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IFI16 Expression Is Related to Selected Transcription Factors
during B-Cell Differentiation
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The interferon-inducible DNA sensor IFI16 is involved in the modulation of cellular survival, proliferation, and differentiation. In
the hematopoietic system, IFI16 is consistently expressed in the CD34+ stem cells and in peripheral blood lymphocytes; however,
little is known regarding its regulation during maturation of B- and T-cells. We explored the role of IFI16 in normal B-cell subsets
by analysing its expression and relationship with themajor transcription factors involved in germinal center (GC) development and
plasma-cell (PC)maturation. IFI16mRNAwas differentially expressed in B-cell subsets with significant decrease in IFI16mRNA in
GC and PCs with respect to näıve andmemory subsets. IFI16mRNA expression is inversely correlated with a fewmaster regulators
of B-cell differentiation such as BCL6, XBP1, POU2AF1, and BLIMP1. In contrast, IFI16 expression positively correlated with STAT3,
REL, SPIB, RELA, RELB, IRF4, STAT5B, and STAT5A. ARACNE algorithm indicated a direct regulation of IFI16 by BCL6, STAT5B,
and RELB, whereas the relationship between IFI16 and the other factors is modulated by intermediate factors. In addition, analysis
of the CD40 signaling pathway showed that IFI16 gene expression directly correlated with NF-𝜅B activation, indicating that IFI16
could be considered an upstream modulator of NF-𝜅B in human B-cells.

1. Introduction

The adaptive immune response mainly depends upon B- and
T-cells that originate from hematopoietic stem cells [1]. B-
cells mature in the bone marrow and are released into the
peripheral blood to subsequently reach secondary lymphoid
tissues. During the T-cell-dependent antibody response to

exogenous antigens, B-cells undergo activation, forming
the characteristic germinal center (GC) that is detectable
in peripheral lymphoid tissues such as the spleen, tonsils,
Peyer’s patches, and lymph nodes [2, 3]. GC formation
requires the interaction between costimulatory B-cell-surface
receptors with specific ligands expressed on T helper cells
and/or antigen-presenting cells. Antigen-activated B-cells
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undergo a progressive clonal expansion and differentiation
into centroblasts in the dark zone of the GC where the
process of somatic hypermutation leads to base-pair changes
in the V(D)J region of rearranged genes that encode the Ig-
variable region of immunoglobulin chains. Centroblasts then
differentiate into centrocytes and migrate into the light zone
of the GC where a strong process of selection eliminates by
apoptosis the centrocytes presenting low-binding antibodies.
Selected centrocytes can then differentiate into plasma cells
(PCs), responsible for antibody production, or into memory
cells [4].

Although the specific transcriptional program of naı̈ve B-
cell expansion and differentiation into PCs is not yet fully
understood, several transcription factors are functional dif-
ferentiation markers. Specifically, BCL6, PAX5, BLIMP1, NF-
𝜅B, some STAT familymembers, and IFN-induced factors are
required for specific differentiation steps as demonstrated in
knockout mice, where the deletion of some of these genes
induced the lack of specific B-cell subsets [5–12]. Recently,
the IFN-induced factor IFI16 protein has been associated
with B-cell dysfunction and autoimmune diseases suggesting
a possible role for this protein in B-cell biology [13]. IFI16
is a major member of the IFN-inducible PYHIN protein
family, which consists of human and mouse proteins that are
characterized by their ability to induce interferon, nuclear
localization, and hematopoietic expression [14]. The PYHIN
proteinsmay, therefore, serve as receptors formicrobialDNA,
providing new insights into infectious diseases. IFI16 contains
two specific stretches of 200 amino acids (HIN-200 domain),
designated a and b domains, at the C-terminus, and the PYD
domain at the N-terminus [14, 15]. The IFI16 gene encodes
three protein isoforms that are generated from the translation
of three separate mRNAs, which are produced by alternative
mRNA splicing [16–19]. In normal human bone marrow,
IFI16 expression is detected in CD34+ hematopoietic stem
cells and throughout differentiation into monocytes and
lymphocytes; however, IFI16 expression is downregulated
when CD34+ hematopoietic stem cells differentiate into red
cells, neutrophils, or eosinophils [17]. Several studies have
demonstrated that IFI16 plays an important role in the
modulation of cell proliferation, survival, and senescence.
IFI16 negatively regulates the cell cycle through the binding
and functional modulation of several molecules involved in
cell cycle regulation such as p53, Rb, and p21 [15, 19–27]. In
particular, IFI16 is associated with cell cycle arrest in G0/G1
and/or G2/M phases in some cell lineages [28, 29]. IFI16
overexpression is also related to apoptosis activation [30–32],
and the slow dividing hematopoietic progenitor CD34+ cells
exhibit an approximately 4-fold increase in IFI16 expression
with respect to the fast-dividing subset of the hematopoietic
progenitor CD34+ cells [33].

