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SUMMARY
Subunit vaccines induce immunity to a pathogen by presenting a component of the pathogen and thus inher-
ently limit the representation of pathogen peptides for cellular immunity-based memory. We find that severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) subunit peptides may not be robustly displayed by
the major histocompatibility complex (MHC) molecules in certain individuals. We introduce an augmentation
strategy for subunit vaccines that adds a small number of SARS-CoV-2 peptides to a vaccine to improve the
population coverage of pathogen peptide display. Our population coverage estimates integrate clinical data
on peptide immunogenicity in convalescent COVID-19 patients and machine learning predictions. We eval-
uate the population coverage of 9 different subunits of SARS-CoV-2, including 5 functional domains and 4 full
proteins, and augment each of them to fill a predicted coverage gap.
INTRODUCTION

All reported current efforts for the COVID-19 vaccine design that

are part of the United States Government’s Operation Warp

Speed use variants of the spike subunit of severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) to induce immune mem-

ory (Table S7). Subunit vaccines seek to reduce the safety risks

of attenuated or inactivated pathogen vaccines by optimizing

the portion of a pathogen that is necessary to produce durable im-

mune memory (Moyle and Toth, 2013). Suggested coronavirus

subunit vaccine components include the spike (S) protein, the re-

ceptor-binding domain (RBD) of S, the S1 domain of S, the S2

domain of S, the nucleocapsid (N), the membrane (M), the enve-

lope (E), the N-terminal domain (NTD) of S, and the fusion peptide

(FP) of S (Wang et al., 2020; Yu et al., 2020; Dai et al., 2020). Sub-

unit vaccines have been enabled by our ability to engineer and

express pathogen surface components that retain their three-

dimensional structure to induce neutralizing antibodies and a

correspondingBcellmemory. However, the productionof durable

immune memory rests in part upon help from T cells, which get

their cues from peptides displayed by human leukocyte antigen

(HLA) molecules encoded by the major histocompatibility com-

plex (MHC) of genes. Since a subunit vaccine does not fully repre-

sent a pathogen, vaccine excluded pathogen peptides will not be

observed during vaccination by an individual’s T cells.

We find that proposed SARS-CoV-2 subunit vaccines exhibit

population coveragegaps in their ability to generate a robust num-

ber of predicted peptide-HLA hits in every individual. A peptide-

HLA hit is the potential immunogenic display of a peptide by a
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single HLA allele. Subunit vaccine-based simulation of a T cell

response is limited because of their limited representation of path-

ogen peptides, and the preferences of each individual’s HLA mol-

ecules for the peptides they will bind and display. Since HLA loci

exhibit linkage disequilibrium, we use the frequencies of popula-

tionhaplotypes inour coveragecomputations.Eachhaplotypede-

scribes the joint appearance ofHLA alleles.CytotoxicCD8+ T cells

observe peptides displayed by molecules encoded by an individ-

ual’s classical class I loci (HLA-A, HLA-B, and HLA-C), and helper

CD4+ T cells observe peptides displayed by molecules encoded

by an individual’s classical class II loci (HLA-DR, HLA-DQ, and

HLA-DP).

RESULTS

We model peptide-HLA immunogenicity by combining data from

convalescent COVID-19 patients as measured by the multiplexed

identification of T cell receptor antigen specificity (MIRA) assay

with machine learning predictions (Snyder et al., 2020; Klinger

et al., 2015). Thedisplay of a peptide byanHLAmolecule is neces-

sary, but not sufficient, for the peptide to be immunogenic and

causes T cell activation and expansion. The combinedmodel pre-

dicts which HLA molecule displayed a peptide that was observed

to be immunogenic in a MIRA experiment, and uses machine

learningpredictionsofpeptidedisplay forHLAallelesnotobserved

or peptides not tested in MIRA data (STARMethods). We use this

combined model of peptide immunogenicity to compute our esti-

mates of vaccine population coverage and to propose augmenta-

tion peptides to close population coverage gaps.
.
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Figure 1. Predicted Human Population Coverage Gaps and Improvement with Proposed Vaccines

(A) Predicted uncovered percentage of populations as a function of the minimum number of peptide-HLA hits in an individual. Annotated percentages are the

average across populations self-reporting as Asian, Black, and white. A redundant sampling of peptides is depicted by solid lines. A nonredundant sampling of

peptides is depicted by dotted lines.

(B) Predicted uncovered percentage of the population for a subunit plus augmentation peptides or a subunit free design as a function of the number of

augmentation peptides, MHC class I (top row) and class II (bottom row).

