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Abstract: Many activities may elicit a biomechanical overload. Among these, lifting loads can cause
work-related musculoskeletal disorders. Aspiring to improve risk prevention, the National Institute
for Occupational Safety and Health (NIOSH) established a methodology for assessing lifting actions
by means of a quantitative method based on intensity, duration, frequency and other geometrical
characteristics of lifting. In this paper, we explored the machine learning (ML) feasibility to classify
biomechanical risk according to the revised NIOSH lifting equation. Acceleration and angular velocity
signals were collected using a wearable sensor during lifting tasks performed by seven subjects
and further segmented to extract time-domain features: root mean square, minimum, maximum
and standard deviation. The features were fed to several ML algorithms. Interesting results were
obtained in terms of evaluation metrics for a binary risk/no-risk classification; specifically, the tree-
based algorithms reached accuracies greater than 90% and Area under the Receiver operating curve
characteristics curves greater than 0.9. In conclusion, this study indicates the proposed combination
of features and algorithms represents a valuable approach to automatically classify work activities
in two NIOSH risk groups. These data confirm the potential of this methodology to assess the
biomechanical risk to which subjects are exposed during their work activity.

Keywords: biomechanical risk assessment; ergonomics; feature extraction; health monitoring; IMUs;
lifting; machine learning; NIOSH; wearable device; work-related musculoskeletal disorders

1. Introduction

Several epidemiological studies provided a strong correlation between physical work
exposures and the increased risk of work-related musculoskeletal disorders (MSDs) [1–4].
Radwin et al. showed the relationship between MSDs and repeated and long durations of
external load handling during the workday [5].

Biomechanical exposures during physical work are mainly due to three main factors:
intensity (load magnitudes and extent of non-neutral postures), repetition (frequency or
number of force exertions and motions) and duration (the time of a physical activity) [6].

In addition to the more traditional quantitative or semiquantitative observational
methods [7–13], occupational ergonomics studies in the field can employ instrumental
methods that offer greater agility, precision and duration of measurement. Among the
direct measurement methods, wearable inertial systems based on inertial measurement
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units (IMUs) play an important role in the biomechanical risk assessment [14], and they look
very promising for occupational medicine and ergonomics applications [15]. In the field
of risk assessment, in fact, wearable inertial technology represents a significant advance
in comparison to the evaluation tools traditionally used in ergonomics [16], especially
regarding the degree of precision and possibility of automatic measurement detection.
IMUs are based on triaxial accelerometers and gyroscopes able to measure 3D acceleration
and angular velocity of the sensor with respect to gravity [17]. Often, IMUs also include a
triaxial magnetometer useful to give information about the orientation of the sensor in the
three-dimensional space. In the absence of standards on the positioning of sensors on the
human body [18], the dorsal part of the back was recommended for the ergonomic study
of trunk position [19], while the waist was suggested for analysing the overall motion, as
representative of centre body mass [20].

In occupational ergonomics, body-worn inertial sensor technology and motion track-
ing system could be combined to noninvasively collect large amounts of body movement
data during physical work [15] and explore their association with occupational risk as
assessed with standard methods [21]. The portability and wearability of this technology
represents an advantageous alternative to camera-based motion tracking systems [22].
Information on worker exposure obtained through wearable sensors could help to pre-
evaluate heavy work, match workers’ skills with physical activity requirements, verify
the sustainability of work shift combinations as well as prioritise work modification in-
terventions based on the type and severity of the level of exposure [16]. The success and
diffusion of IMUs systems are linked to their relative low cost, the low complexity of the
experimental setup and data processing procedures, the limited time constraints and the
feasibility of evaluation outside the research laboratories [23]. Several IMUs positioned
on the body were used in studies [24,25], where the purpose was to predict, by the same
accelerometric data, the geometric (initial and final height, horizontal distance, asymmetry
and inclination of the trunk) and temporal (frequency and duration) variables related to
lifting, thereby validating the measures that the systems produced.

Among the activities involving biomechanical overloading, material handling and
lifting is one of the most studied in the scientific literature, including its association with
the development of work-related MSDs [2]. With a view to prevention, NIOSH established
a methodology for assessing lifting actions by means of a quantitative method based on
intensity, duration and frequency of the task, and other geometrical characteristics of
lifting [12]. The method determines the Recommended Weight Limit (RWL) for the lifting
tasks and calculates the risk index namely Lifting Index (LI).

In the scientific literature, among the many applications of wearable technology
to ergonomics, and in particular among those which use the NIOSH methodology [26],
the association of features extracted directly from raw signals (acceleration and angular
velocity) with NIOSH risk classes related to repeated load lifting activities has not yet been
explored.

