at 22V using 50mM
Tris–HCl (pH 7.9 at 23�C), 40mM NaOAc and 1mM
EDTA as the electrophoresis buffer. The gels were
stained with ethidium bromide and the images were
recorded using a Kodak imaging system.

Assay for constrained supercoils

The indicated amount of FtsK50C was incubated with
5 nM partially relaxed (+)ve scDNA for 30min at 37�C
in 20 ml of 50mM Tris–HCl (pH 7.5 at 25�C), 10mM
MgCl2, 10mM DTT, 50mM KCl, 100 mg/ml BSA and
2mM AMP-PNP. Vaccinia virus Topo I (0.5 pg; the gift
of S. Shuman, Memorial Sloan-Kettering Cancer Center)
was then added to the reaction mixture and the incubation
continued for 30min at 37�C. SDS and proteinase K were
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then added to 1.0% and 1mg/ml, respectively, and the
incubation continued for 30min at 37�C. One-sixth
volume of a loading dye mixture was then added and
the DNA products were analyzed by electrophoresis as
described above.

DNA cleavage assay

Reaction mixtures (20ml) containing 50mM HEPES–
KOH (pH 8.0), 10mM MgOAc, 10mM DTT, 100 mg/ml
BSA, 20mM KCl, 2mM AMP-PNP, 5 nM (+)ve sc
plasmid DNA, 4 nM Topo IV and either 60 nM FtsK50C

or FtsK50CK997A were incubated 10min at 37�C. SDS
was then added to 1.0% and incubation continued for
4min. EDTA and proteinase K were then added to
23mM and 0.9mg/ml, respectively, and the incubation
continued for an additional 15min. One-sixth volume of
a loading dye mixture was then added and the DNA
products were analyzed by electrophoresis as described
above.

ATPase assay

Reaction mixtures (20ml) containing 50mM HEPES–
KOH (pH 8.0), 10mM MgOAc, 10mM DTT, 100 mg/ml
BSA, 20mM KCl, 5 nM supercoiled plasmid DNA,
320 nM [a-32P]ATP, 1mM ATP and 10 nM FtsK50C

were incubated for the indicated time at 37�C. When
testing Topo IV activity, 4 nM of (+)ve scDNA, 50 nM
[a-32P]ATP, 2mM ATP, 60 nM of FtsK50CK997A and the
indicated amount of Topo IV were incubated for 10min at
37�C. Reactions were stopped by adding ADP and cold
ATP, 3mM each. The ratio of ATP to ADP was analyzed
by ascending thin layer chromatography on PEI plates,
developed with a mixture of 0.5M LiCl and 1M HCOOH.

ParC ("CTD) purification

BL21 (�DE3)-pET11a-parCD483-752 was grown at 37�C
in 20 l of LB medium to OD600=0.2. The growth temper-
ature was then reduced to 25�C. When the culture reached
an OD600=0.4, IPTG was added to 0.6mM and growth
was continued for 3 h. Cells were harvested and
resuspended in 100ml of buffer C [50mM Tris–HCl
(pH 7.5 at 4�C), 5mM DTT, 1mM EDTA, 10%
glycerol] containing 0.06% lysozyme, 150mM NaCl,
20mM EDTA and 0.5% triton X-100. After 20min of
incubation at 0�C, the soluble lysate was recovered after
centrifugation at 100 000g for 1 h, and loaded onto a
Q-Sepharose column (42ml) equilibrated in buffer
C+50mM NaCl. The column was washed with 210ml
buffer C+50mM NaCl and protein was eluted using a
linear gradient (420ml) of 50–600mM NaCl in buffer C.
Peak fractions were pooled (Fraction 2, 35ml, 157mg
protein), diluted to 50mM NaCl with buffer C and
applied to a Heparin agarose column (17ml) equilibrated
in buffer C+50mM NaCl. The column was washed with
51ml buffer C+50mM NaCl and protein was eluted
using a linear gradient (170ml) of 50–500mM NaCl
in buffer C. Peak fractions were pooled (Fraction 3,
37.5ml, 50mg protein), adjusted to 1M NaCl and
applied to a 10ml hydroxylapatite: cellulose (60 : 17)
column equilibrated in buffer C+1M NaCl. The column