(C) Uncovered population for a joint class I and class II de novo vaccine design that does not include a subunit. Dotted graph lines in (B) utilize only MIRA validated

peptides. In (B) vertical lines show the peptide count used to evaluate Table S1, dotted lines are MIRA peptides only.
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We use two different candidate sets of peptides for subunit

augmentation and de novo vaccine design—known immuno-

genic peptides and all possible peptides. First, we exclusively

use the set of peptides that were observed to be immunogenic

in the MIRA assay (Snyder et al., 2020; Klinger et al., 2015). Sec-

ond, we utilize peptides from the SARS-CoV-2 genome that have

a mutation rate of < 0.001 and a zero glycosylation probability

predicted by NetNGlyc (Gupta et al., 2004) (STAR Methods).

For our vaccine coverage predictions, we use previously re-

ported estimates of HLA haplotype frequencies from Liu et al.,

(2020) for HLA-A, HLA-B, and HLA-C (classical class I) and

HLA-DR, HLA-DQ, and HLA-DP (classical class II) to score the

number of peptide-HLA hits observed for various subunits of

SARS-CoV-2 with and without additional augmentation pep-

tides. We also evaluate subunit population coverage for MHC

class I using HLA haplotype frequencies from Gragert et al.,

(2013) (STAR Methods).

SARS-CoV-2 Subunit Population Coverage Analysis
We first used our model of peptide immunogenicity to compute a

baseline of the predicted number of peptide-HLA hits that would

result from an infection by the SARS-CoV-2 virus using the HLA
haplotype frequencies from Liu et al., (2020). For this task, we ex-

tracted all peptides of length 8–10 (MHC class I) and 13–25 (MHC

class II) inclusive from the SARS-CoV-2 proteome (STAR

Methods).

We predict that SARS-CoV-2 will have 318 (white), 307 (Black),

and 391 (Asian) peptide-HLA hits for MHC class I on average in

the respective self-reporting human populations. For an MHC

class II redundant sampling, we predict that SARS-CoV-2 will

have 5,180 (white), 3,871 (Black), and 2,070 (Asian) peptide-

MHC hits. Thus, the average number of predicted SARS-CoV-

2 peptide-HLA hits for MHC class I is 338 and for MHC class

II 3,707.

We found that all subunits of SARS-CoV-2 have gaps in their

predicted human population coverage for robust peptide MHC

display using EvalVax (STAR Methods). We computed the pre-

dicted uncovered population percentageof the SARS-CoV-2 sub-

units S, S1, S2, RBD, and NTD as a function of the minimum

requiredpredicted number of peptide-HLAhits displayedbyan in-

dividual (Figure 1). An individual is uncovered if they are not pre-

dicted to have a specified number of peptide-HLA hits. Results

for the FP, M, N, and E subunits are shown in Figure S3. We

observed a negative correlation between subunit size and
Cell Systems 12, 102–107, January 20, 2021 103



Figure 2. The Separate and Joint Design Methods for Peptide Vaccines

(A) In the separate method, windowed pathogen proteomes are filtered for acceptable peptides and MHC class I and class II vaccine designs are chosen to

optimize population coverage at specified levels of peptide-HLA hits.

(B) In the joint method, 25-mer pathogen peptides are annotated with their MHC class I and class II peptides, which are filtered, scored, evaluated for population

coverage, and used to optimize the selection of their parent 25-mers into a joint vaccine.
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predicted population gap (Pearson r = �0.65 for MHC class I and

Pearson r=�0.63 forMHCclass II, Figure S4). The predicted frac-

tionof theuncoveredpopulationwasgreatest for the smallest sub-

units, which is a direct consequence of their elimination of the

largest number of pathogen peptides. For example, of the S pro-

tein subunits, RBD is the smallest and has the largest predicted

populationcoveragegap.While thesignificanceof the reduced im-

mune footprint of subunit vaccines remains to be fully elucidated

whennoorvery fewpeptide-HLAhitsarepredicted,acorrespond-

ing reduction in T cell activation, expansion, andmemory function

would beexpected. Based onour prediction, theRBDsubunit had

no MHC class II peptides displayed in 15.12% of the population

(averaged across Asian, Black, and white self-reporting individ-

uals). We noticed that the uncovered population of RBD with no

predicted display of MHC class II peptides ranges from 0.811%

for the population self-reporting as white, to a high of 37.287%

for the population self-reporting as Asian. The high uncovered

population in the Asian population is causedby theHLAhaplotype

frequencies in the Asian population. Thus, clinical trials need to

carefully consider ancestry in their study designs to ensure that ef-

ficacy ismeasured across an appropriate population. For the RBD

subunit, 26.357%of thepopulationhad fewer thansixMHCclass II

peptide-HLA hits. For RBD MHC class I, the coverage gap is

1.163% for no hits and 38.186% for fewer than six hits. EvalVax

predicted that on average for an S subunit vaccine the uncovered

population would be 0.001% (class I) and 0.721% (class II) for no

display, and 0.642% (class I) and 3.610% (class II) for fewer than
104 Cell Systems 12, 102–107, January 20, 2021
6 peptide-HLA hits. Table S9 provides a list of diplotypes with

