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Public Bicycle Sharing Systems (BSS) have spread in many cities for the last decade. The need 
of analysis tools to predict the behavior or estimate balancing needs has fostered a wide set 
of approaches that consider many variables. Often, these approaches use a single scenario to 
evaluate their algorithms, and little is known about the applicability of such algorithms in BSS of 
different sizes. In this paper, we evaluate the performance of widely known prediction algorithms 
for three sized scenarios: a small system, with around 20 docking stations, a medium-sized one, 
with 400+ docking stations, and a large one, with more than 1500 stations. The results show that 
Prophet and Random Forest are the prediction algorithms with more consistent results, and that 
small systems often have not enough data for the algorithms to perform a solid work.

1. Introduction

The exponential growth in both the popularity and number of public bicycle sharing systems (BSS) has transformed the urban 
mobility patterns. Currently, there are more than 1700 BSS [1] of different types (public, private, dockless …) around the world. 
Major or large cities such as New York, Paris, London, or Barcelona have deployed BSSs to complement public transportation means. 
Besides, the recognition of its multiple health benefits and its successful support for transport connection has led to many small and 
medium cities around the world, to also adopt BSSs.

These systems provide citizens facilities to move around the city. In most of BSS, citizens can rent bikes from the nearest docking 
station and return them to other station. Since public BSSs are usually composed by a fixed number of docking stations and bikes, its 
continuous usage can create unbalanced bikes distribution. This creates two types of problems: the lack of bikes at peak hours, and 
the inability to drop off bicycles in certain docking stations because no free slots are available. Both problems may lead to customer 
loss. Therefore, a relevant challenge for system operators and managers consists in adequately perform balancing operations by 
repositioning bikes among stations.

On the other hand, small cities are typically less capable of carrying out such operations, because of their limited resources. 
Besides, system operator and managers of BSS in these cities are strongly interested into getting detailed insights on how the system 
behaves as a whole. Therefore, a short-term prediction of the number of bicycles that will arrive and depart from each docking 
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station may be highly useful to assist system monitors to optimize balancing operations. Opening this information to BSS customers 
may also help citizens to plan their bike trips in advance.

The optimization of rebalancing operations and methods to improve the accuracy of demand prediction models have been ad-
dressed by different authors and several approaches has been proposed. These studies mainly focus on the optimization of larger 
BSSs, usually using one city to test the performance of one or more machine learning algorithms. Unfortunately, to the authors’ 
knowledge, no studies have been developed to assess the main differences between BSSs with different size, characteristics, or usage 
patterns, and how forecasting algorithms will perform in each case.

In this study, we aim to fill this gap in the literature. By using data from three cities: Logroño (Spain), Barcelona (Spain), and 
New York (US) which have BSSs of significant different sizes, we compare the performance of different prediction models. We have 
tested five, widely used machine learning algorithms to predict short-term bikes arrivals and departures at station level: ARIMA, 
Linear Regression, Random Forest, Prophet, and XGBoost. Then, we evaluate model performance and results for each algorithm and 
BSS. The contributions of our paper are twofold:

• An analysis of five machine learning algorithms to predict short-time station-level arrivals and departures in BSS.
• A performance comparison of these prediction algorithms for BSSs of different characteristics and sizes (small, medium, and 

large).

The results show that BSS usage behavior is closely related with the system size, and how this usage dynamic impacts prediction 
models’ scalability. In the case of the selected medium size system (Barcelona), Random Forest outperformed other models when 
predicting arrivals and departures. For the small and large system, Prophet had a better performance. Additionally, an interesting 
relationship was found between the usage ratio and the error metric. In the small size BSS this relationship is linear and positive, for 
the medium BSS it is linear and negative, and the large BSS has a non-linear and negative relationship. This implies that the higher 
the usage ratio, the lower is the error in the medium and large BSS. For the three cities considered, the docking stations located in 
the city center have also the higher usage ratio, and the error depends on the relationship previously mentioned. Moreover, in New 
York and Barcelona the error levels increase during the first interval of each day, when the usage ratio is lower, while in Logroño 
there is no clear pattern. Finally, we showed that the error levels, especially in Barcelona, are similar to the ones found by other 
authors and in Kaggle competitions.

The rest of the paper is organized as follows: Section 2 describes related work. Details about the selected bike sharing systems are 
given in Section 3. Section 4 contains data compilation and processing, as well as a description of the algorithms and error metrics 
that have been used. Model results are presented in Section 5. A discussion of the main results can be found in Section 6. Finally, 
Section 7 contains the conclusions and recommendations for future research.

2. Previous work

Bike Sharing Systems have received increasing attention in the latest years thanks to their associated benefits, such as pollution 
reduction, improvement of citizens’ health, new means of transportation, and is also considered a mean to get more sustainable 
cities [2–4]. Many cities across the world are adopting public and private BSSs to provide their citizens a convenient, low-cost and 
environmental-friendly mean of transportation. Citizens have welcomed these systems since they also offer them multiple benefits 
such as avoidance of traffic congestion, lower costs, or fewer responsibilities associated with owning a bicycle (maintenance, theft, 
or storage). However, together with their popularity, challenges have also increased, especially those related to civic behavior (e.g., 
vandalism), the special characteristics of a city (e.g., elevation) [5], or how to achieve access equity [4].

Since the usage of these systems tends to be highly irregular, particularly at peak hours, system managers and operators have 
the challenge to optimize balancing operations between stations by predicting the rental demand of bikes. Accurate forecast models 
may help them to generate efficient vehicle routes [6,7] or different possibilities of smart traffic control [8]. It is also important for 
citizens to plan their trips in advance and select a station to pick-up or drop-off a bike [9].

During the last years, notable efforts have been put on the analysis of how the BSSs are being used. Traffic patterns have been 
studied by many authors [10–12] as well as the impact of destination preferences in the usage flows [13,14]. Urban configuration 
and its influence in bike’s demand has also been an important area of study. For instance, Kim et al. [15] analyze how the elevation 
of stations may affect the trips. Frade and Ribeiro [16] also consider the elevation of the neighborhoods in Coimbra to propose a 
demand model. The characteristics of trips [17–19] and the effect of important events [11], weather [20,21] and calendar events 
[21–23] have become another important line of investigation. These studies have mainly focused on identifying the factors that 
influence bike sharing flows (demographic, meteorological, population, etc.) for one city. But, we are also interested in how these 
factors contribute to improve the prediction of short-term arrivals and departures at station-level in different BSSs.

The development of forecasting models for BSSs has been possible thanks to the massive data generated, especially by large BSSs. 
Some authors have focused on the prediction of trip destination and trip duration [24]. Additionally, different machine learning 
models have been tested to predict bike demand, such as spatial generalized ordered response [10], linear regression [25,26], 
Multiple Additive Regression Trees [24], among others. Novel approaches such as the Quantum Bayesian Networks (QBN) have also 
been tested [27]. These investigations mainly focus on the accuracy of one model for one BSS, but the comparison of the performance 
of different models with different BSSs has not been studied.

For larger systems, it makes sense to create clusters and analyze them collectively to get insights. Many studies have analyzed 
2

different forms to group stations based on metrics such as the activity score, as was performed by Froehlich et al. [28], similar behavior 
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of trips [29], availability levels [9], grouping by day of the week or month [30], among others. Cluster-level demand forecast has 
also been investigated by different authors. Li et al. [31] clustered docking stations and applied Gradient Boosting Regression Tree 
to predict bike demand. Opposite to these studies, we aim to predict station-level arrivals and departures and compare the efficiency 
of various models with data from BSSs with different characteristics.

