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Abstract

This paper presents the design of a Built-in-self-Test (BIST) implemented Advanced

Encryption Standard (AES) cryptoprocessor Application Specific Integrated Circuit (ASIC).

AES has been proved as the strongest symmetric encryption algorithm declared by USA

Govt. and it outperforms all other existing cryptographic algorithms. Its hardware implemen-

tation offers much higher speed and physical security than that of its software implementa-

tion. Due to this reason, a number of AES cryptoprocessor ASIC have been presented in

the literature, but the problem of testability in the complex AES chip is not addressed yet.

This research introduces a solution to the problem for the AES cryptoprocessor ASIC imple-

menting mixed-mode BIST technique, a hybrid of pseudo-random and deterministic tech-

niques. The BIST implemented ASIC is designed using IEEE industry standard Hardware

Description Language(HDL). It has been simulated using Electronic Design Automation

(EDA)tools for verification and validation using the input-output data from the National Insti-

tute of Standard and Technology (NIST) of the USA Govt. The simulation results show that

the design is working as per desired functionalities in different modes of operation of the

ASIC. The current research is compared with those of other researchers, and it shows that it

is unique in terms of BIST implementation into the ASIC chip.

1 Introduction

Information and Communication Technology (ICT) has become an integral part of our daily

life. People want to protect their information from unauthorized access and data corruption.

Cryptography plays an important role in protecting and securing information during commu-

nication [1]. There are two types of cryptographic algorithms: symmetric and asymmetric.

Asymmetric cryptography is more secured than symmetric cryptography, but it is complex

and uses much longer keys which in turn makes it slower and not industry-accepted, and not

suitable for bulk data transmission than its counterpart symmetric cryptography. However,

research is going on for the improvement of the performance of the asymmetric cryptography

algorithm [2–6]. On the other hand, symmetric cryptography is less complex and executes
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faster than asymmetric cryptography, and so it has been accepted as an industry-standard

cryptographic algorithm and is being widely used to secure sensitive, secret, or classified infor-

mation in government, healthcare, banking, and other industries. Previously researchers pro-

posed plenty of symmetric cryptographic algorithms [7–11]. Advanced Encryption Standard

(AES) is one of the most secured and chosen US NIST of USA Govt for its military among the

multiple cryptographic algorithms. Crypt-analytical attacks such as Brute-force, Linear crypt-

analysis, Differential crypt-analysis, etc., have been proven ineffective in breaking the AES. It

has been shown that even with a supercomputer, it would take 1 billion years (which is more

than the age of the universe: 13.75 billion years) to crack this algorithm [12]. Due to this

impressive security potentiality of AES, it is being used in various emerging applications, either

in software or hardware implementations. Hardware implementation of the algorithm offers

higher security and speed than that of its software implementation. Due to enormous speed

and security performances, now a lot of research for hardware realization of the AES crypto-

processor is reported in the literature [13–21]. Some of the research focuses on hardware

resource optimization [13–15], while some other on speed optimization [16–18] and some

other on power consumption optimization [19–21].

Hardware implementation can be realized using two approaches: (i) Field Programmable

Gate Array (FPGA) technology (ii) Application Specific Integrated Circuit (ASIC) technology.

ASIC is a VLSI chip with an optimized circuit for a particular application, whereas FPGA is

also an off-the-shelf VLSI chip manufactured for general purposes. ASIC is much more effi-

cient in terms of power, area, and speed than FPGA [22].

In today’s world, for many emerging and demanding applications where security and reli-

ability are an issue, ASIC implementation of AES cryptoprocessor is the best solution for the

clients. However, for designing ASIC or any complex chip, Design for Testability (DFT) is a

prime concern because testing a VLSI chip using Automatic Test Equipment (ATE) is highly

complex, time-consuming as well as expensive [23, 24]. To deal with the testing problem at the

chip level, incorporating Built-in Self-Test (BIST) capability inside a chip is a widely accepted

approach [25–30] and it is a norm of this day in the VLSI industry. BIST is a mode of operation

of a chip other than its normal mode, where when a chip is switched to this mode, it performs

its test by itself. Nowadays mixed-mode testing approach [31–35] is the state of the art tech-

nique for BIST implementation where the ASIC is tested using both pseudo-random test pat-

terns for easy to test faults and deterministic test patterns for hard to detect faults, and thereby,

maximum fault coverage is achieved. In this research, the mixed-mode BIST technique has

been incorporated into the design of the AES cryptoprocessor ASIC.