zero predicted peptide-HLA hits for each SARS-CoV-2 subunit.

We found that predicted subunit coverage gaps for MHC class

I were largely consistent when we utilized HLA haplotype fre-

quencies from Gragert et al., (2013) (Figure S7) (STAR Methods).

SARS-CoV-2 Subunit Augmentation with Peptide Sets
for MHC Class I and II
We usedOptivax-Robust to compute separate MHC class I and II

augmentation sets of SARS-CoV-2 peptides to be combined with

each subunit tomaximize the predicted population coverage for a

target minimum number of MHC class I and class II peptide hits in

every individual (Figure2).Weused two setsof candidatepeptides

for these augmentation sets: (1) peptides that were found to be

immunogenic in MIRA assay data, and (2) all filtered peptides

from the entire SARS-CoV-2 proteome (STAR Methods). The use

of peptides immunogenic in MIRA data is intended to ensure that

vaccine peptides are immunogenic while limiting population

coverage by not considering other peptides that may cover rare

MHC alleles. We predicted the uncovered fraction of the popula-

tion as a function of MHC class I or II peptides set size for both

candidate sets (Figure 1; Table S1). The computed sets of

augmentation peptides were predicted to substantially reduce

thepopulationspredicted tobe insufficiently coveredbyeachsub-

unit. Post augmentation, the predicted uncovered population for

RBD with no peptide-MHC hits is reduced to 0.003% (MHC class

I) and 4.351% (MHCclass II) withMIRApositivepeptidesonly, and
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0.0% (MHCclass I) and 0.309% (MHCclass II) with all filtered pep-

tides fromSARS-CoV-2 (Table S1).Wewere conservative and did

not consider potential MHC class II trans-isoforms that could

improve coverage during vaccine design.

A Peptide-Only SARS-CoV-2 Vaccine for MHC Class I
and II
Wedesigned de novo peptide-only vaccines that did not assume

an associated subunit component. We proposed either peptide

vaccines that separately optimize for MHC class I and class II

population coverage or a single joint peptide vaccine that opti-

mizes MHC class I and class II coverage simultaneously (STAR

Methods). As candidates for vaccine inclusion, we considered

(1) only peptides that were found to be immunogenic in the

MIRA data, and (2) all peptides from the SARS-CoV-2 proteome

for separate vaccine designs. For joint vaccine design, we

included all peptides from the SARS-CoV-2 proteome as candi-

dates as theMIRA positive peptides do not overlap sufficiently to

do joint optimization. We explored the predicted decrease of the

uncovered population as a function of peptide count and found

that de novo vaccine designs are predicted to simultaneously

produce a large number of predicted hits for both MHC class I

and class II display (Figure 1; Tables S3 and S4). The predicted

population coverage of our peptide only designs exhibited a

diverse display of peptides across populations self-reporting

as Black, white, and Asian (Figure S5). Peptide-only vaccine de-

signs have been found to be effective (Herst et al., 2020).

SARS-CoV-2 Joint De Novo Designs Are More Compact
than Separate Designs
We found that a joint de novo design that uses a single set of

peptides for MHC class I and class II coverage requires fewer

peptides than separate vaccines for MHC class I and class II

coverage (Figure 1). With 9 jointly selected peptides, more than

93% of the population was predicted to have more than 4 pep-

tide-HLA hits. A 24-peptide joint design was predicted to pro-

duce more than 4 peptide HLA hits in more than 99% of the pop-

ulation (Table S3). We set a series of population coverage goals

forMHC class I andMHCclass II coveragewithmore than 7 pep-

tide-HLA hits per individual. We considered 25 evenly spaced

coverage levels between 0% and 100% coverage. We

computed the total number of peptides needed to reach each

set of MHC class I and MHC class II coverage goals simulta-

neously, where the number of MHC class I andMHC class II pep-

tides are summed for separately designed peptide sets. We

computed the total number of amino acids needed for a

construct with a typical mRNA delivery platform with 10-amino

acid linkers (Sahin et al., 2017) (Supplemental Information). We

found that joint designs reduce the total number of required

amino acids and peptides required to achieve each level of pop-

ulation coverage (Figure S6). A single mRNA delivery construct

has been demonstrated to work for both MHC class I and class

II peptides (Kreiter et al., 2008; Sahin et al., 2017).