Several algorithms for station-level demand forecast have been investigated in the latest years. Lin et al. [32] used data from 
New York and a Graph Convolutional Neural Network to predict hourly demand in each station. Chen et al. [33] also used New York 
BSS data and proposed a Recurrent Neural Network (RNN) to predict station-level demand. We are also interested in the analysis 
of station-level demand. However, we propose a comparison of different algorithms to select the most accurate. Data from Montreal 
was used to test different features and provide station-level arrivals and departures demand [34]. Similarly, Hu et al. [35] have 
improved the accuracy of station-level demand prediction using feature engineering with data from New York BSS. We will focus on 
the performance comparison of different prediction algorithms in systems with different sizes, rather than the features that influence 
the bike sharing demand.

Some authors have studied different prediction algorithms and compare their performance to select the more efficient. Cortez 
and Vázquez [36] predicted bike demand in Barcelona (Spain) using four machine learning models. Nevertheless, their focus was 
to provide a visual tool for both system operators and users, rather than test the accuracy of the models. Tomaras et al. [37]
have proposed a combination of a Gradient Boosted Regression Tree, and a Holtz’s model to create a tool called SmartBIKER that 
assist system operators with rebalancing. The authors tested their proposal using New York data. However, their focus is on the 
improvement of the tool rather than the performance of the prediction methods. Yin et al. [38] have analyzed four algorithms with 
Washington, D.C. data. Feng et al. [39] have also used Washington, D.C. data to demonstrate the better performance of Random 
Forest model over conventional multiple Linear regression. Wang and Kim [40] also tested three models, Random Forest, Long 
Short-Time Memory (LSTM) and Gated Recurrent Units (GRU) with data from Suzhou (China). Their results showed no significant 
difference between the accuracy achieved by the models tested. Similarly, Choi et al. [41] used data from Seoul, Korea and found 
small differences in the performance of Decision Tree (DT), Random Forest (RF), and Extra Tree (ET) models. Xu et al. [42] proved 
that LSTM algorithm has provided better results for Nanjing (China). Hulot et al. [43] used data from Bixi, Montreal to test several 
models and concluded that Gradient Boosted Tree achieves better scores than Random Forest and MultiLayer Perceptron (MLP). 
The performance of predictive models in a small BSSs has been analyzed by Lozano et al. [44]. These authors found that Random 
Forest outperform other models in Salamanca (Spain) BSS. We share with these studies the goal of comparing different algorithms 
to identify the one which provides a more accurate prediction. However, we also focus on the performance of these algorithms in 
systems with different characteristics and sizes.

Demand prediction and comparison in different systems is a work in progress. Rixey [45] performed a regression analysis to 
identify the more significant variables to predict station-level demand in three cities of US. Li et al. [31] have also tested one 
prediction model in New York and Washington, D.C. systems. However, these BSSs are of similar characteristics and no results’ 
comparison was possible since authors only used one model to predict bike demand.

For more details, the above-mentioned studies are summarized in Table 1.

3. BSS characteristics

The increasing availability of bike-sharing data has created many opportunities to analyze information about different systems 
and in multiple domains. In this study, we are interested in a multi-city comparison of BSSs with different sizes and characteristics, 
focusing on the behavior and consistency of forecasting models. For this purpose, we have selected three cities with different BSS 
sizes: Logroño in Spain (small), Barcelona in Spain (medium), and New York City in US (large). The characteristics of these systems 
are described as follows:

3.1. Logroño - BiciLog

Logroño is a small city in the north of Spain with a population of more than 150 000 inhabitants. Its BSS, called BiciLog, was 
inaugurated in 2018. Today, the system has 23 docking stations, about 300 mechanical bicycles and almost 3 000 subscribers. Tourist 
and permanent residents can make use of the system as they have options for daily, weekly, monthly and yearly subscriptions. The 
price varies between 5 euros per day and 36 euros per year.

3.2. Barcelona - Bicing

Barcelona is known as one of the most touristic cities in Spain, with a population of more than 1.6 million of inhabitants. Its BSS 
named Bicing was opened in 2007. Nowadays, Bicing has 519 docking stations, 5 000 mechanical bikes, 2 000 electrical, and more 
than 130 000 subscribers. Users can rent a bike and drop-off the bike in any station, as all can handle electrical or mechanical bikes. 
Bicing is a system designed only for permanent residents, with two service options, where prices vary between 35 and 50 euros per 
year.

3.3. New York - Citi Bike

Located in US, New York has a population of more than 8.8 million of inhabitants. Its BSS, called Citi Bike, began operations in 
3

2013. Currently, it has more than 1 500 docking stations, about 24 500 bikes and more than 12 million of subscribers. The plans 
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Table 1

Literature review summary.

Study BSS Features used Model Results (best model)

[10] Washington, 
U.S.

customers characteristics (age, work status, 
gender, number of automobiles, number of 
children, and income)

Spatial generalized ordered-response model MAPE within 10%

[24] Chicago, U.S. user and stations’ characteristics, and time based 
features

Multiple Additive Regression Trees (MART) 
model

accuracy around 87%

[25] Malmö, Sweden the absolute number of bicycles, and the 
deviation from a long-term trend estimation of 
the expected number of bicycles, day of week, 
national holidays, school breaks, and bridge days

Linear regression model, Rep tree, Multi-layer 
Perceptron, and Support Vector Regression (SVM) 
with 2nd and 3rd degree polynomial kernels

relative error to 
around 30% for the 
SVM model

[26] Malmö, Sweden the absolute number of bicycles, and the 
deviation from a long-term trend estimation of 
the expected number of bicycles, day of week, 
national holidays, school breaks, and bridge days

Support vector machine, Linear Regression, Ridge 
Regression, Lasso and Bayesian Ridge Regression

R2 coefficient of 
0.677 for Bayesian 
Ridge Regression

[27] New York, U.S mobility data Quantum Bayesian Networks (QBN) RMSPE within 2%
[28] Barcelona, 

Spain
prediction window, time of the day, amount of 
historical data and stations clusters

Last value, Historic mean, Historic Trend and 
Bayesian Network

Similar behavior of 
methods with an error 
of around 13%

[31] New York and 
Washington, 
U.S.

bike usage, time and weather factors Gradient Boosting Regression Tree (GBRT) RMSLE around 0.37

[32] New York, U.S stations’ availability Graph Convolutional Neural Network (GBRT) RMSE around 3
[33] New York, U.S arrivals, departures, and weather information Long short-term memory (LSTM) model RMSLE within 0.45 to 

0.50,
[35] New York, U.S bike usage, weather, time factors, and correlation 

among the stations and user information
Linear regression, Gradient Boosting Decision and 
Random Forest

RMSLE around 0.5 for 
the Random Forest

[36] Barcelona, 
Spain

weather, time factors, arrivals and departures Linear Regression, ARIMA, Prophet, Random 
Forest

RMSE around 0.4 for 
Random Forest

[37] New York, U.S bike station’s demand, type of day (weekday or 
weekend), and hour

Gradient Boosted Regression Tree (GBRT) and 
Holtz

MSE around 6 for 
GBRT and 2 for Holtz

[38] Washington, 
U.S.