was washed with 30ml buffer C+1M NaCl and protein
was eluted using a linear gradient (100ml) of 0–600mM
(NH4)2SO4 in buffer C+1M NaCl. Peak fractions were
pooled (Fraction 4, 6ml, 17mg protein) and dialyzed
against storage buffer [50mM Tris–HCl (pH 7.5 at 4�C),
150mM NaCl, 1mM EDTA, 5mM DTT, 40% glycerol].

RESULTS

FtsK stimulates Topo IV-catalyzed relaxation of (+)ve
scDNA

Previously, we had observed stimulation of the
decatenation activity of Topo IV, using a purified FtsK
CTD (Domain 3) tagged with the FLAG epitope at the
N-terminus (FtsKC) (14). Because this protein lacked
amino acids 179–230, which are required for
hexamerization (18), high concentrations were necessary
to achieve oligomerization and stimulation of Topo IV. In
this report, we have used a version of FtsK that includes
amino acids 179–230 linked to the N-terminus of Domain
3 that is also tagged with the FLAG epitope (FtsK50C).
Although the amino acids 179–230 are necessary to
promote the assembly of the hexameric ring structure on
the DNA, they can also cause aggregation of the protein.
However, our protein preparation was subjected to
analytical gel filtration and no protein aggregates were
observed (data not shown). As we have shown for
FtsKC (14), FtsK50C also interacts with the ParC subunit
of Topo IV (Figure 1A).
FtsK50C was active in stimulating Topo IV decatenation

of multiply linked DNA dimers at concentrations
one-eightieth of that required for FtsKC (Figure 1B).
These DNA dimers are purified from oriC plasmid DNA
replication reactions in vitro, where the only
topoisomerase present is DNA gyrase, which is very inef-
ficient at unlinking replication catenanes. The dimers are
two sister form II DNA molecules linked up to 35 times.
Each rung on the ladder observed in Figure 1B represents
a difference in the intermolecular linking number (Lki)
of 1; more highly linked dimers have a greater Rf. As
Topo IV unlinks the catenanes, the Lki distribution
shifts to lower values, with the final product being the
completely unlinked form II molecules.
Although the main role of Topo IV in the cell is to

remove any links between replicated chromosomes, it
can also relax (+)ve supercoils generated during replica-
tion fork progression and can replace gyrase completely
in vitro and partially in vivo (21,22). We therefore asked
whether stimulation of Topo IV by FtsKC extended to
relaxation of (+)ve scDNA. This substrate was prepared
by treating (�)ve scDNA with reverse gyrase, the only
topoisomerase known that can introduce positive
superhelical twists into DNA (23). Reaction mixtures con-
taining Topo IV, FtsK50C and (+)ve scDNA were
incubated for 10min and quenched with EDTA and
NaCl. The DNA products were separated by agarose gel
electrophoresis (Figure 1C). Only 0.05 nM Topo IV was
required to establish an observable (+)ve scDNA relax-
ation reaction. As in the decatenation reaction, FtsK50C

stimulated Topo IV-catalyzed (+)ve scDNA relaxation.
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Neither DNA translocation nor DNA topology
modification by FtsK is responsible for stimulation of
Topo IV activity