DISCUSSION

We augment subunit vaccines with a compact set of peptides to

improve the display and immunogenicity of a vaccine on HLA

class I and II molecules across a population of people. Subunit
vaccines offer safety advantages over inactivated or attenuated

pathogen vaccines, but their ability to fully mimic a pathogenic

infection to train cellular immunity is limited. Immunity to a path-

ogen may rest in part upon T-cell-based adaptive immunity and

corresponding T memory cells. We expect that a vaccine that

provides a diverse display of a pathogen’s peptides will create

reservoirs of CD4+ and CD8+ memory cells that will assist in es-

tablishing immunity to the pathogen. SARS-CoV-2 infection

elicits a robust memory T cell response even in antibody-sero-

negative individuals, suggesting a T cell response is an important

component of immunity to COVID-19 (Sekine et al., 2020).

We found that for SARS-CoV-2 the joint optimization of pre-

dicted MHC class I and class II pathogen peptide display

achieves population coverage criteria with a more compact vac-

cine design than designing separate peptide sets forMHC class I

and class II. Using a simpler design with shorter constructs may

contribute to the effectiveness of a vaccine by providing an

equivalent diversity of peptide display in a population with a

less complex mixture of vaccine peptides.

Augmentation peptides can be delivered using the same

vehicle as their associated subunit vaccine or they can be deliv-

ered separately. Nucleic acid-based vaccines can incorporate

RNA or DNA sequences that encode class I and class II augmen-

tation peptides with desired signal sequences, linkers, and pro-

tease cleavage sites (Kreiter et al., 2008; Sahin et al., 2017) (ex-

amples in Supplemental Information, Tables S5 and S6). The

peptides can be expressed as part of the subunit or separately

and can be encoded on the same or different molecules as the

primary subunit. When augmentation peptides are added as a

new subunit domain a vaccine designer can improve population

coverage as described in Figure 1B. Nucleic acid constructs car-

rying augmentation peptides can be delivered by injection in lipid

nanoparticle particle carriers or directly (Dowdy, 2017; Wolff

et al., 1990). Protein-based vaccines can include independent

augmentation peptides into the vaccine formulation. The delivery

of independent augmentation peptides can be accomplished us-

ing nanoparticles (Herst et al., 2020).

Our computational objective function encodes the two key

goals of our augmentation strategy—population coverage and

the display of a highly diverse set of peptides in each individual.

Our population coverage goal is ensured by optimizing predicted

display coverage over population haplotype frequencies. The

display of a diverse set of peptides is established by setting

augmentation design goals for the number of peptides that

need to be displayed by each individual.

Early results from clinical studies of subunit vaccines for

SARS-CoV-2 show that some vaccine recipients did not develop

positive CD8+ T cell responses (Jackson et al., 2020). It is difficult

to fully evaluate these results because the HLA types of study

participants are not provided by these early studies. Thus, these

study populations may not be reflective of HLA types in the gen-

eral world population. The BNT162b1 RBD subunit vaccine pro-

duced a less robust CD8+ response than CD4+ response (Sahin

et al., 2020), and this was also noted in themRNA-1273 S subunit

vaccine results (Jackson et al., 2020). Further clinical data are

required to fully assess the T cell immunogenicity of various sub-

units and delivery methods. Clinical trials should select their par-

ticipants to have representative HLA type distributions to test for

population coverage. Future studies will need to examine the
Cell Systems 12, 102–107, January 20, 2021 105
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durability of immunity in individuals with a minimal T cell

response.

By simultaneously achieving the twin goals of coverage and

diversity with peptides derived from a pathogen, we effectively

compress the cellular immunologic fingerprint of a pathogen

into a vaccine. To produce an antibody response, the subunit

component of a vaccine can encode a three-dimensional

epitope to stimulate neutralizing antibody production by B cells.

Taken together, these two designed components, a pathogen

subunit and its augmentation, will provide both B cell and

T cell epitopes of a pathogen while permitting epitope selection

to mitigate deleterious effects and improve population

coverage.