bike usage, time and weather factors Ridge, Linear regression, Support Vector 
Machine, Random Forest, and Gradient Boosted 
Tree

RMSLE around 0.3 for 
Random Forest and 
Gradient Boosting

[39] Washington, 
U.S.

bike usage, time and weather factors Multiple Linear regression model, Random Forest 
and Gradient Boosting models

Random forest 
decreased the error by 
10%

[40] Suzhou, China available bikes, and time factors Random Forest, Long Short-Time Memory 
(LSTM) and Gated Recurrent Units (GRU)

Similar behavior of all 
methods, RMSE 
around 1 or 2 bikes

[41] Seoul, Korea bike-sharing related features, sociodemographic, 
built environment, weather, land use and 
landscape factors

Decision Tree (DT), Random Forest (RF), and 
Extra Tree (ET)

accuracy of 0.71 for 
DT

[42] Nanjing, China bike usage, weather data, air quality and land 
usage patterns

Long Short-Time Memory (LSTM), Historical 
Average (HA), Autoregressive integrated moving 
average (ARIMA), Extreme Gradient Boosting 
(XGBoost), Support Vector Machine (SVM), 
Artificial Neural Network (ANN), and Recurrent 
Neural Network (RNN)

MAPE between 12.5 
and 49.6 for LSTM

[44] Salamanca, 
Spain

bike usage, weather and distance information Random Forest, Gradient Boosting and Extra Tree 
Regressor models

RMSLE between 0.4 
and 0.8 for Random 
Forest

[45] Washington, 
Denver, and 
Minnesota, U.S.

demographic, built environment, and 
transportation network factors

Multivariate Regression model R2 around 0.76

offered by Citi Bike are: single ride (3.99 dollars per trip), day pass (15 dollars per day) and annual membership (185 dollars per 
year).

Table 2 summarizes the above-mentioned characteristics of the selected BSSs. Weather is also different in these cities. Barcelona 
has warm weather with soft winter, while New York is colder. However, Logroño has more humidity, especially during autumn 
and winter. Regarding their usage characteristics, there is a clear difference between them, specially with BiciLog system. It has an 
average of less than one bike used per hour, while Barcelona or New York BSSs have an average of more than 10 bikes arriving or 
departing per hour.

Fig. 1 displays the average usage (arrivals + departures) in the most used station in each city. It is evident the usage differences in 
systems with distinct sizes and maturity. Besides, the usage between weekdays and weekends also varies, especially in such dynamic 
systems as New York. During weekdays (see Fig. 1-(a)), the average usage in New York most used docking station can reach more 
than 100 trips (arrivals + departures) during peak hours, while in weekends, they can drop to less than 20. The peak hours also 
4

vary when comparing weekdays and weekends. During weekdays, they match business hours. The most popular station in New York 
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Table 2

BSS characteristics. Three cities with different BSS sizes and characteristics have been selected for this 
study. Logroño (Spain) called BiciLog considered as a small system has 23 docking stations. Bicing in 
Barcelona (Spain) with 519 stations is our medium size system and Citi Bike in New York (US) with 
more than 1 500 stations is a large BSS. Not only the size of the BSS is different, the usage also varies 
accordingly. The average of arrivals and departures in the small system is less than 1 per hour, while 
in medium and large systems is more than 10. It shows that bigger BSS are also more dynamic.

Data Sources Logroño Barcelona New York

General BSS BiciLog Bicing Citi Bike
Size Small Medium Large
Inhabitants 150k+ 1.6+ million 8+ million

BSS Data Subscribers 2.9k+ 130k+ 12+ million
#bikes 300 7 000 24 500
#stations 23 519 1 500+
#arrivals per hour (average) 0.59 11.21 15.71
#departures per hour (average) 0.59 11.26 15.64

Weather Data Temperature °C (average) 8.57 12.78 6.91
Wind Speed km/h (average) 3.11 4.56 2.81
Humidity % 82.87 74.16 61.26

Fig. 1. Most used station’s usage in each BSS. Citi Bike system shows a more dynamic behavior, especially during weekdays, where the most popular station can reach 
more than 100 trips (arrivals+departures) at early morning and late afternoon. During the weekend, the trend changes and is reduced to 20-25 trips at peak hours in 
the afternoon. Similar behavior is presented in Barcelona BSS. However, the quantity of trips is between 10 and 20, in both weekdays and weekends. BiciLog, with 
less than 3 trips per hour during the week, does not show any particular trend.

is used during the morning, from 7 to 9.00, and in late afternoon from 17 to 19.00. During weekends (see Fig. 1-(b)), this pattern 
changes and peak hours are moved to the afternoon, from noon to 19.00. In Barcelona, usage remains in same levels, between 10 
and 20, for both weekends and weekdays. Moreover, the peak hours during weekdays and weekends are similar to New York. On the 
other hand, Logroño’s most used station has lower levels than the other cities during the week, with an average of less than three 
trips per hour. BiciLog doesn’t show any particular usage trend during the week.

4. Methodology

4.1. Features

The selection of features was based on the information available for the three cities considered, and the knowledge contributed 
by previous studies [32,40,42] which have already investigated some factors that might affect bike sharing systems’ demand. These 
attributes can be classified as station-related or weather features.

In the first group, there are the following features: Date, Station ID, Day of the week (from Monday to Sunday), Hour interval (4 
levels), Total Arrivals, Total Departures. Weather features are: Humidity, Pressure, Temperature, Wind, Weather type (5 levels). Day 
of the week, time interval, and weather type are categorical variables, while the others are numerical.

4.2. Data collection and cleaning

As mentioned in the previous section, we compared three cities with BSS of different sizes. Therefore, the information needed 
for this study is available through various sources. To train and evaluate the models, we concentrated on information from October 
5

2019 to February 2020, for the following reasons:
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• Users behavior was abnormal during 2020 as a consequence of the COVID-19 pandemic, the lockdown in many cities and several 
mobility restrictions. So, we did not use data from March 2020 and onwards.

• There is a lack of continuity in Barcelona’s information, as the company that provided the bike service in this city was gradually 
changed during 2019. Therefore, information from the current company is available from August 2019.

• Logroño’s BSS data was made available from October 2019. As we are interested in a models’ performance analysis during the 
same period for the three cities, we use October as the starting month of analysis.

Additionally, daily data for the three cities was grouped in 4 time intervals. The main reason for this decision was the low number 
of pickups and drop-offs in Logroño which could create an hourly database with mostly 0s. Grouping the information in 4 intervals 
overcome this situation and also helps to solve Logroño’s City Hall requirements [46]. The intervals considered are:

• night: from 01:00 to 06:59
• morning: from 07:00 to 12:59
• afternoon: from 13:00 to 18:59
• evening: from 19:00 to 00:59

Data collection process is described as follows:

Weather To have a common source of information, weather data was collected from Time and Date web page. This website reports 
the historical hourly data for each city for the chosen features of this study. The weather features selected are temperature (Celsius), 
wind (km/h), humidity (%), atmospheric pressure (mbar), and weather type. Later, weather type feature was classified in five 
categories: sunny, cloudy, light rain, heavy rain and snow.