Moreover, machine learning (ML) algorithms are gaining popularity in the ergonomic
field for biomechanical risk assessment by means of data acquired by wearable inertial
systems. Several publications have appeared in recent years documenting several strate-
gies [27–29]. IMU systems, which incorporate machine learning into their data analysis
pathways, have been found effective in automated exercise detection and in classifying
movement quality across a range of lower limb exercises, including lifting, despite studies
in this field having so far involved few samples [30].

The question remains whether it is possible to classify lifting tasks belonging to
different risk classes according to the value of LI using a machine learning approach by
means of features extracted from raw signals.

The aim of this study is twofold: First, we explored the possibility to use a single IMU
placed on the lumbar region to monitor the biomechanical risk. Second, we assessed if the
time-domain features extracted from acceleration and angular velocity signals acquired by
the IMU sensor allowed to classify risk/no-risk tasks according to the NIOSH methodology.
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To classify lifting tasks belonging to different LI classes according to the Revised
NIOSH Lifting Equation (RNLE), we fed several ML algorithms using time-domain fea-
tures extracted from acceleration and angular velocity signals. The signals relating to the
lifting activities were acquired through the wearable Opal System. The validation of the
methodology was carried out through the tenfold cross-validation and different evaluation
metrics in order to make the result more robust.

2. Materials and Methods
2.1. IMU-Based Motion Capture Wearable System: The OPAL System

The Opal System by APDM Inc. is the commercial IMU-based wearable system
employed in the current study (Figure 1a). The system is composed of several Opal sensors
worn by the participants kept in position by straps. Each Opal sensor is composed by a
3-axes accelerometer with 14-bit resolution and two alternative ranges of values (±16 g
and ±200 g, where g is the gravitational constant), a 3-axes gyroscope (16-bit, range ±
2000 deg/s) and a 3-axes magnetometer (12-bit, range ± 8 Gauss). The sampling frequency
of the acceleration and angular velocity signals was 20 Hz. Opal sensors communicate with
a laptop equipped by the Mobility Lab Software by the Bluetooth 3.0. The Access Point
manages the communication between the Opal sensors and the laptop, while the Docking
Station allows charging and configuring of Opal sensors. The Opal system has proved to
be a repeatable [31], reliable [32,33] and accurate [34], and it was used in several scientific
studies, e.g., to compute the main spatiotemporal and kinematic parameters relating to the
lower limb, upper limb and spine [35,36]. It also allows users to access raw signals such as
acceleration and angular velocity. In this study, we used a single Opal sensor positioned
on the lumbar region (Figure 1b) [37,38] to acquire raw signals (acceleration and angular
velocity) during lifting activities designed to correspond to different risk classes according
to the NIOSH methodology. Figure 2 shows the Opal sensor with the direction of the axes.

Figure 1. (a) Opal System: Access Point, Docking Station, Opal Sensor and Mobility Lab software. (b) Placement of the
Opal Sensor in lumbosacral region through an elastic belt.
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Figure 2. Opal Sensor with the illustration of the x-axis, y-axis and z-axis.

2.2. Revised NIOSH Lifting Equation

The RNLE is a method published by NIOSH to assess the risk of work-related low
back disorders (WLBDs) [39]. An equation provides the Recommended Weight Limit
(RWL, the weight limit for a healthy worker to safely perform lift tasks during a work
shift), starting from a load constant (25–15 kg for the Italian legislation) and through a
multiplicative model with six variables relating to the lifting task.

LI, namely the ratio of actual weight to RWL for lifting activity, is a good indicator of
the risk of WLBDs for manual lifting [40–42].

In the preventive approach, RNLE is useful for verifying that LI is not greater than 1
in lifting activities. Lifting activities with LI values between 1 and 3 are associated with an
increased biomechanical risk in the working population, while lifting activities with LI less
than 1 indicate acceptable conditions and no risk of WLBDs [12].

The RWL equation is as follows:

RWL = LC × HM × VM × DM × AM × FM × CM (1)

where

• LC: Load Constant = 25/20 kg (males, <45/>45 years old respectively), 20/15 kg
(females, <45/>45 years old respectively);

• HM: Horizontal Multiplier;
• VM: Vertical Multiplier;
• DM: Distance Multiplier;
• AM: Asymmetric Multiplier; and
• FM: Frequency Multiplier.