FtsK is an exceptionally fast DNA translocase [�6 kb/s;
(24,25)]. Positive supercoils accumulate ahead of the
translocating enzyme, whereas negative supercoils accu-
mulate behind it (18). We have suggested previously that
the observed stimulation of Topo IV activity might result
from FtsK translocation, generating a preferred substrate
in the vicinity of the topoisomerase (14). We reasoned
that if this were the case, removing the motor activity of
FtsK50C should abolish the observed stimulation. Because
FtsK50C uses the energy of ATP hydrolysis to translocate
along the DNA (18,25), we purified a Walker A (K997A)
mutant of FtsK50C tagged with six His residues at the
N-terminus. This variant FtsK has no detectable
ATPase activity (Figure 2A) and thus, based on previous
studies (18,25), cannot translocate on DNA. Surprisingly,
both the decatenation and (+)ve scDNA relaxation
activities of Topo IV were stimulated by the presence of
FtsK50CK997A to the same extent as by the wild-type
protein (Figure 2B and C). We conclude that the
observed stimulation is likely to be independent of FtsK
translocation.
Due to the fact that the concentration of FtsK50C in the

reaction mixtures is in considerable excess compared with
that of the DNA, we addressed the possibility that the
binding of FtsK50C to the DNA was effecting a change
in topology that either stimulated Topo IV activity or
accounted for the observed stimulation directly. We used
vaccinia virus topoisomerase as a probe to assess whether
the binding of FtsK50C to DNA caused any alterations
in topology. The vaccinia virus enzyme is a type IB
topoisomerase that relaxes both negative and positive
supercoils. After binding of a protein to the DNA, treat-
ment with vaccinia virus Topo I will relax all supercoils in
the portion of the molecule that is not constrained by

bound protein; alterations in DNA topology induced
by bound protein remain and are subsequently detect-
able by agarose gel electrophoresis (26). FtsK50C and
FtsK50CK997A were bound to partially relaxed (+)ve
scDNA in the presence of the non-hydrolyzable ATP
analogue AMP-PNP (to prevent translocation), and the
protein–DNA complex was then treated with vaccinia
virus Topo I (Figure 2D). The DNA topology was the
same in the absence or presence of FtsK50C. Under the
conditions used, these FtsK variants bound DNA well
(Supplementary Figure 1); we therefore conclude that
FtsK50C does not constrain the DNA.

FtsK does not affect the DNA cleavage–religation
equilibrium of Topo IV

The catalytic mechanism of type II DNA topoisomerases
can be separated into distinct steps: binding of the G
segment, binding/hydrolysis of ATP and trapping of the
T segment, transient cleavage of the G segment and
passage of the T segment through the break, resealing of
the G segment and exit of the T segment via the protein
gate (27). We reasoned that the stimulation of Topo IV
activities could be the result of a stimulation of one of
these steps by the presence of FtsK.

To determine whether the presence of FtsK50C affected
the Topo IV cleavage–religation equilibrium, we analyzed
the effect of FtsK50C on the ability of the Topo IV to bind
DNA and make a double-strand DNA break. Topo IV
was incubated with DNA and AMP-PNP in either
the presence or absence of FtsK50C, SDS was added
to denature cleavable complexes, the DNA products
were treated with proteinase K and then analyzed by gel
electrophoresis (Figure 3B). Neither FtsK50C nor
FtsK50CK997A affected Topo IV-mediated DNA
cleavage.

Nucleotide binding by Drosophila melanogaster or
yeast Topo II stimulates the cleavage of DNA (28–30).

Figure 1. FtsK50C stimulates both Topo IV-catalyzed decatenation and (+)ve scDNA relaxation. (A) FtsK50C interacts with Topo IV. Two and one
half pmol of FtsK50C protein and 180 pmol of the indicated proteins were spotted on a nitrocellulose membrane. Immunoblotting was then
performed as in Espeli et al. (14). FtsK50C was visualized by ECL western analysis using an anti-FLAG–HRP conjugate antibody. (B and C)
Reaction mixtures containing either no Topo IV or 0.05 nM Topo IV, the indicated amounts of FtsK50C, and either form II : form II DNA dimers
(B) or (+)ve scDNA (C) were incubated and analyzed as described under ‘Experimental Procedures’ section. Addition of either 15 or 60 nM
of FtsK50C stimulated decatenation by 2.2-fold (B) and relaxation of (+)ve scDNA by 3- and 3.3-fold, respectively (C). F I, form I DNA; F II,
form II DNA.
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ATP binding or hydrolysis by Topo IV also shifts the
DNA cleavage–religation equilibrium, increasing the
extent of the cleavage [Figure 3A and (31)]. Increasing
the ATPase activity of Topo IV should therefore result
in an increase in DNA cleavage. As FtsK50C did not
affect DNA cleavage by Topo IV, we predicted that
FtsK50C would not affect the ATPase activity of Topo
IV. As FtsK50C is itself a powerful ATPase (18), we
could only test the effect of the Walker A FtsK50C