Logroño. The information of Logroño’s BSS named BiciLog is not publicly available. Therefore, to access and use the BiciLog data, 
we needed approvals from Logroño’s City Hall. Information about real-time trips as well as historical data, which includes arrivals 
and departures, were made available through a private website maintained by the Instituto Tecnológico de Castilla y León (ITCL). 
BiciLog data was collected respecting data protection laws (GDPR). This BSS has a total of 23 docking stations distributed across the 
city, but three of them were opened during the last quarter of 2021. Therefore, only 20 stations were used.

Barcelona. Barcelona BSS called Bicing has data available through the Open Data BCN website. This information is updated monthly. 
Bicing databases contain more than 3.5 million records for each month, as the information is collected approximately every 5 minutes. 
Currently, Bicing has 519 docking stations. However, during the period considered, only 409 stations were working.

New York. Similar to Barcelona, New York BSS, Citi Bike, has publicly available data through an open data website. The monthly 
data uploaded has been already processed to remove trips that correspond to test stations or trips that are below 60 seconds in length. 
For the period under analysis, data collected corresponds to 840 docking stations that were operating during that period.

Data cleaning. Data processing, cleaning, and preparation procedures were performed in R. Model training and evaluation was also 
done in R using a Windows 10 machine with an Intel Core i5-6200U CPU, 2.30 GHz, 16 GB RAM.

As each city has its file format, granularity, and number of docking stations, we cleaned the data and standardized the database 
format to be used in the forecasting process. Data cleaning includes deleting information about docking stations that even when 
appearing in the dataset are still not used, as well as others that were not working properly or were used as test stations. Moreover, 
garbled data (around 1% in each city) such as dates outside the analyzed range (from October 2019 to February 2020) or negative 
bike availability, was removed. For each city, we calculated additional information needed to train the models, such as day of the 
week, time interval, and the total number of arrivals and departures by station and time period. Missing data, which was less than 
1% for the three BSS, was imputed using linear interpolation. Finally, weather and bike usage data were merged and grouped by 
time intervals for each city. We used weather data from the previous period (t-1) to train and predict bikes’ arrivals and departures. 
For non-time series models (Random Forest, Linear Model, XGB) we also employed the usage information from the last 8 periods (t-1 
to t-8) to help the models to learn the patterns for the last periods. For ARIMA and Prophet this was not necessary, these time series 
models have a seasonal component which we set to 4 (for the 4 daily hour intervals) to make the five models comparable. Table 3
summarized the features used in the models.

After cleaning, the three datasets were split into a training and a testing set. The training set contains data from October 12th 
2019 to February 22nd, 2020. The last week of February, from 23rd to 29th, was used to evaluate the performance of the models. 
To try to replicate what a model with real-time data will do, we used a one-step forecast approach, i.e., we predicted the value for 
the next day. Then, training and test sets were updated to predict data for the next day. As each station has its own usage behavior 
patterns, and we aim to predict station-level usage, a prediction model was trained for each station. Likewise, we used departures 
data to predict bikes that are leaving from a station and arrivals data to forecast bikes arriving to each station.

4.3. Models

As was mentioned in Section 2, several models have been tested by different authors to predict bike sharing demand. Some of 
6

them are extensively used in many domains, while others are more oriented to the bike sharing scenario. Five models have been 
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Table 3

Description of the data used for training and evaluating the mod-
els. Weather features from the previous period (t-1) are used in all 
ML models. For non-time series algorithms (Random Forest, Linear 
Model and XGBoost), arrivals and departures data from the last 8 pe-
riods (t-1 to t-8) was used to help the models learn the usage patterns. 
For time series models (ARIMA and Prophet) a seasonal component 
was included in the model.

Category Attribute Type

Time Date DateTime
Day (Mon-Sun) Categorical
Time Interval (1-4) Categorical

Weather (t-1) Pressure Numerical
Humidity Numerical
Temperature Numerical
Wind Numerical
Weather Type (1-5) Categorical

Station Data (t-1 ,..., t-8) #arrivals Numerical
#departures Numerical

chosen for this study. These models have been previously used in BSS forecasting, and they are currently available in many libraries 
or packages in R and Python. A brief description, together with the model parameters as well as their optimization process, is 
presented in this section.

Linear regression model (LM). It is one of the most extensively studied and used forecasting algorithms. It models the relationship 
between two or more variables by fitting a linear equation to the observed data. One of the greatest advantages of linear models is 
that their unknown parameters and statistical properties are easier to estimate from the data itself. It can be expressed as:

𝑦𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + ...+ 𝛽𝑝𝑋𝑖𝑝 + 𝜖𝑖 𝑖 = 1, ...𝑛 (1)

Where: 𝑌 = (𝑦1, … , 𝑦𝑛)′ is the endogenous variable (n-dimensional vector), 𝑋 = (𝑋𝑖𝑗 )𝑖=1,…,𝑛;𝑗=1,…,𝑝 is the matrix of regressors or 
explanatory variables (𝑛 × 𝑝 matrix), 𝛽 = (𝛽0, … , 𝛽𝑝)′ is a (p+1) dimensional vector of the regression coefficients and 𝜖 = (𝜖1, … , 𝜖𝑛)′ is 
the error term (n-dimensional vector). This last variable captures all other factors that could influence the endogenous variable and 
are not included in the explanatory variables. The dependent variable should always be numerical, while the independent variables 
may be numerical, binary, or categorical.

Many techniques have been developed to estimate the model parameters. The most widely used is the Least square estimation, 
which tries to minimize the sum of the mean square loss. The techniques to estimate the parameters will not be covered as they are 
out of the scope of this study. More information can be found in [47].

Autoregressive integrated moving average (ARIMA). It is one of the most common approaches in time series forecasting. It is a combi-
nation of the differenced autoregressive model and the moving average model [48]. It is a method of forecasting which uses its lags 
as predictors, i.e., its predictors are dependent on each other. It is usually denoted as ARIMA(p,d,q) where p is the number of time 
lags of the autoregressive model, d is the degree of differencing, and q is the order of the moving-average model. All these parameters 
are non-negative integers. Its components are: i) Autoregression (AR) which shows that the time series variable is regressed on its 
own lagged or past values.

𝑌𝑡 = 𝛼 + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2 + ...+ 𝛽𝑝𝑌𝑡−𝑝 + 𝜖1 (2)

Where: 𝑌𝑡 is the predicted value, 𝑝 is the lag order, 𝑌𝑡−1, …, 𝑌𝑡−𝑝 are the lagged values and 𝛽 are the estimated coefficients and 𝛼
is the intercept term.

ii) Integrated (I) part represents the differenced values of d (degree of difference) order necessary for the time series to become 
stationary, it means raw values are replaced by the difference between data and the previous values.

iii) Moving Average (MA) part indicates the dependency between an observation and its residual error, i.e., the forecast error can 
be represented as a linear combination of past errors.

𝑌𝑡 = 𝛼 + 𝜖𝑡 + 𝜙1𝜖𝑡−1 + 𝜙2𝜖𝑡−2 + ...+ 𝜙𝑞𝜖𝑡−𝑞 (3)

Where: 𝑌𝑡 is the predicted value, 𝑞 is the order of the moving average, 𝜖𝑡−1, …, 𝜖𝑡−𝑞 are the errors and 𝜙 are the estimated 
coefficients and 𝛼 is the intercept term.