The main contributions of this work are summarized as below:

• To introduce the concept of mixed-mode BIST technique in designing the AES Crypto-pro-

cessor ASIC chip. The idea is a unique but significant feature of the AES crypto-processor

ASIC, which is not reported in the literature yet.

• To implement the mixed-mode BIST technique in the design of the ASIC and simulate the

design to ensure the functionalities in a different mode of operation using the ModelSim

EDA tool.

• To validate the simulation results using Quartus II EDA tool and find the resource (logic

gates) requirements for the desired functionalities.

The remaining sections of this paper are organized as follows. In Section-2, a discussion on

the AES algorithm and its different levels of functioning are presented. Section-3 describes the

evolution of BIST towards the mixed-modeBIST with description. The architecture of the pro-

posed AES crypto-processor ASIC BIST is presented in Section-4. Experimental results are
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shown in Section-5. A comparison to other works is presented in Section-6. Finally, we con-

clude the work in Section-7.

2 AES algorithm

AES accomplishes all its operations on bytes rather than bits. AES interprets a plaintext block

of 128 bits as 16 bytes. A 4x4 matrix is used to represent these 16 bytes. Fig 1 shows the overall

operational structure of the AES algorithm. The number of rounds based on which the AES

Fig 1. AES encryption and decryption.

https://doi.org/10.1371/journal.pone.0259956.g001
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algorithm performs encryption or decryption is variable and depends on the key length. In

AES for rounds, 10, 12, and 14 the key lengths are 128 bits, 192 bits, and 256 bits, respectively.

In this research, we focused only on the key length of 128 bits. For encryption, each round con-

sists of four sub-operations. The sub-operations are as follows:

Byte substitution: AES defines a fixed table called s-box consists of 256 values for the substi-

tution. AES works using the 16 bytes of the state array, employs each byte as an index into the

256-byte substitution table, and substitutes the byte with the value from the substitution table.

Shift rows: In this sub-operation, each of the four rows of the state matrix is shifted to the

left. The first row remains unchanged. The second row is shifted one-byte position to the left.

The third row is shifted two-byte positions to the left. The fourth row is shifted three-byte posi-

tions to the left.

Mix columns: Mix columns sub-operation performs a matrix multiplication of a given state

matrix with a static matrix. This sub-operation is treated as the primary source of diffusion.

Finally, we obtain a new state matrix containing 16 new bytes. Add round key: The state matrix

containing 16 bytes is considered 128 bits and is XORed to the 128 bits of the round key. If this

is the last round, then the output is our expected ciphertext; otherwise, the resulting 128 bits

are interpreted as 16 bytes and are used in the next round.

In AES, the four sub-operations can be inverted because AES is not a Feistel network. The

inverse sub-operations for each round in the decryption process are shown in Fig 1. We know

that the XOR operation is its own inverse. The add round key sub-operation is performed in

the same manner for both encryption and decryption processes.

Inverse mix columns: Inverse mix columns sub-operation is just the reverse of the mix col-

umns sub-operation. Here the static matrix used for the matrix multiplication is the reverse of

that of the mix columns sub-operation.

Inverse shift rows: In this sub-operation, each of the four rows of the state matrix is shifted

to the right. The first row remains unchanged. The second row is shifted one-byte position to

the right. The third row is shifted two-byte positions to the right. The fourth row is shifted

three-byte positions to the right.

Inverse sub bytes: AES S-Box follows a one-to-one mapping; an inverse table of the fixed

S-Box table is used. Similarly, each byte of the state array is used as an index into the 256-byte

substitution table and substitutes the byte with the value from the substitution table.

Key expansion: Key expansion algorithm generates the round keys by employing the initial

key for both the encryption and decryption processes. The four-word key is feed to the AES

key expansion algorithm, and eventually, we get a linear array of 44 words. Each sub-key is 128

bits in length. The initial is held into the first four words of the expanded key. The preceding

word and the word four positions back are XORed to generate each added word. The whole

process consists of two sub-functions called rotation word and substitution word. In the first

sub-function, a one-byte left shift is performed on a word, and in the second sub-function, a

byte substitution is performed on each byte of its input word, using the S-box.