All of our software and data are freely available as open source

to allow others to use and extend our methods.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:
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B Materials Availability

B Data and Code Availability
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Computational model predictions This paper Mendeley Data: https://doi.org/10.17632/gs8c2jpvdn.1

HLA haplotype population frequencies Liu et al., 2020 Mendeley Data: https://doi.org/10.17632/cfxkfy9zp4.1

Tables S8 and S9 This paper Mendeley Data: https://doi.org/10.17632/gs8c2jpvdn.1

SARS-CoV-2 proteome GISAID (Elbe and Buckland-

Merrett, 2017)

Sequence entry Wuhan/IPBCAMS-WH-01/2019, used data as

processed and provided by (Liu et al., 2020)

Human proteome (UniProt, 2019) UniProt: UP000005640 (Proteome ID)

HLA class I haplotype frequencies Gragert et al., 2013 NMDP full 2011 dataset (HLA-A~C~B) from http://frequency.nmdp.org

MIRA COVID-19 Immunogenicity data

(MHC class I and II)

Snyder et al., 2020 ImmuneCODE-MIRA-Release002.1; https://adaptivepublic.blob.core.

windows.net/publishedproject-supplements/covid-2020/Immune

CODE-MIRA-Release002.1.zip

Software and Algorithms

OptiVax and EvalVax This paper https://github.com/gifford-lab/optivax/tree/master/augmentation_

paper

NetMHCpan-4.0 Jurtz et al., 2017 http://www.cbs.dtu.dk/services/NetMHCpan-4.0/

NetMHCpan-4.1 Reynisson et al., 2020a http://www.cbs.dtu.dk/services/NetMHCpan-4.1/

NetMHCIIpan-3.2 Jensen et al., 2018 http://www.cbs.dtu.dk/services/NetMHCIIpan-3.2/

NetMHCIIpan-4.0 Reynisson et al., 2020b http://www.cbs.dtu.dk/services/NetMHCIIpan-4.0/

PUFFIN Zeng and Gifford, 2019;

https://github.com/gifford-

lab/PUFFIN

GitHub commit a63f6c563b7e2f7b04eac

28a6cf09d8078ac3a2a with pre-trained model

MHCflurry 2.0 O’Donnell et al., 2020 Version 2.0, https://github.com/openvax/mhcflurry
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, David K. Gifford

(gifford@mit.edu).

Materials Availability
This study did not generate new materials.

Data and Code Availability
d All source data for generating population coverage curves have been deposited and are publicly available at https://github.

com/gifford-lab/optivax. The peptide scoring predictions and processed haplotype frequencies have been deposited to Men-

deley Data: https://doi.org/10.17632/gs8c2jpvdn.1. This paper analyzes existing, publicly available data. These datasets’

accession numbers are provided in the Key Resources Table.

d All original code is publicly available at https://github.com/gifford-lab/optivax.

d The scripts used to generate the figures reported in this paper are available at https://github.com/gifford-lab/optivax

d Any additional information required to reproduce this work is available from the Lead Contact.
METHOD DETAILS

SARS-CoV-2 Proteome and Candidate Peptides
The SARS-CoV-2 proteome is comprised of four structural proteins (E, M, N, and S) and open reading frames (ORFs) encoding

nonstructural proteins (Srinivasan et al., 2020). We obtained the SARS-CoV-2 viral proteome from GISAID (Elbe and Buckland-Mer-

rett, 2017) sequence entry Wuhan/IPBCAMS-WH-01/2019, the first documented case, as processed and provided by Liu et al.
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(2020). Nextstrain (Hadfield et al., 2018) was used to identify ORFs and translate the sequence. We use sliding windows to extract all

peptides of length 8–10 (MHC class I) and 13–25 (MHC class II) inclusive from the SARS-CoV-2 proteome, resulting in 29,403 pep-

tides for MHC class I and 125,593 peptides for MHC class II.

For vaccine augmentation we use two different candidate sets: known immunogenic peptides, and all possible peptides. First, we

exclusively use the set of peptides that were observed to be immunogenic in theMIRA assay (Snyder et al., 2020; Klinger et al., 2015).

In this case we use theMIRA sets identified for MHC class I and II separately. Second, we use the same filtered candidate peptide set

as Liu et al. (2020), in which peptides with mutation rate > 0.001 or non-zero glycosylation probability predicted by NetNGlyc (Gupta

et al., 2004) are filtered.