ARIMA general formula can be expressed as follows:
7

𝑌𝑡 = 𝛼 + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2 + ...+ 𝛽𝑝𝑌𝑡−𝑝 + 𝜖𝑡 +𝜙1𝜖𝑡−1 + 𝜙2𝜖𝑡−2 + ...+ 𝜙𝑞𝜖𝑡−𝑞 (4)
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Where: the first part corresponds to the estimation of the 𝐴𝑅 part and the second to the 𝑀𝐴 term for the stationary time series, 
i.e., when the time series was differenced at least once.

The optimization of parameters (p,d,q) for ARIMA, can be performed as follows:

• i) Find the right order of d (degrees of difference) to make the series stationary. ACF plots or the Augmented Dickey Fuller test 
are commonly used.

• ii) Estimate the coefficients of AR terms and MA terms based on the identification of p and q orders by using the ACF and PACF 
of the stationary series.

As was mentioned before, we have included a seasonal component in the time series models. In this case, when the seasonality 
contributes to the forecast, the model is called SARIMA. It adds three new parameters (𝑃 , 𝐷, 𝑄) to specify the autoregression (AR), 
differencing (I) and moving average (MA) for the seasonal component of the series. Additionally, a 𝑚 parameter for the period of the 
seasonality is also added. Therefore, it can be noted as:

𝑆𝐴𝑅𝐼𝑀𝐴(𝑝𝑑𝑞)(𝑃𝐷𝑄)𝑚 (5)

As in the case of ARIMA, the values (𝑃 , 𝐷, 𝑄) for the seasonal part of SARIMA can be obtained from the ACF and PACF plots [49].
Many current packages already implement the analysis of these plots and tests, so SARIMA parameters can be easily estimated.

Random forest (RF). It is a supervised learning algorithm with an ensemble learning method that consists of randomly generating 
subsets of the features to build smaller trees and train them using the bagging method. It is widely used in Regression and Clas-
sification problems. For each tree, the output is the predicted number (regression) or class (classification). The final output of the 
Random Forest algorithm is the average prediction in the case of regression problems, or the class selected by most of the trees for 
classification problems.

Random Forest tackles the overfitting problem that individual decision trees usually suffer by training decision trees with different 
parts of the training set. It creates random subsets of the features, builds smaller trees using those subsets and combines them, 
reducing the variance. Thanks to the combination of many learning models, Random forest results always outperform any individual 
tree model. However, for numerous trees, the algorithm can be slow and require plenty of computational resources. More information 
can be found at [50].

Prophet. It is an open-source software implemented in R and Python that was released by Facebook in 2017 [51]. It was designed 
as a procedure for time series prediction based on an additive model where non-linear trends are fitted with different seasonality 
(yearly, weekly, and daily), and also considering holiday effects. Therefore, it has a better performance for time series with strong 
seasonality and enough historical data. Moreover, it is robust to outliers, missing data, and dramatic trend shifts. It can be formulated 
as follows:

𝑌𝑡 = 𝑔𝑡 + 𝑠𝑡 + ℎ𝑡 + 𝜖𝑡 (6)

Where 𝑔𝑡 is the trend function that model non-periodic changes, 𝑠𝑡 models periodic changes, ℎ𝑡 represents holidays effects and 𝜖𝑡

is the error term.
The 𝑔𝑡 growth function models the trend of the data. What differentiates Prophet from other tools is that it considers that trends 

can be present at all points in the data and can be altered using change points. Change points are those moments where the data shifts 
direction. Prophet detects change points automatically or gives the option to users to set them by themselves. Holidays are usually 
based on US holidays, but users can use their dates too. Holidays add or subtract value from the prediction from the growth and 
seasonality terms based on historical data (past holidays). What makes Prophet so popular nowadays is its ease of implementation, 
and that is intuitive to non-experts.

Extreme gradient boosting (XGB). It is an optimized library based on Gradient Boosting (GB) framework, and designed for speed and 
performance, i.e., it builds trees in parallel instead of sequentially like in Gradient Boosting. Similar to Random Forest, XGB builds a 
model based on multiple decision trees. However, the main difference between them is that Random Forest uses a “bagging” method 
that minimizes the variance and overfitting, while the Gradient boosting method minimizes the bias and underfitting.

XGB is built upon i) supervised machine learning: using labeled datasets, ii) decision trees, iii) ensemble learning: by combining 
multiple algorithms to obtain a better performance, and iv) gradient boost: with each iteration, XGB uses the error residuals of the 
previous model to improve the next one. The final prediction is the weighted sum of all trees’ predictions. More information is 
available in [52].

Given the characteristics of the selected methods, we can classify them in two groups: time series models (ARIMA and Prophet) 
and non-time series models (Linear Model, Random Forest, XGB). The time series models are expected to have a better performance 
when working with BSS data, as these models are prepared to identify seasonal patterns. In this study, the non-time series models 
were trained using the arrivals and departures from the last 8 periods to help the models to learn BSS data patterns. Moreover, 
traditional methods such as the Linear Model, ARIMA, or Prophet, allow users the selection of features and the configuration of 
parameters, which can also help to improve the model performance. Nevertheless, parameter configuration can be complex and 
8

time-consuming for some models like ARIMA. On the other hand, machine learning techniques (Random Forest and XGB) can easily 
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and automatically identify patterns that are difficult for humans to discover and configure through model parameters. In addition, 
machine learning forecasting results tend to be more accurate given an initial set of hyperparameters. However, machine learning 
techniques usually require more data to train and more computational resources. In the case of this study, the hyperparameters for 
the machine learning methods have been set previously and the auto-arima function has been used, to facilitate the analysis of the 
scalability of the prediction methods for the three proposed scenarios. In the case of overfitting, which is an important limitation 
that should be considering in forecasting techniques, we have tested each model using in-sample and out-of sample method. The 
in-sample method refers to how well the model fits the training data. While, out-of-sample method is used to evaluate the model 
with unseen data which, in this study, has been saved in the test dataset. In our case, in-sample and out-of-sample results were of 
a similar order, which is a good indicator of the models’ performance, as observations out of the training set were predicted with a 
similar accuracy as observations in the training set.

4.4. Error metrics

Once we have calculated an estimation, we need a way to determine its accuracy. In the literature, many error metrics have been 
proposed. Here, we only visit the subset of the most popular ones that will be used later in the evaluation.

Root mean square error (RMSE) It is a measure of the differences between the values predicted by a model and the real observed 
values. RMSE is the square root of the average of squared errors, formally defined as follows:

𝑅𝑀𝑆𝐸 =

√√√√ 𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2

𝑛
(7)

Where 𝑦𝑖 are the predicted values, 𝑦𝑖 are the observed values, and 𝑛 is the number of observations.
For general interpretation, a lower RMSE is better than a higher one. Nevertheless, these error measures depend on the scale of 

the data used for the forecasting tasks. This means comparisons across different types or scales of data would be invalid. RMSE is 
also sensitive to outliers, as the effect of each error is proportional to the size of the squared error.

Normalized root mean square error (nRMSE) It facilitates the comparison between models or data with different scales. There are 
several methods to normalize the RMSE. From the candidates, we will use the mean, as we are comparing models based with the 
same dependent variable and with similar data treatment. nRMSE is calculated as:

𝑛𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸

�̄�
(8)

Where �̄� is the mean of the observed values. The main difference with RMSE is that nRMSE does not have units. Therefore, it 
could be interpreted as a relative measure.