3 VLSI testing towards mixed-mode BIST

IC manufacturers use ATE for testing IC. The deterministic testing approach introduced in

1960 is adopted in the ATE [36]. ATE cannot cope with the continuously increasing complexi-

ties of IC in today’s semiconductor world. To overcome the serious drawbacks suffered by

ATE such as high equipment cost, slow test speed, yield loss, etc. [37, 38] a new testing

approach, Built-In Self-Test (BIST) technique, is proposed by researchers. Initially, the same

deterministic approach as used in ATE was used in BIST. However, later on, a number of tech-

niques have been proposed to improve the performance of the BIST such as pseudo-random
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testing approach [39] weighted random testing approach [40, 41], mixed-mode testing

approach [31–33] etc. Later on, different variants of mixed-mode testing approaches are pro-

posed [34, 35]. The mixed-mode testing approach is a long-established and popular method

for BIST where acceptable and higher fault coverage can be achieved using a lower number of

test vectors in testing the VLSI chip. It is a hybrid test technique where a pseudo-random test

technique follows the deterministic test technique. This approach exploits the advantages of

both the pseudo-random test technique and the deterministic test technique. In this approach,

testing is performed in two phases. In the first phase, a linear feedback shift register (LFSR) is

employed to generate the required number of pseudo-random test vectors (PRV), which are

then fed to the circuit under test (CUT), and around more than 80% easy to detect faults are

possible to be detected. Then the remaining faults are detected employing deterministic test

vectors. Deterministic test vectors are generated using the reseeding technique of LFSR, where

the required numbers of seed values are stored in the memory. They are loaded into the LFSR

in need and employed to generate the required number of deterministic test patterns. In this

process, we can use the same LFSR to be used for generating PRVs. Fig 2 shows the mixed-

mode BIST architecture. It consists of a controller, memory, Test Pattern Generator (TPG),

Output Response Analyzer (ORA), etc. BIST controller reads the seed and initializes the LFSR

for generating the test required deterministic vectors applied to the CUT, and the output is fed

into ORA. Then signature generated into the ORA is compared with that of the golden signa-

ture, and the status of CUT is determined as faulty/fault-free.

4 Architecture of AES Crypto ASIC

Figs 3 and 4 show the functional block diagram of the AES crypto ASIC with BIST and its flow-

chart of operation. The ASIC comprises five prime modules. The encryption module,

Fig 2. AES BIST architecture.

https://doi.org/10.1371/journal.pone.0259956.g002
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decryption module, controller module, linear feedback shift register, and output response ana-

lyzer (ORA) module. The controller module is responsible for controlling the sequences in

which other modules are to be activated. When the encryption module works in normal mode,

then the required plaintext and the input key are read from the input data source. After ten

rounds, the resultant ciphertext is obtained. All the inputs and the outputs are verified as per

Fig 3. Functional blocks of the AES Crypto ASIC with BIST.

https://doi.org/10.1371/journal.pone.0259956.g003

Fig 4. Flowchart of the AES Crypto ASIC with BIST.

https://doi.org/10.1371/journal.pone.0259956.g004
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NIST provided inputs and outputs. Similarly, in the case of decryption under normal mode,

the required ciphertext is read from the input data source, and then after ten rounds, the resul-

tant plaintext is displayed, which is also verified in the same way as provided by NIST. When

the test mode is activated, whether the encryption module or decryption module is to be tested

at first, the required number of pseudo-random test patterns generated from the linear feed-

back shift register (LFSR) is feed to the encryption or decryption module. When the required

number is reached, then the test switches to the deterministic test patterns instead of pseudo-

random test patterns.

The same LFSR is used to generate the required number of deterministic test patterns, and

those are fed to the encryption or decryption module. All the responses obtained from the

encryption or decryption are fed to the ORA module. The final output received from the ORA

module, which can be thought of as our candidate signature, is compared with the golden sig-

nature stored in the memory. Our research has two golden keys, one for encryption and the

other for decryption, stored in the memory. If there is a perfect match, that indicates a success-

ful test, otherwise failure.