2.3. Study Population

Healthy volunteers were recruited from the bioengineering laboratory of the Univer-
sity of Naples “Federico II”. Subjects were included if they were between the ages of 20
and 60, and excluded if they had hypertension (i.e., blood pressure above 100/160 mmHg),
or any other heart disease (i.e., congestive heart failure), or a musculoskeletal disorder
(i.e., low back pain, herniated disc or trunk surgery). Seven subjects were selected for
this preliminary study, whose anthropometric characteristics are shown in Table 1. The
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study was approved by the local Ethics Committee, in accordance with the Declaration of
Helsinki. All participants signed the informed consent.

Table 1. Anthropometric characteristics of the study population presented as mean ± standard
deviation.

Age (years) 27.71 ± 1.60
Height (cm) 167.40 ± 4.86
Weight (kg) 69.00 ± 69.00

Body Mass Index (kg/m2) 24.51 ± 24.51

2.4. Study Protocol

Each subject performed a task session based on two trials. Each trial consisted of 30
consecutive lifting tasks. Between the two trials, a pause of 1 h was considered. Specifically,
the first trial consisted of repeated liftings in a condition of LI less than one (LI = 0.5) named
the NO RISK class, while the second one consisted of repeated liftings in a condition of
LI greater than one (LI = 1.3) named the RISK class. LI of 0.5 and 1.3 were derived from
the RNLE [12] by variously combining height, frequency and weight of lifting tasks. The
details of the combinations are displayed in Table 2. Five out of seven subjects performed
the task lifting the load from 50 cm to 125 cm, namely, the optimal geometric condition.
One subject performed the task lifting the load from 30 cm to 125 cm, namely, non-optimal
geometric conditions (start point: height < 50 cm); one subject performed the task lifting the
load from 50 cm to 150 cm, namely, non-optimal geometric conditions (end point: height >
125 cm). The choice of different geometric conditions was adopted to assess the proposed
data mining system for the prediction of biomechanical risk in a general context in order to
have more interesting and generalisable results.

Table 2. Combinations of the height, frequency and weight variables for lifting activities corresponding to LI 0.5 and 1.3.

First Trial
LI < 1 (0.5)

Second Trial
LI > 1 (1.3)

Displacement
[Start–End] (cm)

Frequency
(Lifts/min) Weight Lifted (kg)

Displacement
[Start–End]

(cm)

Frequency
(Lifts/min) Weight Lifted (kg)

m & f m f m f m f

[50–125] 2.5 7 5 [50–125] 6 4 15 10
[30–125] 2.5 5 4 [30–125] 5 3 13 8
[50–150] 2.5 5 4 [50–150] 5 3 13 8

The trial (Figure 3) was performed using a plastic container (56 × 35 × 31 cm3) with
weights equally distributed inside; the size of the plastic container is such that it can be held
close to the barycentre of the body during the lifting task. The subjects were instructed to
adopt a stable upright posture with the lower limbs slightly apart and to perform the squat
technique with a two-handed grip. Each lifting task was performed in a slow, controlled
manner without any jerk or sudden acceleration [43]. The researcher was in charge of
visually checking the performance, and possibly having the subject repeat the execution to
acquire the signal again if the task was carried out in an uncontrolled manner.
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Figure 3. Lifting phases of the lifting task: picking point (a) with squatting technique, intermediate points (b,c) with trunk
extension, and destination point (d) up to the final height, and then restart the cycle.

2.5. Feature Extraction

Acceleration and angular velocity signals were not filtered (Figure 4). The signals
underwent a segmentation process in order to extract the region of interest (ROI) corre-
sponding to the window time in which the subject performed the lifting task. A temporal
synchronisation was performed to pick up the portion of the signal corresponding to the
time point of the start and end of the lifting task. For each ROI, several features were
extracted in the time-domain. Four features were extracted from each of the three axes
of the accelerometer and from each of the three axes of the gyroscope, giving a total of
twenty-four attributes. The feature extracted were

• root mean square (RMS),
• standard deviation (SD),
• minimum (MIN) and
• maximum (MAX).

As during the lifting activity the subject moved in two different directions (from
bottom to top, and vice versa), giving rise to positive or negative variants of the signals, it
was considered that RMS represented the potential differences in the two different study
conditions (LI < 1 and LI > 1) better than the average. SD captured the fact that the range
of possible acceleration and values of the angular velocity signals can differ for different LI
values, as the SD of the acceleration data was associated with the intensity of motion [44].
Both RMS and SD were predictive features in monitoring physical activities [45]. MIN and
MAX values were collected as the task was performed in two opposite directions.

2.6. Machine Learning and Tools

Several ML algorithms were trained to evaluate the performance of our predictive
model based on features in the time-domain extracted from raw signals (acceleration and
angular velocity) to discriminate two risk conditions according to the RNLE.