Root mean square logarithmic error (RMSLE) Nowadays, it is one of the widely used error metrics for bike sharing demand and 
especially in many Kaggle competitions due to its robustness to outliers. It is defined as:

𝑅𝑀𝑆𝐿𝐸 =

√√√√1
𝑛

𝑛∑
𝑖=1

(𝑙𝑜𝑔(�̂�𝑖 + 1) − 𝑙𝑜𝑔(𝑦𝑖 + 1))2 (9)

Where 𝑦𝑖 are the predicted values, 𝑦𝑖 are the observed values, and 𝑛 is the number of observations.
The use of the logarithm ensures that outliers are drastically scaled down, almost nullifying their effect. In our study, it means that 

errors produced during peak time intervals do not dominate the one produced during non-peak intervals. Considering the properties 
of logarithms, RMSLE can be interpreted as the relative error between the predicted and the actual values. Additionally, RMSLE 
allows the comparison of data with different scales, as this error metric is relative and does not have units.

5. Results

5.1. Overall results

The error metrics for both arrivals and departures are summarized in Tables 4, 5 and 6 for Logroño, Barcelona, and NYC, 
respectively. As it was expected, the precision of the prediction is different in each city. Moreover, not a single model outperforms 
all the others in terms of forecasting performance in the three considered scenarios. Random Forest (RF) achieved the lowest error 
metrics when predicting, both arrivals and departures, in Barcelona. Bicing errors (see Table 5) reached a RMSLE of 0.36 when 
predicting arrivals using the test set, while for departures the RMSLE was 0.37. For the other cities, the Prophet algorithm achieved 
better scores. In the case of Logroño, the RMSLE metric (see Table 4) has a value of 0.41 for both, arrivals and departures. In Citi 
Bike system, this error metrics equal to 0.61 (see Table 6).

A close look at the Tables 4, 5 and 6, gives also interesting insights when comparing the models’ performance in each city. For 
example, error metrics are pretty close using Logroño system data if we compare all models used. More significant differences appear 
9

for Barcelona and New York data when comparing the error metrics between the prediction models trained. Additionally, the results 
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Table 4

Logroño - BiciLog Results. Prophet outperforms other algorithm’s performance in both arrivals and departures. However, the values of error 
metrics are quite close for all models trained.

Arrivals Departures

RMSE nRMSE RMSLE Training Time (min) RMSE nRMSE RMSLE Training Time (min)

ARIMA 0.908 1.311 0.413 10.0 0.926 1.329 0.416 4.8
Linear Model 0.959 1.385 0.440 0.1 0.999 1.434 0.448 0.1
Prophet 0.886 1.280 0.410 3.2 0.906 1.300 0.410 3.1

Random Forest 0.935 1.350 0.423 3.0 0.985 1.414 0.435 3.1
XGBoost 0.986 1.425 0.477 12.4 1.01 1.450 0.473 13.4

Table 5

Barcelona - Bicing Results. Random forest gives the best results when predicting arrivals and departures. Similar as in Logroño and New 
York, ARIMA and XGBoost take longer times to be trained. The differences in error metrics between the models considered are becoming 
more evident with a bigger data size and a more dynamic system.

Arrivals Departures

RMSE nRMSE RMSLE Training Time (min) RMSE nRMSE RMSLE Training Time (min)

ARIMA 3.824 0.318 0.380 299.3 3.871 0.319 0.379 121.3
Linear Model 4.441 0.369 0.426 1.9 4.360 0.359 0.422 2.2
Prophet 3.856 0.321 0.376 59.1 3.849 0.317 0.378 59.1
Random Forest 3.641 0.303 0.367 72.8 3.762 0.310 0.375 73.2

XGBoost 4.174 0.347 0.436 275.4 4.224 0.348 0.437 274.9

Table 6

New York - Citi Bike Results. Both, arrivals and departures are being predicted more accurately by Prophet. ARIMA, Random Forest and 
Prophet have close error metrics and similar performance. However, ARIMA needs longer time to be trained.

Arrivals Departures

RMSE nRMSE RMSLE Training Time (min) RMSE nRMSE RMSLE Training Time (min)

ARIMA 9.219 0.612 0.621 572.1 8.794 0.587 0.619 214.8
Lineal Model 10.846 0.721 0.661 4.3 10.275 0.686 0.662 4.1
Prophet 9.225 0.613 0.619 120.7 8.773 0.586 0.618 121.0

Random Forest 9.131 0.607 0.633 164.8 8.960 0.598 0.636 167.0
XGBoost 10.356 0.688 0.748 581.6 10.476 0.699 0.749 582.8

show that ARIMA model has also a high performance, and it is the second-best model in all cities. ARIMA error metrics are pretty 
similar to Prophet metrics for Logroño and New York and to Random Forest in Barcelona BSS.

Even when the trained models usually follow the trends well, the difference of performance between cities is quite evident. In 
the case of Logroño, with a small BSS, the difference between the real and predicted data is less than 1 bike. However, in such a 
small system, this could represent a big percentage error (nRMSE equal to 1.2 for arrivals and 1.3 for departures) especially in those 
stations with few or none movements during certain time intervals of the day. This situation becomes more visible if we compare 
the results of New York City. In this case, the difference between the real and predicted value is close to 9 bikes for arrivals and 
departures. Despite this, the nRMSE has a value of 0.6, half of the error for Logroño BSS.

Based on the comparison of the results for the three cities, we can conclude that performance is closely related to the dynamic 
of the BSS. The more dynamic the system is, the better is the model accuracy. We can also check that prediction algorithms have 
learned better the trends in data for Barcelona BSS. Fig. 2 displays the real value of arrivals and the prediction using Random Forest, 
which is the model with the best performance in this BSS. On the left side, the Fig. 2-(a) contains the data for the most used station. 
The predicted value follows pretty well the trend of the arrivals, especially when there are peaks of usage. On the right side, the 
Fig. 2-(b) shows the data of the station with the highest error metrics using the Random Forest model. In this case, RF failed to 
predict the arrivals when the trend suddenly changes and the usage is drastically increased or decreased.

The case of Logroño BSS is different. This BSS has a less dynamic usage behavior, which makes models fail to learn their patterns. 
Fig. 3 shows the real and estimated arrivals values in two bike stations of BiciLog system using Prophet. On the left, in Fig. 3-(a), 
the more dynamic station is displayed and readers can see that Prophet is failing to capture some peaks of usage. On the right side, 
Fig. 3-(b) contains the arrivals and estimated values for the station with the highest RMSLE, it means the station where Prophet 
had more failures to predict the arrivals. For this station, it is evident that our prediction model has learned a pattern with a lower 
number of arrivals, and it is not able to estimate peaks of usage.

Finally, similar plots are displayed for CitiBike system in Fig. 4. New York best prediction model, Prophet, have learned quite well 
the trends in the data, especially for the most used station, as it is depicted in Fig. 4-(a). Even when there are some usage peaks on 
the arrivals that Prophet is underestimating, the general trend for this station is well captured by this model. However, in the station 
10

with the highest error metrics (Fig. 4-(b)) Prophet is underestimating the arrivals. Actually, we can see that towards the end of the 
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Fig. 2. Barcelona: Estimated and real arrivals values for the most used (a) and for the station with the highest RMSLE (b) using Random Forest. The left view depicts 
a more constant trend which is accurately predicted by RF algorithm. On the contrary, the right view shows that RF is failing to predict changing patterns in the 
arrivals flow.