5 EDA simulation results and discussion

In this research, the BIST implemented AES cryptoprocessor ASIC is designed using Verilog

HDL, and the functionalities of the ASIC are simulated using the Modelsim EDA simulator.

The simulation results in different modes of operation using the NIST-provided inputs and

outputs to ensure that the ASIC is working as per desired functionalities. The design of the

ASIC is again compiled and simulated using the FPGA-based EDA tool Quartus II. The spe-

cific FPGA device is “EP2C70F896C6” from the Cyclone II family mounted on an educational

Kit Altera DE2 which is available in the embedded system Lab of IICT, BUET. The specifica-

tions of the FPGA Device are supply voltage 1.15 V to 1.25 V, maximum operating frequency

260 MHz, total pins 622, number of logic elements 68416. The design of the ASIC is compiled

and simulated using the EDA tool, and found the complete resources are shown in Table 1.

Fig 5 shows the simulation result of the encryption module in normal mode. Six input pins

of the ASIC are to be used to control the encryption and decryption process either in normal

mode or in test mode. The six input pins are “normalEncryption”, “normalDecryption”,“bist-

Mode”, “encryptionForRandom”, “decryptionForRandom”, and

“decryptionFollowsEncryption”.

Among the six input pins, one input pin “normalEncryption” is set to one, and the other

five input pins are set to zero so that the initial key“000102030405060708090a0b0c0d0e0f” and

the plaintext “00112233445566778899aabbccddeeff” are loaded into the input pins “keyI” and

“initialState” respectively as shown in Fig 5. The output pin “cipherTextValue” holds the

desired ciphertext value “69 c4 e0 d8 6a 7b 4 30 d8 cd b7 80 70 b4 c5 5a”. All the inputs and

outputs are verified according to the NIST provided test inputs and outputs.

Fig 6 shows the simulation result of the decryption module in normal mode. Among the six

input pins, one input pin “normalDecryption” is set to one and the other five input pins are set

Table 1. Used resources in FPGA simulation.

Resources Usage

Total logic elements 36,507

Total combinational functions 36,081

Dedicated logic registers 9,323

Total pins 553

https://doi.org/10.1371/journal.pone.0259956.t001
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to zero so that the initial key “00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f” and the cipher-

text “69 c4 e0 d8 6a 7b 4 30 d8 cd b7 80 70 b4 c5 5a” are loaded into the input pins “keyI” and

“initialState” as shown in Fig 6. The output pin “plainTextValue” holds the desired plaintext

value “00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff”. Here the inputs and outputs are also ver-

ified according to the NIST publication.

Fig 7 shows the simulation result of the decryption process following the encryption pro-

cess. In the normal mode input pin “decryptionFollowsEncryption” is set to one and the other

five pins are set to zero so that the initial input key and the plaintext are loaded into the input

pins “keyI” and “initialState” respectively. The output pin “cipherTextValue” holds the desired

ciphertext value which is used as input to the decryption module. Finally, the desired plaintext

is regained after decryption and displayed through the output pin “plainTextValue”. As we

know that the AES algorithm is a symmetric algorithm so that the same key is used for both

the encryption and decryption process.

Fig 8 shows the simulation result of the encryption process in test mode. To test the encryp-

tion module using the expected number of pseudo-random patterns and deterministic pat-

terns, two input pins, “bistMode” and “encryptionForRandom” are set to 1, and the other four

input pins are set to 0. In this research, we have used forty pseudo-random test patterns and

Fig 5. Simulation result of encryption module in normal mode.

https://doi.org/10.1371/journal.pone.0259956.g005

Fig 6. Simulation result of decryption module in normal mode.

https://doi.org/10.1371/journal.pone.0259956.g006
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twenty one deterministic patterns. Sequentially, the expected number of pseudo-random pat-

terns generated from the LFSR is fed as input to the encryption module. Consequently, we will

get the expected number of ciphertext values; each of them is 128 bits in length which is also

fed as input to the output response analyzer (ORA) sequentially. After that, 21 pre-stored par-

tial seed values, each of them containing 10 bits, twenty-two zeros are appended in front of

each seed value so to make each 32 bits in length are sent to the LFSR to form each of them

into 128 bits in length and then fed to the ORA module one by one. The candidate signature

which is obtained from the ORA module, is then compared with the golden signature