The following ML algorithms were implemented.
Random Forest (RF) is a ML algorithm based on bagging and randomisation. RF uses

several decision trees. An instance is assigned to a certain class through a majority vote
procedure on the basis of the decision given by the trees that make up the forest. Although
this type of ML shows optimal performance on large datasets, it was chosen in this study
for its simplicity of parameterisation and for its stability to noise and outliers [46].

Decision Tree (DT) is a hierarchical classifier method, as well as representing the
simplest and most used logic-based classification technique [47]. The test data are classified
by ordering them as trees based on the values of their characteristics.

Gradient Boost (GB) redefines boosting as a numerical optimisation problem with
the goal of minimising model loss of function by adding learning weaknesses and using
gradient descent to set the local minimum of the differential function [48]. The GB method
implemented in this work is a combination of a decision trees measure and boosting
technique.
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Figure 4. (a) Acceleration and angular velocity signals along the 3 axes associated to the NO RISK class, lifting task
performed with a LI < 1. (b) Acceleration and angular velocity signals along the 3 axes associated to the RISK class, lifting
task performed with a LI > 1.

The AdaBoost (AB) algorithm [49], short for Adaptive Boosting, is a ML meta-
algorithm used as an ensemble method. Weights are reassigned to each instance, with
higher weights for instances classified incorrectly. Boosting reduces the bias and variance
for supervised learning. In the present study, a set of decision stumps (decision trees with
only one node and two leaves) was considered.

k-Nearest Neighbour (kNN) ranks the unlabelled instance vector on the basis of the
majority label class between its nearest k neighbours in the training set. Several distance
metrics, employed to recognise the nearest neighbours, are present in the literature and
can influence the algorithm performance. Without prior knowledge, typically the distance
metric implemented is the Euclidean distance [50], as in the case under examination. The
algorithm usually assumes that the training instances are uniformly distributed across
classes, an assumption in line with our perfectly balanced dataset with reference to the two
classes. The choice of k has a significant impact on the classification performance [51]; a k
equal to 3 was considered in the present work.

Naive Bayes (NB) is a probabilistic ML algorithm, based on Bayes’ Theorem. It
calculates the probability of each class for a specified instance and then returns the class
with the highest probability. This algorithm, which requires little data for training and little
storage space, is suitable for the small size of the datasets that perform the analysis for each
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subject in our study. It is also fast during training without many parameters to set, based
on the assumption of the conditional independence of the characteristics [52].

Multilayer Perceptron (MLP) consists of multiple layers of simple, two-state sigmoid
processing elements, i.e., nodes or neurons interacting using weighted connections, only
between neurons of adjacent layers [53]. In the present study, a configuration with a single
hidden layer and 10 neurons was considered.

Support Vector Machine (SVM) in a binary classification, as in the case under study,
creates a hyperplane that separates data from two different classes. The largest possible
distance is established between the separating hyperplane by maximising the margin, thus
creating the separation [54]. The kernel choice determines the separation boundary of the
classes. The Radial Basis Function (RBF) or Gaussian Kernels are the most popular kernels
used as default for any nonlinear model, but also polynomial kernels are very popular [55].
In our study, we used SVM with a linear kernel.

Logistic Regression (LR) is an efficient and powerful way to analyse the effect of
several independent variables on a binary outcome, as in the case under study, and allows
quantifying the contribution of each feature. LR iteratively identifies the strongest linear
combination of variables with the highest probability to detect the observed outcome [56].

K-fold cross-validation is one of the most widely used approaches for estimating
classifier error and was employed in our study as tenfold cross-validation (CV) to validate
the predictive models described above and provide more robust evidence on our predictive
biomechanical risk model, based on features extracted from raw signals. Tenfold CV
involves splitting a dataset into ten subsets, with the iterative use of nine to train the model
and one to evaluate its performance [57]. In this work, a stratified CV was adopted in order
to keep the proportions between the two classes unaltered among the folds [58].

Moreover, in order to better generalise the validation of our proposed approach, we
used a leave-one-subject-out cross-validation using six subjects to train the predictive
models and one subject to test the algorithms.

The performance of the predictive models proposed was evaluated through the fol-
lowing evaluation metrics: Accuracy, Sensitivity, Specificity and Area under the curve
Receiver operator characteristic (AucRoc). The Accuracy metric is a measure of the ratio of
correct predictions over the total number of instances considered. The Sensitivity metric is
employed to measure the fraction of positive patterns that are correctly classified, while
the Specificity metric is used to measure the fraction of negative patterns that are correctly
classified. Finally, the AucRoc reveals the generally ranking performance of a classification
algorithm.