Fig. 3. Logroño: Estimated and real arrivals values for the most used (a) and for the station with the highest RMSLE (b) using Prophet. The left side view shows that 
arrivals in the most used station are being predicted more accurately. The right view displays that forecast models are predicting less than two bikes arriving each 
interval. However, the real value of arrivals is bigger than two in most of the periods.

Fig. 4. New York: Estimated and real arrivals values for the most used (a) and for the station with the highest RMSLE (b) using Prophet. The left view shows the 
prediction algorithm has learned the trends properly and can estimate the arrivals under certain ranges. On the opposite, the right side view displays that Prophet is 
failing to estimate the arrivals, especially during intervals with few or non movements.

data series, the arrivals’ prediction has an increasing trend while the actual values have a more stable pattern that never exceeds 15 
11

arrivals.
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Fig. 5. Error metric vs. Usage ratio. Logroño shows a positive relationship between the error and the usage ratio, the more used is the station, the bigger the error is. 
This relationship is negative for Barcelona and New York, i.e., the error is lower for those stations with higher usage ratios.

5.2. Impact of usage ratio

To get a better understanding of the model selected, Random Forest for Barcelona, and Prophet for Logroño and New York City, 
we analyzed the relationship between the model precision and the station usage ratio. We have created this metric and defined it as 
the sum of the number of trips (pickups and drop-offs) by time interval. For a better interpretation, we re-scaled the ratio to make 
all the elements lie between 0 and 1, having a common scale. Formally, it can be defined as:

𝑢𝑠𝑒𝑖𝑗𝑘 =
∑

𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠𝑖𝑗𝑘 +
∑

𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝑠𝑖𝑗𝑘

𝑈𝑠𝑎𝑔𝑒𝑅𝑎𝑡𝑖𝑜𝑖𝑗𝑘 =
(𝑢𝑠𝑒𝑖𝑗𝑘 −𝑀𝑖𝑛𝑈𝑠𝑒𝑗𝑘)

𝑀𝑎𝑥𝑈𝑠𝑒𝑗𝑘 −𝑀𝑖𝑛𝑈𝑠𝑒𝑗𝑘

Where i = StationID, j = day, k= hour interval

In each city, the usage ratio and the error metrics were calculated for each docking station. The results are displayed in Fig. 5. 
The relationship between these metrics is different in each city. In the case of Logroño (see Fig. 5-(a)), the error metric has a positive 
and linear relationship. When the station usage ratio increases, the error metric is larger. On the contrary, the relationship is negative 
but also linear for Barcelona (see Fig. 5-(b)), as the error metric decreases when the usage ratio increases. The plot for New York (see 
Fig. 5-(c)) shows a strong and logarithmic relationship between the error and the usage ratio. However, it is evident that most of the 
docking stations with higher errors are those with lowest usage ratio.

5.3. Error analysis by temporal distribution

Similarly, error metrics were computed for each station, time interval and dates in the test set. It means in the last week of 
February 2020. Fig. 6 displays a heatmap for each city, which shows the error in each time interval by docking station. Stations are 
ordered by their usage ratio. As was shown in section 5.2, the relationship between the error metric and the usage ratio is positive 
for Logroño (see Fig. 6-(a)) and negative for Barcelona (see Fig. 6-(b)) and New York (see Fig. 6-(c)). We can also see interesting 
patterns in Barcelona and New York. For example, the error is higher for the first interval (from 01:00 to 06:59) of each day. In the 
case of Logroño there is no similar pattern and the error seems not to be related with the time intervals.

5.4. Error analysis by spatial distribution

Finally, we computed the error metric in each docking station and plotted them in a map to investigate common patterns. Fig. 7, 
8, and 9 illustrate these findings. As was commented before, our three selected cities show different patterns according to their 
BSS size. Logroño, considered in this investigation as a small BSS, exhibits bigger prediction error (see Fig. 7-(a)) in those stations 
which have higher usage ratio (see Fig. 7-(b)). In this case, the most used stations are close to the city center. On the contrary, 
Barcelona with a medium BSS and New York with a large BSS, display lower prediction error in those stations located in the city 
center (see Fig. 8)-(a) for Barcelona and Fig. 9-(a) for New York), which are also the most used stations (see Fig. 8)-(b) and Fig. 9-(b) 
respectively).

5.5. Training time

With the aim to compare training time for different data sizes, models for all cities were trained using the same hyperparameters. 
Tables 4, 5, and 6 show the training time in minutes for both arrivals and departures forecasting. We can clearly see that training 
times increases when the data sizes are larger.

In all cities, training a Linear Model is time cost-efficient. For XGB model, we limited the number of rounds to 100 and test a 
depth of trees of 10 and 15. Therefore, it takes longer times to train. Similarly, training ARIMA models is taking longer times as we 
are using the auto.arima function in R and feeding time series with a frequency equal to 4 (due to the four daily time intervals). 
We used the default parameters in R for Random Forest and Prophet to train the models for the three cities. In the case of Logroño, 
12

the training time is similar for both algorithms. This similarity disappears, and the differences are more evident when the data size 
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Fig. 6. Detailed analysis of the error metric. The vertical axis shows the days (days 23-29 in purple) subdivided in time intervals along the day (1-4 in black). New 
York and Barcelona show a clear pattern: during the first interval (01:00 to 06:59) the error is higher. However, in Logroño, no clear patterns are visible.

Fig. 7. Error metrics distribution and usage ratio for Logroño. The most used stations are close to the city center and have higher RMSLE.

becomes larger. Tables 5, and 6 show how Random Forest takes longer time than Prophet to train in Barcelona and New York data, 
13

i.e., datasets with larger sizes.
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Fig. 8. Spatial distribution of error metrics and usage ratio in Barcelona. Similarly to Logroño, stations with higher usage ratios are close to the city center. However, 
the relationship is opposite, and these stations have lower RMSLE.

6. Discussion

During data cleaning, some garbled data was removed from the databases. For the three cities considered, this represents less 
than 1% of the total size of the dataset and removing it did not generate any bias, as there is not enough data to perform a long-term 
analysis. Similarly, for all databases, imputation of missing information was also performed, and it represents less than 1% of the 
total set. It is considered that less than 5% of missing data [53] will not have any consequence on the quality of statistical inferences.

With the aim of comparing results under the same conditions, we have used the same features in the dataset and same time 
intervals (From Oct. to Feb.) which cannot be optimal as they do not capture each BSS usage activity. To improve the results, it will 
be necessary to analyze the specific conditions of each city and gain understanding of the features which have more impact on bike 
sharing demand. Besides, the periods needed to train the data and capture the trends can vary in each city. For instance, Logroño 
or New York with a strong weather variation during seasons will need at least one year of data to learn data patterns. While other 
cities with less variation in the weather will need fewer data to train the models. Similarly, the four time intervals used to train and 
evaluate the models (see Section 4.2) can be optimal for Logroño, but for bigger and dynamic systems such as Bicing or Citi Bike, it 
will be better to use more granularity in the data.