variant on the ATPase activity of Topo IV. As expected,
the rate of ATP hydrolyzed was unchanged in the presence
of FtsK50CK997A mutant (Figure 3C). Thus, stimulation
of Topo IV activity by FtsK50C is unlikely to be the result
of a shift in the cleavage–religation equilibrium because of
an increase in ATP turnover by Topo IV.

Stimulation of Topo IV by FtsK50C is dictated by the
binding of the topoisomerase to the substrate

To explore the possibility that FtsK affects Topo IV
activity in a manner dependent on the chirality of the
crossings of the DNA, we determined the effect of
FtsK50C on relaxation of (�)ve sc DNA. Topo IV is 10-
to 20-fold more efficient at relaxing (+)ve sc than (�)ve sc
(8,32). Thus, whereas only 0.05 nM Topo IV is required to
establish (+)ve scDNA relaxation (Figure 1C), 2 nM
Topo IV is required to relax (�)ve sc DNA (Figure 4A).
Surprisingly, the presence of FtsK50C inhibited the (�)ve
sc DNA relaxation activity of Topo IV (Figure 4A).
Furthermore, unlike the stimulation of (+)ve sc relax-
ation, which did not require the translocation activity of
FtsK50C, inhibition of (�)ve sc relaxation did require

Figure 2. Stimulation of Topo IV activity is not a result of either DNA translocation or alteration of DNA topology by FtsK50C. (A) The FtsK50C

K997A variant has no detectable ATPase activity. Reaction mixtures containing [a-32P]ATP, 5 nM (�)ve sc DNA, the indicated amount of FtsK50C

or FtsK50C K997A were incubated for 3min at 37�C and analyzed as described under ‘Experimental Procedures’ section. The results of three
independent experiments were averaged. (B and C) An ATPase mutant of FtsK50C stimulates both Topo IV-catalyzed decatenation and (+)ve
scDNA relaxation. Reaction mixtures containing either no Topo IV or 0.05 nM Topo IV, the indicated amounts of FtsK50CK997A, and either form
II : form II DNA dimers (B) or (+)ve scDNA (C) were incubated and analyzed as described under ‘Experimental Procedures’ section. Addition
of 3.8, 7.5, 15 and 60 nM FtsK50CK997A stimulated decatenation by 2.5-, 2.8-, 3.5- and 3.2-fold, respectively (B). Addition of 15 and 60 nM of
FtsK50CK997A stimulated relaxation of (+)ve scDNA by 3- and 2.4-fold, respectively (C). (D) Neither the binding of FtsK50C nor of FtsK50CK997A
affects either the writhe or the twist of DNA. Reaction mixtures containing either no or the indicated amounts of either FtsK50C or FtsK50CK997A
were incubated with relaxed (+)ve scDNA in the presence of AMP-PNP for 30min as described under ‘Experimental Procedures’ section. Vaccinia
virus Topo I was then added to remove unconstrained supercoils. DNA products were analyzed as described under ‘Experimental Procedures’
section. The DNA substrate is shown in the left-most lane of the gel.