The Confusion Matrix of the best algorithm in terms of evaluation metrics scores
was also reported, with matching between instances in an expected class and an actual
class [59].

Finally, the Feature Importance was also reported through the calculation of the Infor-
mation Gain (IG), an indicator of the amount of information provided by the features [60].
A feature selection on the basis of the IG was implemented as filter method before the
classification task. WEKA data mining software was used for the feature importance
analysis [61], selecting InfoGainAttributeEval as Attribute Evaluator and Ranker as Search
Method.

ML algorithms have been implemented through the artificial intelligence platform
Knime Analytics Platform (version 3.7.1), which finds increasing diffusion in the scientific
literature [62,63].

3. Results

First, we performed a ML analysis for each subject to assess the feasibility of the
proposed data mining system to assess the biomechanical risk for a single subject. For
each subject, we considered two datasets: the first dataset is composed of 60 instances, 30
for each class (NO RISK, RISK), and 12 features extracted from the acceleration signals;
the second dataset is composed of 60 instances, 30 for each class (NO RISK, RISK), and 12
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features extracted from the angular velocity signals. For each dataset, we performed the
ML analysis by averaging the results among the seven subjects, and we further showed the
standard deviation in order to include prediction uncertainty. The results for each dataset
are shown in Tables 3 and 4, respectively, where Sensitivity and Specificity were computed
considered as reference for the NO RISK class.

Table 3. Scores from stratified tenfold cross-validation (CV) evaluation metrics averaged over the
seven subjects (mean ± standard deviation) using the features extracted from the acceleration signals
along the three axes.

Algorithms Accuracy Sensitivity Specificity AucRoc

DT 0.97 ± 0.05 0.97 ± 0.04 0.97 ± 0.05 0.97 ± 0.03
RF 0.98 ± 0.02 0.98 ± 0.03 0.99 ± 0.02 0.99 ± 0.01
GB 0.97 ± 0.04 0.98 ± 0.03 0.96 ± 0.06 0.98 ± 0.02
AB 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.04 0.97 ± 0.03

kNN 0.90 ± 0.09 0.88 ± 0.10 0.91 ± 0.11 0.94 ± 0.06
NB 0.96 ± 0.03 0.96 ± 0.04 0.96 ± 0.04 0.99 ± 0.01

MLP 0.95 ± 0.06 0.93 ± 0.07 0.96 ± 0.06 0.97 ± 0.03
SVM 0.83 ± 0.20 0.83 ± 0.29 0.82 ± 0.37 0.85 ± 0.22
LR 0.79 ± 0.15 0.79 ± 0.14 0.79 ± 0.19 0.84 ± 0.13

Abbreviations. AB: AdaBoost; AucRoc: Area under the curve Receiver operator characteristic; DT: Decision
Tree; GB: Gradient Boost; kNN: k-Nearest Neighbor; LR: Logistic Regression; NB: Naïve Bayes; MLP: Multilayer
Perceptron; RF: Random Forest; SVM: Support Vector Machine.

Table 4. Scores from stratified tenfold CV evaluation metrics averaged over the seven subjects (mean
± standard deviation) using the features extracted from the angular velocity signals along the three
axes.

Algorithms Accuracy Sensitivity Specificity AucRoc

DT 0.88 ± 0.11 0.87 ± 0.14 0.88 ± 0.08 0.88 ± 0.12
RF 0.90 ± 0.11 0.90 ± 0.13 0.89 ± 0.09 0.94 ± 0.10
GB 0.89 ± 0.13 0.90 ± 0.14 0.88 ± 0.13 0.92 ± 0.09
AB 0.89 ± 0.14 0.89 ± 0.16 0.89 ± 0.12 0.92 ± 0.12

kNN 0.82 ± 0.10 0.81 ± 0.14 0.82 ± 0.09 0.88 ± 0.09
NB 0.86 ± 0.12 0.83 ± 0.17 0.89 ± 0.08 0.92 ± 0.08

MLP 0.90 ± 0.12 0.88 ± 0.16 0.92 ± 0.09 0.94 ± 0.08
SVM 0.68 ± 0.19 0.91 ± 0.13 0.44 ± 0.42 0.82 ± 0.16
LR 0.84 ± 0.08 0.84 ± 0.13 0.84 ± 0.05 0.90 ± 0.07

Abbreviations. AB: AdaBoost; AucRoc: Area under the curve Receiver operator characteristic; DT: Decision
Tree; GB: Gradient Boost; kNN: k-Nearest Neighbor; LR: Logistic Regression; NB: Naïve Bayes; MLP: Multilayer
Perceptron; RF: Random Forest; SVM: Support Vector Machine..