Different from other studies that only uses a single metric to evaluate model performance [44,45,38], during our investigation, we 
have also highlighted how important it is to analyze multiple error metrics and not rely on a single one. This is especially important 
in our study as we compare both, different models and different datasets. Each metric considered can show a different perspective 
to be analyzed, which helps to increase the quality of the models’ results interpretation. For example, considering Tables 4, 5, and 
6 and checking the RSME metric, one can assume that predictions are more accurate in Logroño, as the values of RSME are lower 
than 1. This means that models incorrectly predict less than 1 bike when comparing with the real value. However, the percentage 
error (nRMSE) shows that any of the models has accurately estimated the trends in Logroño BSS and that actually an error of 1 bike 
can represent more than 100% in a system with relatively low usage (close to zero in some time intervals). This is not the case for 
Barcelona or New York City. In the case of Barcelona, the RSME shows around 4 bikes error when predicting arrivals or departures. 
Nevertheless, in a system with such a dynamic usage and size, this could represent a deviation of only 30% to the real value.

Additionally, models performance seems to be more similar in Logroño, as the error metrics have minimal variations. However, 
these differences become more evident when the data size increases and the system is more dynamic. Even when we are analyzing 
the same features, Barcelona and New York data have a different scale, if we consider the usage behavior of their BSS. As it is shown 
in Table 2, the average of arrivals and departures in Barcelona is more than 10 times the value in Logroño, and for New York it 
reached more than 15 times. This makes that differences in models’ performance metrics become more evident, and again emphasizes 
the importance of choosing the adequate metrics to compare the prediction performance when the data scale is different.

Our results show a low performance for the Linear Model, as was also found by previous studies [35,39]. In fact, this algorithm is 
14

usually used as a baseline in many studies. On the other hand, ARIMA model has showed a good performance. The results displayed 
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Fig. 9. Spatial distribution of error metrics and usage ratio for the case of New York. Similar to Barcelona BSS, the stations with higher usage ratios have lower 
RMSLE.

in Tables 4, 5, and 6 show that ARIMA is the second-best model in all systems. The error metrics are very close to the models with 
the best performance (Prophet in Logroño and New York, and Random Forest in Barcelona). However, the training times are larger 
for ARIMA as we are using the auto.arima implementation in R where several models parameters are tested. Additionally, we have 
used a SARIMA model with a seasonal pattern equal to 4, considering the four time interval periods that we have for each day.

As we can see in Fig. 2, Random Forest has learned the patterns in Barcelona arrivals and departures quite well. Random Forest 
has also been selected as the best algorithm in previous studies [44,43,35,38] and, similar to us, these authors also found Random 
Forest time cost-efficient. In the case of New York, usage trends have been learned by Prophet and the prediction is accurate for those 
stations with higher usage ratios, as it is displayed in Fig. 4-(a). However, Prophet fails to make an accurate prediction in stations 
where there are continuous time intervals with few or none trips (see Fig. 4-(b)). For New York, the previous studies that compare the 
performance of different prediction models found that Random Forest outperforms other models like Gradient Boosting [43] or LSTM 
[42,40]. However, none of these studies have tested Prophet algorithm and the data used differs to the one considered in this paper 
due to the data granularity and the number of docking stations under analysis. Prophet also outperforms other models in Logroño. In 
this case, those stations with higher usage ratios are also the ones with higher error metrics, and models are not learning the trends 
properly (see Fig. 3). Few studies have been done for smaller BSS. For example, Lozano [44] used data from Salamanca (Spain) and 
found that Random Forest gave better results compared with other prediction models. However, the data period considered is longer 
than ours, and the granularity is also larger, which makes not possible comparisons between these BSS results.

The error metrics vary in each city, and it becomes evident that models have to be fine-tuned according to the characteristics 
of each dataset to improve the accuracy of the prediction. Nevertheless, without fine-tuning the prediction models the results for 
15

Barcelona using Random Forest are similar to the results found by previous studies [38,33], and in Kaggle competitions. In addition, 
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the fact that the data used has been divided in four daily time intervals due to the low usage in the BiciLog system (see Section 4.2) 
can affect the accuracy of the predictions. To avoid this, some authors have reduced the data granularity (for example, predicting by 
day) [13], or considered high demanded hours and high demanded stations [32], or clustering stations [31]. In our case, the analysis 
has been centered on the scalability of the prediction algorithms and model fine-tuning in each city is part of the future work.

7. Conclusions and future work

In this paper, we have set the bases to evaluate how well different prediction algorithms, which have been extensively used in 
previous literature [35,38–40,42–45], can adapt and perform when the conditions of the dataset vary. Given that previous studies 
have not focused on the scalability of prediction models in different BSS, we covered this gap in the literature by predicting bikes 
arrivals and departures in three BSS with diverse usage behavior and size characteristics, and using a set of methods that cover 
traditional, linear, time series and machine learning algorithms. We have compared the performance of five models to predict 
short-term station level arrivals and departures in different Bike Sharing Systems (BSS). We used data from BSS of three cities with 
different sizes and characteristics, and classified them as (i) small, located in Logroño (Spain) with 23 docking stations, (ii) medium, 
in Barcelona (Spain) with more than 500 stations, and (iii) large, in New York City with more than 1500 docking stations. The 
algorithms used, ARIMA, Linear Regression, Random Forest, Prophet and XGBoost, were trained using data from October 2019 to 
February 2020 due to different data availability and to avoid unusual behavior as consequence of the COVID-19 pandemic and its 
mobility restrictions. Trips and weather information were part of the dataset used to train and test the algorithms. Model evaluation 
was done using the last week of February as a test set and RMSE, nRMSE, and RMSLE as error metrics.

Results show that Random Forest had a better performance to predict arrivals and departures in our medium size system 
(Barcelona). Prophet has outperformed the other algorithms in the small BSS (Logroño) and in New York BSS. Other gaps cov-
ered by this study are the analysis of the relationship between usage ratio and error metrics, and the variation of the error metric 
in each predicted interval. In this context, we found a clear relationship between usage ratio and the error metric. In our small 
BSS, they have a positive relationship; i.e., the higher the usage ratio, the higher the error. While in medium and large systems, 
this relationship is negative, and the error decreases when the usage ratio increases. Moreover, model accuracy in the medium and 
large BSS are directly related with the usage dynamic. For instance, during the first time interval with the lowest usage dynamic 
the error metrics are higher, and they decrease when the usage dynamic increase in the next time intervals. In fact, other authors 
have only used time periods [32] or stations [31] with larger usage behaviors. Finally, we demonstrated that the same prediction 
algorithm cannot be used in BSS with different sizes and usage characteristics, and models need to be fine-tuned, according to these 
characteristics, to achieve better results. Notice that it is also important a correct analysis and interpretation of the data, as well as 
choosing a correct error metric to evaluate and interpret model performance between different BSS.

One of the limitations of this study is that even when we considered a number of relevant variables, we did not include other 
factors that could affect BSS demand, as the information needed was not available for all the systems considered. For future work, 
we would like to evaluate different features such as the number of schools, different transport means or number of shops centers 
close to a docking station. These spatial features can have some influence in BSS demand, as it is suggested by Rixey study [45]. 
Other prediction methods such as Recurrent Neural Networks can also be tested, however they will need a larger data period to be 
properly trained. Similarly, a wider evaluation with a larger data set and a different time interval length would also be beneficial 
to understand long-term patterns in the data, and the influence of different seasons (winter, summer, spring, autumn) in the BSS 
demand. These evaluations will be possible once enough data is available. Another line of investigation we are considering is to 
extend this analysis to other BSS and study how the prediction models would scale in new BSS. Finally, a real-time testing of the 
models would be possible if permanent access to the original sources and the possibility of setting up a server to handle data is 
granted.
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