IFI16 expression is deregulated in autoimmune diseases
and primary cancers [23, 36]. Although IFI16 expression can
be regulated through treatment with many differentiation
stimuli [37], IFI16 is primarily induced by interferon (IFN)
types I and II, and its expression is related to specific IFNs and
cell types [38]. Furthermore, IFI16 plays a direct role in IFN-
𝛽-mediated responses because it responds directly to intra-
cellular exogenous DNA in a Toll-like receptor-independent

fashion [39, 40]. Association with IFN activity indicates a
possible involvement of IFI16 in some autoimmune diseases
that feature high interferon levels. Moreover, a possible
relationship between IFI16 and prolonged NF-𝜅b activation
that affects B-cell survival and induces B-cell cycle derange-
ment especially through the p53 pathway has been suggested
[13]. However, there have been limited studies on IFI16 in
lymphoma cell lines and multiple myeloma [41–43], and no
data are available on normal B-cell subsets.

In this study, we focused our attention on IFI16 expression
in normal B-cell subsets. Our goal was to assess the IFI16
expression patterns and their possible relationships with
the most relevant transcription factors controlling B-cell
development.

2. Materials and Methods

2.1. Isolation and Characterization of B-Cell Subsets. Whole
blood samples were collected from healthy blood donors
through venipuncture in EDTA-containing tubes after pro-
viding informed consent following the Helsinki declaration.
Peripheral blood mononuclear cells (PBMCs) were sepa-
rated using a Ficoll gradient (Ficoll-Hystopaque, Pharmacia,
Uppsala, Sweden). Naı̈ve and memory B-cells were purified
from healthy donor blood using a naı̈ve B-cell isolation kit
(StemCell, Grenoble, France) or a memory B-cell isolation
kit (Miltenyi, Auburn, CA, USA), respectively, following
the manufacturers’ instructions. The naı̈ve and memory B-
cells were analyzed using flow cytometry after the isolation
procedure to determine the purity percentage of these B-cell
subsets. CD19+/CD27+ and CD19+/CD27− B-cells consisted
of >95% in purified memory and naı̈ve B-cells, respectively.

2.2. Gene Expression Analyses. We analyzed the gene expres-
sion profile (GEP) data that were previously generated and
reported from different subsets of human B-cells [44, 45].
Briefly, we analyzed the GEP data from 25 samples of normal
B-lymphocytes (naı̈ve cells, 𝑁 = 5; germinal center cells,
𝑁 = 10; memory cells,𝑁 = 5; plasma cells,𝑁 = 5). All data
were obtained by using the Affymetrix HG-U133 2.0 plus
microarray (Affymetrix, Inc. http://www.affymetrix.com/
support/index.affx) and are available at http://www.ncbi.nlm
.nih.gov/projects/geo/. For further technical details, see [45].
In particular, we focused on the expression of IFI16, which
was identified using three different probe sets with the
HG-U133 2.0 plus GeneChip (206332 s at; 208966 x at; and
208965 s at). The mean values from the three probes were
used for the analyses. Because the GEP data were derived
from different experiments, adequate normalization quality
control was performed as previously reported and verified
through box plot andMAplot consistency analyses [46]. GEP
analyses were performed using GeneSpring GX 12.0 Software
(Agilent Technologies, Santa Clara, CA, USA) [44–46].

To assess the effects of CD40 signaling on IFI16 gene
expression, we analyzed the previously reported GEP data
[47]. Briefly, these data were originally generated using
retroviral transduction to induce CD40 signaling in Burkitt
lymphoma cell lines [47]. The CEL files that were origi-
nally available at GEO dataset GSE2350 were analyzed were



Journal of Immunology Research 3

analyzed using GeneSpring GX 12.0. Supervised analysis
was conducted as previously reported [45] using a 𝑝 value
and fold change cut-off of 0.05 and ≥2, respectively, and a
multiple test correction according to Benjamini-Hochberg
was adopted [45]. IFI16 interaction with master B-cell reg-
ulators (selected based on their relevance for mature B-
cell development according to the current literature [4],
such as BLIMP1, BCL6, MTA3, PAX5, IRF4, IRF8, XBP1,
RELA, RELB, REL, Oct-binding factor 1 (POU2AF1), SPIB,
BACH2, STAT3, STAT5A, and STAT5B) was evaluated by
calculating the coefficient of determination (𝑅2) and the
Pearson correlation (see the Statistical Analyses section).
Only the genes showing a 𝑅2 > 0.5 and a Pearson correlation
significance with 𝑝 value <0.01 were selected for further anal-
ysis. The selected genes were then inferred by applying the
ARACNe algorithm. To maximize the statistical significance,
we referred to a large dataset of human normal and neoplastic
B-cells as well as human B-cell lines that has been reported
previously [45, 48] and is available at GEO datasets GSE2350
and GSE12195 ARACNe was performed using geWorkbench
software, with bootstrapping, at a 𝑝 value threshold of
<0.01 before correction for multiple testing [45, 48–51].
PCs were eventually excluded from the analyses between
IFI16-BCL6, and IFI16-IRF4. In fact, based on our analysis,
IFI16 expression was suppressed by other molecules in PCs,
making them unsuitable for an appropriate evaluation of the
relations between IFI16-BCL6 and IFI16-IRF4. For the NF-
𝜅B pathway analysis we also studied the expression of well-
known transcriptional targets, such as BCL2, CCND2, CCR7,
CFLAR, IL2, IRF4, andNFKBIA, which have been previously
used to define NF-𝜅B activation by GEP [52]. In particular
(i) we studied their expression levels (normalized microarray
data), (ii) we studied the mean value of their expression in
each sample (referred to as “NF-𝜅B signature”), and finally
(iii) we divided the analyzed samples into two groups (NF-
𝜅B+ and NF-𝜅B−) based on whether the expression levels of
the NF-𝜅B signature were above or below the median value.