“BC52CEBF” in a hexadecimal form stored in the memory. If there is a perfect match, then the

output pin “result” is set to high, as shown in Fig 8 through the arrow sign to indicate success-

ful testing; otherwise, it goes low to indicate failure. The output pin “matchedSignature” holds

the signature value that perfectly matches the golden signature shown in the figure through the

arrow shape. In test mode, we used a different pre-stored key “54 68 61 74 73 20 6D 79 20 4B

75 6E 67 20 46 75” than the key we used before in normal mode.

Fig 9 shows the simulation result of the decryption process in test mode. In this case, we

used the same amount of pseudorandom and deterministic test patterns that we have used

before to proceed with the test. Here, two input pins “bistMode” and “decryptionForRando-

m”are set to 1, and the other four pins are set to 0. The forty pseudo-random patterns

Fig 7. Simulation result of decryption process following encryption process.

https://doi.org/10.1371/journal.pone.0259956.g007

Fig 8. Simulation result of encryption module in test mode.

https://doi.org/10.1371/journal.pone.0259956.g008
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generated from the LFSR are fed as input to the decryption module one by one. Consequently,

we will get forty ciphertext values; each of them is 128 bits in length which is also fed as input

to the output response analyzer (ORA) one by one. After that, 21 pre-stored partial seed values,

each of them containing 10 bits, twenty-two zeros are appended in front of each seed value so

to make each 32 bits in length are sent to the LFSR to form each of them into 128 bits of length

and then fed to the ORA module sequentially. The final response was obtained from the ORA

module, which is our candidate signature compared with the golden signature “6081AF79”.

The “result” signal goes high after a perfect matching indicated by the arrow sign in Fig 9. The

output pin “matchedSignature” holds the signature value after matching, which is also indi-

cated by the arrow sign.

6 Comparison of results

Table 2 shows the comparison results of previous AES implementations using High-Level Lan-

guage (HLL) on different platforms with this work. The parameters based on which the com-

parison is made with our result are platform, indicating different high-level implementation

platforms, Data-path to indicate numbers of bits simultaneously processed by design, and

BIST technique implementation. Table 2 shows that the proposed research is unique in terms

Fig 9. Simulation result of decryption module in test mode.

https://doi.org/10.1371/journal.pone.0259956.g009

Table 2. Comparison results of the AES in terms of BIST implementation.

Research Platform Data-path, BIST technique

Ali et al [42] Quartus 128, not used

Cao et al [43] ModelSim 128, not used

Yin et al [44] ModelSim 128, not used

Sever et al [45] CMOS 128, not used

Shastry et al [46] Cadence NCSim 128, not used

Chih et al [47] CMOS 128, not used

Liu et al [48] CMOS 128, not used

Bo et al [49] CMOS 128, not used

This work Quartus 128, Properly implemented

https://doi.org/10.1371/journal.pone.0259956.t002
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of BIST implementation. We have implemented BIST successfully in our work, but none of

the other researchers have implemented BIST. We didn’t find any literature related to BIST

implemented AES Crypto-processor ASIC.

7 Conclusion

AES outperforms all the others among the existing symmetric cryptographic algorithms, and a

lot of applications are emerging based on this. Hardware implementation offers tremendous

speed and impressive security than that of its software implementation. So a number of

researches are proposed for the hardware implementation of AES. However, the testability

problem is not addressed anywhere, which is now a burning issue for any complex VLSI chip.

This research aims to overcome this limitation by designing the AES Crypto ASIC imple-

mented with the mixed-mode BIST technique. The ASIC has been designed using Verilog

HDL, which is now industry-standard software for VLSI design. The ASIC is simulated in its

different mode of functionalities using two EDA tools: Modelsim and Quartus II. Simulation

results in both environments prove the correctness of the design. Proper functionality has also

been verified using NIST-provided inputs and outputs. The current research is compared with

those of other researchers, and it shows that our research is unique in terms of BIST

implementation.

Supporting information

S1 Appendix. Source code. Controller module to all other modules are presented in the

appendix.
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