Nucleic Acids Research, 2010, Vol. 38, No. 9 3035



FtsK50C translocation; FtsK50CK997A had no effect
(Figure 4B).
We considered that the differential effects of FtsK on

(+)ve and (�)ve sc DNA relaxation derived from the pos-
sibility that FtsK did not translocate as well on (+)ve
scDNA compared with (�)ve sc DNA. If this were the
case, there should be an observable difference in FtsK50C

ATPase activity, using the two differentially supercoiled
DNA as effectors. FtsK50C ATPase assays were therefore
performed at limiting concentration of FtsK50C and ATP
using (+)ve and (�)ve sc DNA as effectors (Figure 5). The
rate of ATP hydrolysis in the presence of the two DNA
effectors was indistinguishable. These data suggest that the

chirality-dependent difference in the effect of FtsK50C on
Topo IV activity is probably a manifestation of differen-
tial modes of Topo IV binding to the DNA, affecting the
probability of forming a productive stimulatory complex
with FtsK50C, rather than being related to an effect of the
topology differences on FtsK. The processivity of Topo IV
is much greater with (+)ve scDNA than (�)ve sc DNA,
which implies that Topo IV–(+)ve scDNA complexes
persist for longer time than Topo IV–(�)ve sc DNA
complexes (8,33).

Much of the discrimination shown by Topo IV between
DNA substrates can be attributed to the CTD of ParC.
Removal of this region of ParC results in a slight overall

Figure 3. Effect of FtsK50C on the catalytic mechanism of Topo IV. (A) Reaction mixtures containing either no NTP or 2mM AMP-PNP, 7.5 nM
Topo IV and 5 nM (+)ve scDNA were incubated and analyzed as described under ‘Experimental Procedures’ section. The fraction of DNA cleaved
is presented (average of three independent experiments). (B) FtsK does not alter the DNA cleavage–religation equilibrium of Topo IV. Reaction
mixtures containing 2mM AMP-PNP, 4 nM Topo IV, 5 nM (+)ve scDNA and 60 nM of either FtsK50C or FtsK50CK997A were incubated
and analyzed as described under ‘Experimental Procedures’ section. The fraction of DNA cleaved is presented (the average of three independent
experiments). (C) FtsK50CK997A does not affect the ATPase activity of Topo IV. Reaction mixtures containing the indicated amounts of Topo IV,
5 nM (+)ve sc DNA, [a-32P]ATP and either no FtsK50CK997A or 60 nM FtsK50CK997A were incubated and analyzed as described under
‘Experimental Procedures’ section. The results of three independent experiments were averaged.

Figure 5. The ATPase activity of FtsK50C is insensitive to DNA
chirality. Reaction mixtures containing [a-32P]ATP, either no FtsK50C

or 10 nM of FtsK50C, and either (�)ve sc or (+)ve scDNA were
incubated for the indicated times and analyzed as described under
‘Experimental Procedures’ section. The results of six independent
experiments were averaged.

Figure 4. Translocation of FtsK50C inhibits Topo IV-catalyzed relax-
ation of (�)ve sc DNA. Reaction mixtures containing either no Topo
IV, 2 nM Topo IV, (�)ve sc DNA and the indicated amounts of either
FtsK50C (A) or FtsK50CK997A (B) were incubated and analyzed as
described under ‘Experimental Procedures’ section. Fifteen and 60 nM
FtsK50C inhibited (�)ve sc DNA relaxation by 66 and 96%, respec-
tively, whereas 15 and 60 nM FtsK50CK997A stimulated (�)ve sc DNA
relaxation by 8 and 25%, respectively (B).
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reduction of the affinity of the variant Topo IV for all
DNA substrates (binding to the G segment) and a
dramatic loss of topological discrimination (binding to
the T segment) (11). CTD-truncated (residues 1–482)
ParC was purified. The reconstituted ParC(�CTD)
Topo IV exhibited reduced activity compared with
wild-type Topo IV and lost discrimination between
DNAs of opposite chirality, as shown previously by
Corbett et al. (11). Given that the activity of
ParC(�CTD) Topo IV is independent of the substrate,
we predicted that the FtsK50C derivatives would have
equivalent effects on the relaxation of (+)ve and (�)ve
sc DNA by Topo IV. This proved to be the case.
FtsK50C now inhibited, rather than stimulated,
ParC(�CTD) Topo IV relaxation of (+)ve scDNA
(Figure 6A) while retaining its ability to inhibit relaxation
of (�)ve sc DNA (Figure 6B). FtsK50CK997A no longer
stimulated relaxation of (+)ve scDNA, but also had no
effect on either the (+)ve or (�)ve sc DNA relaxation
activity of ParC(�CTD) Topo IV (Figure 6C and D,
respectively). The increased concentrations of
ParC(�CTD) Topo IV required to establish relaxation
of the DNA substrates suggest a roughly 80- to 120-fold
decrease in activity. This observation is consonant with
the demonstration by Stone et al. (33) that relaxation
of positive supercoils by Topo IV has an inherent
processivity of �80 strand passage events, as well as
with the observation of Neuman et al. (33) that relaxation