MIRA provides immunogenicity data with peptide-detail data that summarizes for each individual (MIRA experiment) the peptide

sets that were found to cause T cell activation. A MIRA peptide set can be a single peptide, or a group of highly related peptides that

are samples from slightly offset positions in the proteome. The MIRA subject-metadata contains the HLA types for individuals. While

the HLA type of an individual provides us with the candidate HLA alleles that could display a given peptide, it does not tell us which

allele displayed the peptide. TheMIRA data used in this study includes 119 (MHC class I) or 8 (MHC class II) convalescent HLA-typed

COVID-19 patients that were queried for CD8+ T cell activation for 269 peptide pools (generated from 545 peptides) or CD4+ activa-

tion for 56 peptide pools (generated from 251 peptides). Each peptide pool contains at most 13MHC class I peptides or up to 6MHC

class II peptides. The patient population had 110 (MHC class I) and 22 (MHC class II) HLA alleles (Snyder et al., 2020). We included all

MIRA immunogenic peptides for vaccine analysis and design, as to date no peptide has been observed to cause immunopathology

that exacerbates disease severity. The MIRA data are incomplete, as they are a sample of the peptide complement of SARS-CoV-2

and convalescent patient HLA alleles. We use these data to select and calibrate machine learning models to make immunogenicity

predictions for all peptide and HLA combinations.

Since the MIRA assay does not identify the patient HLA allele that presents a peptide and does not distinguish between individual

peptides in a given pool, we built a combinedmodel of MIRA observations andmachine learning predictions tomodel peptide immu-

nogenicity when presented by a specific HLA. We did not use the predicted HLA restrictions from Snyder et al. (2020)’s Table S2 as it

identified pools of peptides, and not individual peptides and is only for MHC class I. For an HLA allele that appeared in the MIRA data

and peptides that were tested, a peptide was predicted to be immunogenic when displayed by that HLA allele if (1) it was immuno-

genic in the MIRA data in 38% (MHC class I) or 40% (MHC class II) of individuals that had the HLA allele, and (2) it was predicted to

bind to the HLA allele with an affinity of at least 500 nM. We used the prevalence of immunogenic peptides across individuals as

criteria (1) as it performed better than using the prevalence of TCR sequences of immunogenic peptides. Other criteria that we

explored that did not perform as well are included in Table S2. The selected criteria maximized the AUROC for prediction of the

MIRA data that contained both positive and negative examples of peptide pool immunogenicity for individuals with a given HLA

type (Table S2). Criteria (2) allowed us to predict the specific HLA allele(s) that displayed a peptide since MIRA data provides all

of the HLA alleles for a given individual and does not provide information on which allele(s) displayed a peptide. We evaluate a pep-

tide-HLA immunogenicity model using theMIRA data, and score aMIRA pool-individual pair positive if at least one peptide in the pool

is predicted by the model to be immunogenic when displayed by one of the HLAs of the individual. When computing ROC or PRC

curves where a variable decision boundary is employed, the maximum score across all pool peptides and HLAs is utilized for eval-

uation. Our combinedmodel of HLA specific peptide immunogenicity predictions has a precision of 0.581 and AUROCof 0.833 (MHC

class I) and precision of 0.849 and AUROC of 0.923 (MHC class II) (Table S2; Figure S1).

For HLA alleles not present or peptides not tested in MIRA data we use machine learning predictions of peptide immunogenicity.

We evaluated machine learning methods by their ability to predict MIRA peptides that are immunogenic in an individual based upon

the HLA type of the individual (Figure S1). For a given individual we used both positive and negative sets to characterize their per-

formance, and we prioritized precision for conservative vaccine design (Table S2). We found for MHC class I the best method utilized

a 50 nM threshold from an ensemble that outputs the mean predicted binding affinity of NetMHCpan-4.0 (Jurtz et al., 2017), PUFFIN

(Zeng and Gifford, 2019), andMHCflurry 2.0 (O’Donnell et al., 2020, 2018). We selected this ensemble as it is more robust to errors by

a single method. For MHC class II the method we selected used a 50 nM threshold and NetMHCIIpan-4.0 (Reynisson et al., 2020b).

Our machine learning predictions of HLA specific peptide display have a precision of 0.447 and AUROC of 0.715 (MHC class I) and a

precision of 0.869 andAUROCof 0.701 (MHCclass II) for immunogenicity (Figure S1). Othermethodswe explored includedNetMHC-

pan-4.1 (Reynisson et al., 2020a) (MHC class I), PUFFIN (Zeng and Gifford, 2019) (MHC class II) and NetMHCIIpan-3.2 (Jensen et al.,

2018) (MHC class II) (Table S2).