Second, we performed Feature Importance by means of the calculation of the IG,
considering the entire study sample and the features extracted from both the acceleration
and angular velocity signals along the three axes (Figure 5).

Third, we performed a ML analysis considering all seven subjects to assess the feasi-
bility of the proposed data mining system for biomechanical risk assessment for a general
study population. In this analysis, we considered a unique dataset consisting of 420 (60 × 7)
instances, 210 for each class (NO RISK, RISK), and 18 features extracted from both accelera-
tion and angular velocity signals excluding the six features with IG equal to zero (Figure 5).
In our study, the general rule is respected that foresees at least equal to 10 the ratio n/d,
between the number n of instances available in the training set and the dimension d of the
feature space [64]. This strengthens and makes the result of our analysis shareable.
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Figure 5. Feature importance based on the Information Gain value. Abbreviations. aRMSx: x-axis acceleration Root
Mean Square; aRMSy: y-axis acceleration Root Mean Square; aRMSz: z-axis acceleration Root Mean Square; aSTDx: x-axis
acceleration Standard Deviation; aSTDy: y-axis acceleration Standard Deviation; aSTDz: z-axis acceleration Standard
Deviation; aMINx: x-axis acceleration Minimum; aMINy: y-axis acceleration Minimum; aMINz: z-axis acceleration
Minimum; aMAXx: x-axis acceleration Maximum; aMAXy: y-axis acceleration Maximum; aMAXz: z-axis acceleration
Maximum; vRMSx: x-axis angular velocity Root Mean Square; vRMSy: y-axis angular velocity Root Mean Square; vRMSz:
z-axis angular velocity Root Mean Square; vSTDx: x-axis angular velocity Standard Deviation; vSTDy: y-axis angular
velocity Standard Deviation; vSTDz: z-axis angular velocity Standard Deviation; vMINx: x-axis angular velocity Minimum;
vMINy: y-axis angular velocity Minimum; vMINz: z-axis angular velocity Minimum; vMAXx: x-axis angular velocity
Maximum; vMAXy: y-axis angular velocity Maximum; vMAXz: z-axis angular velocity Maximum.

The results of the ML analysis on the entire dataset are shown in Table 5, where the
NO RISK class was considered as the reference class for Sensitivity and Specificity.

Table 5. Scores from stratified tenfold CV evaluation metrics considering the entire study sample
and using the features extracted from both acceleration and angular velocity signals along the three
axes with a non-zero IG.

Algorithms Accuracy Sensitivity Specificity AucRoc

DT 0.91 0.89 0.92 0.93
RF 0.95 0.94 0.95 0.99
GB 0.95 0.94 0.96 0.99
AB 0.80 0.72 0.87 0.90

kNN 0.84 0.83 0.85 0.91
NB 0.67 0.63 0.71 0.75

MLP 0.91 0.91 0.91 0.97
SVM 0.71 0.70 0.71 0.79
LR 0.66 0.67 0.66 0.68

Abbreviations. AB: AdaBoost; AucRoc: Area under the curve Receiver operator characteristic; DT: Decision
Tree; GB: Gradient Boost; kNN: k-Nearest Neighbor; LR: Logistic Regression; NB: Naïve Bayes; MLP: Multilayer
Perceptron; RF: Random Forest; SVM: Support Vector Machine.

Table 6 shows the Confusion Matrix of the best algorithm (GB) resulting from the
analysis on the entire study sample and according to the scores of the evaluation metrics:
Accuracy, Sensitivity, Specificity and AucRoc. The resulting confusion matrix is perfectly
balanced with the following values: TP = 197, FP = 13, FN = 8, TN = 202.
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Table 6. Confusion matrix of the best algorithm in terms of evaluation metrics scores: the GB.

NO RISK YES RISK

NO RISK 197 13
YES RISK 8 202

Finally, we performed a ML analysis on the entire dataset using as validation strategy
the leave-one-subject-out, namely, using six subjects for the training set and one subject for
the test set. Results are shown in the Table 7.

Table 7. Scores from leave-one-subject-out evaluation metrics considering the entire study sample
and using the features extracted from both acceleration and angular velocity signals along the three
axes.