of negative supercoils is perfectly distributive. Because
ParC(�CTD) Topo IV can no longer discriminate
topology, its activity is expected to be distributive [this is
apparent in the data of Corbett et al. (11)]. We suggest
that because of this change in activity, ParC(�CTD) Topo
IV can no longer establish a stimulatory complex
with either FtsK50C or FtsK50CK997A and that this
destabilized ParC(�CTD) Topo IV can be displaced by
translocating wild-type FtsK50C.

DISCUSSION

We have investigated further the mechanism by which
FtsK50C modulates Topo IV activities. This modulation
was dependent on the DNA substrate. When Topo IV
was bound to multiply linked DNA dimers and (+)ve
scDNA, the CTD of FtsK stimulated the unlinking of
DNA strands; however, when Topo IV was bound to
(�)ve sc, FtsK50C inhibited DNA unlinking. Inhibition
of Topo IV activity required the DNA translocation
activity of FtsK50C, whereas stimulation of Topo IV
activity did not, suggesting that the differential effects
might be attributable to preferential substrate utilization
by FtsK. However, the DNA translocation activity of
FtsK50C was insensitive to the chirality of the DNA
crossing segments, which is not the case for Topo IV
activity.

Figure 6. FtsK50C, but not FtsK50CK997A, inhibits the DNA relaxation activity of ParC(�CTD) Topo IV. Reaction mixtures containing the
indicated amounts of ParC(�CTD)Topo IV, either FtsK50C or FtsK50CK997A, and either (+)ve scDNA (A and C, respectively) or (�)ve sc
DNA (B and D, respectively) were incubated and analyzed as described under ‘Experimental Procedures’ section. ParC(�CTD) Topo IV, Topo
IV reconstituted with wild-type ParE and ParC(�CTD).
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It has been proposed that recognition by Topo IV
of the intrinsic orientation of the T and G segments
(chiral-sensing model) results in differential activity
(32,36). As Topo IV relaxes (+)ve scDNA much faster
than (�)ve sc DNA, it assumes that Topo IV
preferentially binds the left-handed nodes formed by
(+)ve scDNA (32,36). However, the differential regula-
tion of Topo IV by FtsK50C cannot be explained
only by the handedness of the DNA, because FtsK50C

did not have the same effect on (�)ve sc DNA and
catenated DNA, which both contain right-handed nodes
(the intermolecular helical crossing in replicative
catenanes are nominally right-handed, they arise by
denaturation of right-handed duplex turns). However,
recently Neuman et al. (33) have shown that the
apparent chiral discrimination of Topo IV is a function
of its processivity. Unlinking of right-hand crossings in
single molecule experiments was shown to be perfectly
distributive, whereas unlinking of left-hand crossings
was previously shown to have an average processivity of
�80 strand passage events (36). Topo IV is thus
significantly more processive on (+)ve scDNAs
compared with (�)ve scDNAs (8,32,33,36), implying
increased stability of Topo IV on those substrates that
support greater processivity. Similarly, decatenation of
multiply linked DNA dimers by Topo IV is highly
processive (5).
The presence of the CTD of ParC influences Topo IV

substrate selectivity. There is some decrease in generalized
DNA binding of ParC(�CTD) Topo IV compared with
wild-type. This measurement is thought to probe affinity
for the G segment of DNA (11); however, the difference in