We use HLA class I and class II haplotype frequencies provided by Liu et al. (2020). HLA haplotype frequencies were generated

from previously published next-generation sequencing data generated in the Carrington lab and their collaborators (Tang et al.,

2012; Ramsuran et al., 2018). All of these HLA data are based upon genome sequencing that provides the highest resolving power

for HLA typing. The self-reporting ancestries were: Asian descent: Southern Chinese; White descent: 1.8% German, 98.2% Euro-

pean American; and Black descent: 29.6% African American, 36.6% South African, 27% Ugandan, and 6.8% West African.

For the HLA class I locus, this dataset contains 2,138 distinct haplotypes spanning 230 HLA-A, HLA-B, and HLA-C alleles. For

HLA class II, this dataset contains 1,711 distinct haplotypes spanning 280 HLA-DP, HLA-DQ, and HLA-DR alleles. Population fre-

quencies are provided for three populations self-reporting as havingWhite, Black, or Asian ancestry. We used these data for vaccine

evaluation and design as they included the HLA-DQA and HLA-DPA/DPB alleles for MHC class II that are not present in Gragert

et al. (2013).
Cell Systems 12, 102–107.e1–e4, January 20, 2021 e2
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We also predicted MHC class I population coverage using Gragert et al. (2013). For this analysis we used a combined immunoge-

nicity model of peptide-HLA immunogenicity with an ensemble of NetMHCpan-4.0 and MHCflurry 2.0 (Jurtz et al., 2017; O’Donnell

et al., 2020, 2018) for machine learning predictions.

We consider nine subunit vaccines for SARS-CoV-2: the full envelope (E), membrane (M), nucleocapsid (N), and spike (S) proteins

as well as the S1, S2, receptor binding domain (RBD), N-terminal domain (NTD), and fusion peptide (FP) domains from S. The amino

acid positions for each of the S protein subunits are shown in Figure S2. When evaluating these subunit vaccines we include all pep-

tides of length 8–10 (MHC class I) and 13–25 (MHC class II) spanning the corresponding regions of the proteome.

EvalVax Subunit Vaccine Evaluation
We evaluate population coverage of SARS-CoV-2 subunit vaccines using EvalVax-Robust (Liu et al., 2020). EvalVax-Robust com-

putes population coverage of a given peptide set using the HLA haplotype frequencies in each population of individuals self-reporting

as having Black, Asian, or White ancestry. Population coverage PðnÞ is defined as the fraction of individuals predicted to have R n

peptide-HLA hits using our model of peptide-HLA immunogencity. EvalVax-Robust computes the frequency of diploid HLA geno-

types, and accounts for both homozygous and heterozygous HLA loci. We compute the average population coverage as an un-

weighted average of population coverage over the three populations. Insufficient coverage of%n hits is defined as 100%� Pðn + 1Þ.
Our subunit population coverage estimates are not lowered by discarding subunit peptides as unsuitable. We consider all peptides

that result from a windowing of the subunit proteome, and include the redundant peptides caused by using varying window sizes at

the same proteome start position. In addition, we do not filter peptides for mutation rate or glycosylation during evaluation.

Design of Separate MHC Class I and II Peptide Sets to Augment Subunit Vaccine Population Coverage

In the separate design method we use OptiVax-Robust (Liu et al., 2020) to augment subunit vaccines with additional peptides to pro-

duce separate sets of peptides for class I and class II augmentation (Figure 2A). The candidate peptides for vaccine inclusion are

chosen from either: (1) all peptides observed to be immunogenic in a MIRA assay, or (2) all filtered peptides from the SARS-CoV-

2 proteome. All filtered peptides are selected from the remaining SARS-CoV-2 proteome (all peptides except those spanning the

subunit), excluding peptides that are likely to mutate (have mutation rate > 0.001) or have non-zero predicted probability of glycosyl-

ation. All candidate peptides considered during augmentationmust be predicted to be immunogenic using ourmodel of peptide-HLA

immunogenicity.

The augmentation algorithm uses a starting peptide set which is extracted from the subunit vaccine to maximize the coverage of

the subunit while removing redundant peptides resulting from overlapping sliding windows using the redundancy elimination al-

gorithm found in Liu et al. (2020). Using a non-redundant starting peptide set ensures that augmentation does not depend

upon redundant peptides for population coverage support. OptiVax-Robust performs vaccine augmentation by adding peptides

to this starting set to improve the population coverage at each peptide-HLA hits cutoff n. At each iteration redundant peptides are

removed from consideration, and redundancy is defined with an edit distance metric (Liu et al., 2020). OptiVax-Robust uses a

beam search algorithm that iteratively expands the solution by one peptide and gradually optimizes population coverage from

n= 1 to the targeting level of per-individual peptide-HLA hits (Liu et al., 2020). We use a beam size of 5 for the augmentation

of subunit vaccines.