Algorithms Accuracy Sensitivity Specificity AucRoc

DT 0.88 0.93 0.83 0.88
RF 0.88 0.97 0.80 0.97
GB 0.75 0.97 0.53 0.92
AB 0.88 0.97 0.80 0.96

kNN 0.50 0.00 1.00 0.48
NB 0.82 0.97 0.67 0.97

MLP 0.73 0.97 0.50 0.87
SVM 0.77 0.97 0.57 0.82
LR 0.70 0.97 0.43 0.72

Abbreviations. AB: AdaBoost; AucRoc: Area under the curve Receiver operator characteristic; DT: Decision
Tree; GB: Gradient Boost; kNN: k-Nearest Neighbor; LR: Logistic Regression; NB: Naïve Bayes; MLP: Multilayer
Perceptron; RF: Random Forest; SVM: Support Vector Machine.

4. Discussion

The goal of our research was to explore the feasibility of several state-of-the-art ML
algorithms—fed with specific time-domain features extracted from the acceleration and
angular velocities signals during a lifting activity—to classify the lifting risk classes based
on the LI values according to the RNLE. The results obtained suggest ML algorithms—
operating on the time-domain features (RMS, SD, MIN and MAX) extracted during lifting
activities from the acceleration and angular velocity signals along the three dimensions
of space—can offer valid help to experts in ergonomics for the precise and automatic
classification of the biomechanical risk of workers engaged in load-lifting activities.

The ML analysis performed was aimed at the classification of lifting activities based
on the presence or absence of risk, defined by the LI index.

First, having carried out a ML analysis for each subject, we obtained the average
scores and the standard deviations of the evaluation metrics of the seven subjects by
considering separately the characteristics extracted from the acceleration signal and the
angular velocity signal. As shown in Tables 3 and 4, the application of state-of-the-art
algorithms on the time-domain features extracted from the acceleration signal provides
superior performance (evaluation metric scores) compared to that achieved by using the
angular velocity signal, albeit with satisfactory results for the latter as well. The proposed
combination of algorithms and features extracted from the acceleration signal achieved an
accuracy of between 0.79 and 0.98, a sensitivity between 0.79 and 0.98, a specificity between
0.79 and 0.99, and AucRoc between 0.84 and 0.99. The proposed combination of algorithms
and features extracted from the angular velocity signal achieved an accuracy between 0.68
and 0.90, a sensitivity between 0.84 and 0.91, a specificity between 0.44 and 0.92, and an
AucRoc score between 0.82 and 0.94.

Second, in our study, eighteen out of twenty-five features showed a non-zero IG
(Figure 5), highlighting their predictive power for this specific classification task. Specif-
ically, the most informative features, according to IG, were those associated with the
acceleration of the y axis, i.e., the mediolateral direction (Figure 2). This means that the
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trajectory of the subject’s centre of gravity along the y axis during the lifting task (Figure 3)
tends to have a greater information to separate risk classes, despite the load being moved
along the x trajectory. In particular, the aRMSy alone shows an information gain equal to
20%, highlighting its high discriminating power between the two risk conditions.

As for the features relating to the acceleration along the y axis, the most informative
ones according to IG (Figure 5) are, once again, those relating to the angular velocity around
the y axis. Approximately 60% of the information provided by the features derives from
those relating to the angular velocity and acceleration of the y axis, and this result must be
taken into account.

Third, as shown in Table 5, we performed a ML analysis considering the whole
sample of the study in order to have more generalisable results and to evaluate if the
proposed method was applicable not only to the single subject, but also to a whole sample.
This property could in fact represent a substantial advantage for using the proposed
methodology during preventive interventions for the health and safety of workers in the
workplace. This further analysis was carried out using the features extracted from both
acceleration and angular velocity signals relating to the three axes (considering the entire
study sample, and excluding the features with IG equal to zero). All classifiers (with the
exception of the NB, SVM and LR algorithms) showed an accuracy between 0.80 and 0.95, a
sensitivity between 0.72 and 0.94, a specificity between 0.85 and 0.96, and AucRoc between
0.90 and 0.99. As shown in Table 5, six out of nine ML algorithms discriminated excellently
(AucRoc values > 0.90) the two risk classes. Conventionally, AucRoc values > 0.70 are
considered to represent moderate discrimination, value > 0.80 good discrimination and
values > 0.90 excellent discrimination; on the basis of the results, as shown in the Table 5,
six of nine ML algorithms showed an excellent discrimination of the two risk classes. The
poor performance of the NB algorithm was due to the presence of a statistically significant
correlation between characteristics [56] (correlation study not shown). The LR algorithm,
as the NB one, is based on the concept of probability, and this could explain the limited
performances of LR. Instead, the poor performance of the SVM with linear kernel could be
explained by the fact data are not linearly separable. The best algorithm was the GB which
reached values of 0.95, 0.94, 0.96 and 0.99 in Accuracy, Sensitivity, Specificity and AucRoc,
respectively. As shown in Table 6, the almost symmetric Confusion Matrix of GB presents
only 21 instances wrongly classified out of 240 total instances, confirming the potential of
this methodology applied to biomechanical evaluation.