affinity is insufficient to account for the dramatic change in
activity of the truncated enzyme compared with the
wild-type, and the authors proposed that this implied
that the CTD presumably bound the T segment of
DNA. Thus, in the absence of the ParC CTD, preferential
relaxation of DNA substrates by Topo IV is lost.
Concomitant with the decreased activity of the
ParC(�CTD) Topo IV, stimulation by FtsK50C was no
longer observed, only inhibition was observed with
DNA substrates of both chiralities. Thus, the observed
differential effect of FtsK likely relates directly to the dif-
ferential stability of Topo IV on DNA (Figure 7). Either
FtsK50C or FtsK50CK997A could form a productive
stimulatory complex with Topo IV on DNA substrates
on which the latter enzyme acted processively, (+)ve
scDNA and replication catenanes. As DNA translocation
is not required for the stimulation, FtsK50CK997A can
still stimulate Topo IV activity by virtue of binding to a
DNA site adjacent to the topoisomerase, perhaps even
being attracted to such a site by the affinity between the
two enzymes (Figure 7A.i). Whereas with (�)ve sc DNA,
where Topo IV acts distributively, a productive complex
cannot be formed and translocating FtsK50C is able to
displace the bound Topo IV (Figure 7B). Under these cir-
cumstances, FtsK50CK997A would be expected to have no
effect, as we observed.

Because supercoiling stimulates decatenation (19), we
first thought that FtsKC might stimulate Topo IV by
generating supercoiled DNA in a topological domain in
the vicinity of Topo IV (14). We proposed that the inter-
action between these proteins might serve as an anchor of
a topological domain, wherein FtsKC pumped supercoiled

Figure 7. Modulation of Topo IV activity by FtsK50C. Schematics describing the effect of FtsK50C on Topo IV action on either replication catenanes
and (+)ve scDNA (A) or (�)ve sc DNA (B). Details are given in the text. The subunits of Topo IV are colored green (ParE) and blue (ParC).
Hexamers of FtsK50C are colored yellow. A red star represents stimulation of Topo IV by FtsK50C.
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DNA toward Topo IV. However, the finding in the
present study that an ATPase mutant of FtsK still stimu-
lates the decatenation activity of Topo IV indicates that
our previous model cannot be correct. This FtsK variant
cannot pump the DNA and thus no supercoiled DNA can
be created as a preferential substrate for Topo IV.
Moreover, it is now known that the binding of FtsKC to
DNA does not change the conformation of DNA (37)
(and as we report herein). So, what is the molecular
basis of the observed stimulation of Topo IV activity by
FtsK50C?

In the type II topoisomerase catalytic cycle (34,35), the
first step is the binding of the catalytic domain (ParC
subunits in Topo IV) to the G segment. ATP-induced
dimerization of the ATPase domains (ParE in Topo IV)
captures the T segment. This capture leads to G segment
cleavage and opening, to let the T segment pass through
the G segment gap into the interior of the enzyme. The G
segment is then religated after this strand passage event.
We considered that FtsK50C might affect one of the first
steps in this cycle. We could not test the effect of FtsK50C

on Topo IV binding to the G segment as FtsK50C itself
binds DNA. However, increasing the binding affinity of
Topo IV for DNA should also increase the extent of the G
segment cleavage. However, FtsK50C had no effect on the
formation of covalent cleavable complexes in the presence
of AMP-PNP. This result suggested us that FtsK50C did
not affect the binding of Topo IV to DNA. Furthermore,
FtsK50C did not affect the rate of Topo IV ATP hydroly-
sis. Therefore, to explain the increased gain in Topo IV
activity in the presence of FtsK50C, we suggest an
increased efficiency in the trapping of the T segment.
During any one reaction cycle for Topo IV, the
dimerization of ParE after binding of ATP does not
always successfully trap a T segment. If the presence of
FtsK50C results in more efficient trapping of the T
segment, perhaps because of a slightly deformed path of
the bound DNA, more productive catalytic cycles will
result, generating the observed stimulation, yet without
an effect on the rate of ATP hydrolysis.
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