For each desired budget of augmentation peptides, OptiVax produces an augmentation set. Larger augmentation sets are not

necessarily supersets of smaller augmentation sets, as the underlying combinatorial optimization problem is complex. A vaccine

designer can evaluate how many peptides they wish to use to realize a predicted population coverage. For the augmentation

sets in Table S1 for n= 7 we targeted 99.3% coverage for MHC class I augmentation and 98% coverage for MHC class II. The

exceptions were S and S1, where we targeted for MHC class I 99.9% coverage (all peptides) or 99.7% (MIRA peptide only), and

for class II 98.5% (all peptides) or 98% (MIRA peptides). Class II is more difficult to cover with MIRA peptides alone, and thus we

accept the best coverage possible. Augmentation sets are computed starting with non-redundant subunits to avoid peptide-hit

credit for windowing induced redundancies. For the evaluation of original and augmented subunit vaccines in Table S1, we pro-

vide results for all window derived subunit peptides and the non-redundant set of subunit peptides. All window peptides can

include the same HLA binding epitope multiple times from its sampling by multiple windows, and thus serves as the predicted

lower bound on population insufficient coverage. The non-redundant results are the predicted upper bound of population insuf-

ficient coverage.

Design of a Single Set of Peptides to Maximize MHC Class I and II Population Coverage
We developed the OptiVax-Joint method to produce a minimal set of 25-mer peptides to reach a target population coverage prob-

ability at a threshold of n predicted hits for each individual for both MHC class I and class II (Figure 2B). The 25-mer candidate

peptides are produced by windowing the pathogen proteome that is not part of a selected subunit, using a window step size of 8

amino acids between candidate peptides. Each of the candidate 25-mer peptides is annotated with its non-redundant peptides

of length 8–10 (MHC class I) and 13–25 (MHC class II) and the HLA alleles where they are predicted to be immunogenic. Peptide

redundancy is defined with an edit distance metric for the elimination of overlapping peptides (Liu et al., 2020).

OptiVax-Joint begins with the empty set, and performs vaccine augmentation by adding candidate 25-mer peptides to this starting

set to improve both MHC class I and class II population coverage at a target number of peptide-HLA hits n. When OptiVax-Joint is

started with an empty set of peptides it produces a de novo peptide vaccine design without an associated subunit component. Each
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25-mer is scored based on its contained annotated class I and class II peptides for its improvement in the number of per-individual

peptide-HLA hits (Liu et al., 2020) over the haplotypes of the target population. Contained peptides are not counted towards popu-

lation coverage if they have an observed mutation rate > 0.001 or have a non-zero predicted probability of glycosylation. OptiVax-

Joint uses a beam search algorithm that iteratively expands the solution by one 25-mer peptide and gradually optimizes population

coverage from n= 1 peptide hit to the targeted level of per-individual peptide-HLA hits for both MHC class I and class II (Liu et al.,

2020). We use a beam size of 5 for the augmentation of subunit vaccines.

For each desired budget of peptides, OptiVax-Joint produces a vaccine peptide set. Larger sets are not necessarily supersets of

smaller augmentation sets, as the underlying combinatorial optimization problem is complex. A vaccine designer can evaluate how

many peptides they wish to use to realize a predicted population coverage. For the joint sets in Table S1, we targeted 99% coverage

at n= 7 for MHC class I augmentation and 97% coverage at n= 7 for MHC class II augmentation.

As a point of comparison, we also computed separate MHC class I and class II vaccine designs using OptiVax-Robust, using

candidate sets drawn either from MIRA immunogenic peptides or all filtered peptides.

QUANTIFICATION AND STATISTICAL ANALYSIS

Classification performance of peptide-MHC scoringmodels was calculated using scikit-learn (Pedregosa et al., 2011) in Python using

the sklearn.metrics.roc_auc_score (AUROC), sklearn.metrics.average_precision_score (Average Precision), sklearn.metrics.accura-

cy_score (Accuracy), sklearn.metrics.precision_recall_fscore_support (Precision, Recall and F1 score), and sklearn.metrics.classifi-

cation_report (Sensitivity and Specificity) functions. AUROC and average precision are computed using raw predictions, and the re-

maining metrics are computed using binarized predictions based on the respective binding criteria. Pearson r correlation was

computed using scipy (Virtanen et al., 2020) in Python using the scipy.stats.pearsonr function.
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