Finally, to better generalise the performance of our models, we tested them using
leave-one-subject-out, training the classifiers on six subjects and testing them on one subject.
Although the metrics resulted slightly lower, the data shown in Table 7 are comparable with
the ones obtained from the stratified tenfold CV. Once again, the tree-based ML algorithms
has proven more efficient in terms of evaluation metrics for this purpose.

This is the first study that considers risk discrimination (by ML) according to NIOSH
using a single IMU placed on the subject’s pelvis to extract four basic time-domain features.
The achieved results, when compared with the recent ones described by other research
groups, are in line or superior to those based on more complex methodologies.

In the study by Varecchia et al. [65], the combination of an artificial neural network fed
with time-domain and frequency-domain features extracted from surface electromyography
and optoelectronic systems resulted in classification Accuracy of up to 90% against three
NIOSH risk classes (LI = 1, LI = 2, LI = 3). In a subsequent work by the same authors [66],
the new feature of Lifting Energy Consumption [67] was used to feed a neural network
similar to the previous one, demonstrating an Accuracy up to 100%. The limit of this
methodology, as pointed out by the authors themselves, is due to the poor applicability in
the workplace, an aspect that is solved using wearable inertial sensors as in our case.

Snyder et al. [68,69] proposed a modified Convolutional Neural Network model to
distinguish three risk levels (low, medium and high) according to the American Conference
of Governmental Industrial Hygienist Threshold Limit Values for lifting. Similar to our
work, they used IMU sensors, albeit in larger number, to achieve 90% Accuracy.
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With a similar goal to ours, Brandt et al. [43] tried to classify lifting activities into low-
and high-risk categories according to the guidelines of the Danish Working Environment
Authority, reaching an Accuracy score equal to 65% using a Linear Discriminant Analysis
algorithm. In the study by Conforti et al. [27], which aimed to distinguish between correct
and incorrect postures, the extraction of data from an IMU positioned on the pelvis of the
subject, and coupled with an IMU placed on the trunk, did not allow obtaining scores
higher than 75% using a Support Vector Machines algorithm with four different kernels.

Although the presented methodology is powerful, doubts could be raised about the
effective capabilities of a single IMU for the validation of such results. Although a single
IMU on the pelvis is not sufficient to fully predict the parameters associated with lifting
(e.g., the weight of the object to be handled, the horizontal distance, etc.), this solution
estimates the lumbar load fairly well, when the displaced mass is known and is in a
consistent position with respect to the body [38]. In addition to significantly increasing the
convenience in field trials, the use of a single IMU, positioned on the back, is considered
sufficient to provide the data necessary to distinguish lifting classes [68].

Based on these results, the experimented approach—which combines time-domain
features and machine learning algorithms—proved to be a valid indicator, although pre-
liminary because of the low number of samples analysed, of the risk of WLBDs for manual
lifting (according to the NIOSH index) to which workers are potentially exposed during
their working activity.

5. Conclusions

In conclusion, the results showed that the proposed combinations of features—extracted
from acceleration and angular velocity signals acquired by a single IMU placed at pelvis—
and state-of-the-art ML algorithms represents a potential valid approach to automatically
classify the biomechanical risk to which subjects may be exposed during lifting activities,
for example, at work. The presented methodology could represent a valid integration
to the established protocols (e.g., NIOSH lifting equation) to evaluate the biomechanical
risk more quickly and easily. Moreover, it could represent a valid alternative when the
conditions required for the application of standardised evaluation methods do not exist.
These results are of direct practical relevance for occupational ergonomics, as they present
the opportunity for automatic, economic and non-invasive detection (by placing an IMU on
the pelvis of the subjects), to assess the musculoskeletal and biomechanical risk associated
with lifting. Based on the promising results presented in this article, the next phase of our
research could consider an extension of the sample under consideration to further validate
the methodology, new experiments that consider more than two LI values, and the inte-
gration of additional features from the time-domain and possibly the frequency-domain.
The main limitation of the study is in fact the low sample size making this a preliminary
study. Future work will benefit both from the inclusion of larger groups of participants as
well as the use of deep learning techniques for classification such as convolutional neural
networks [70]. It is known these are especially advantageous for analysing time series data,
reducing the risk of overfitting and improving system Accuracy.
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