2.3. Quantitative RT-PCR. IFI16 mRNA expression analysis
was performed through quantitative real-timeRT-PCR (qRT-
PCR) onRNAextracted fromperipheral bloodpurifiedB-cell
subsets achieved from three healthy donors (𝑛 = 3, two men
and one woman, age between 32 and 36 years). Total RNA
was extracted from purified B-cell subsets using the High
Pure RNA isolation kit (Roche, Mannheim, Germany) and
stored at −80∘C.Then, total RNAwas reverse transcribed and
amplified employing the Quantitect SYBR Green RT-PCR
kit (Qiagen, Hilden, Germany) following the manufacturer’s
procedure. In brief, SYBR green real-time PCR assay was
performed in a 20𝜇L PCR mixture volume consisting of
10 𝜇L of 2X Quantitect SYBR green RT-PCR Master Mix
(Qiagen), containing HotStarTaq DNA polymerase, 400 nM
of each oligonucleotide primer, 0.2 𝜇L of 100X QuantiTect
RT Mix (containing Omniscript and Sensiscript reverse
transcriptases), and 100 ng of extracted RNA. The IFI16
primer sequences [53] were as follows: IFI16F: 5-ACA-
AACCCGAGAAACAATGACC-3, nt 1464–1485, (RNAref-
seq NM 005531.2) and IFI16R: 5-GCATCTGAGGAGTCC-
GAAGA-3 nt 1584–1565, (RNArefseq NM 005531.2). These

primers amplified a 121-bp region detectable in the different
IFI16 isoforms. The amplification was performed in a Light-
Cycler (Roche, Mannheim, Germany) with an RT step (1
cycle at 50∘C for 20min) followed by the initial activation of
HotStarTaqDNAPolymerase at 95∘C for 15min and 40 cycles
in three steps: 94∘C for 10 s; 60∘C for 15 s; and 72∘C for 30 s.
The LightCycler 5.3.2 software determined the quantification
cycle (Cq). The IFI16 amplicons were checked through a
melting analysis, and a single sharp peak was detected (Tm
= 82.5∘C).The relative IFI16mRNA expression levels and the
normalization to ribosomal 18S RNA were calculated using
the ΔΔCt method as described previously [34, 35, 54].

2.4. Protein Analyses. IFI16 protein expression was deter-
mined in naı̈ve and memory B-cells isolated from healthy
donor peripheral blood through flow cytometry and western
blot procedures. For flow cytometry, purified B-cell subsets
were achieved from five healthy donors (𝑛 = 5, three men
and two women, age between 30 and 36 years). Purified
näıve or memory B-cells were fixed in 1% PF for 30 minutes
at room temperature. After several washes in PBS, the cells
were treated for 45 minutes with 0.2% saponin (Sigma, St.
Louis, MO, USA)/PBS and then with a rabbit anti-IFI16
antibody (Sigma) or, as a negative control, with a rabbit anti-
HIV-1 p24 antibody (Diatheva, Pesaro, Italy) diluted 1 : 40
in 0.2% saponin/PBS for 30 minutes at room temperature.
After washing with PBS, the samples were stained with FITC-
anti-rabbit IgG (Dako, Copenhagen, Denmark) diluted 1 : 100
in 0.2% saponin/PBS for 30 minutes at room temperature.
The samples were analyzed using FACSCalibur flow cytom-
etry (Becton-Dickinson) and CellQuest software (Becton-
Dickinson).

Western blot analysis was performed on purified näıve
or memory B-cells achieved from healthy donors (𝑛 = 3;
two men and one woman, age between 32 and 36 years). The
cells were lysed in Laemmli buffer and equivalent amounts
of proteins per sample were subjected to electrophoresis on a
gradient 4–12% sodium dodecyl sulfate- (SDS-) acrylamide
precast gel (Thermo Scientific, Waltham, MA, USA). The
gel was then blotted onto a nitrocellulose membrane, and
equal loading of protein in each lane was checked by staining
of the blot membrane with 0.1% Ponceau S followed by
destaining with distilled water. IFI16 protein detection was
performed using rabbit anti-IFI16 antibody (Sigma, St. Louis,
MO, USA) at 1 : 200 dilution, in blocking buffer (3% BSA
in TBS/0.05% Tween 20) for 2 hours and after several
washes in TBS/0.05%Tween 20, the nitrocellulosemembrane
was treated with alkaline phosphatase-conjugated goat anti-
rabbit IgG (Sigma) at 1 : 1000 dilution in blocking buffer
for 2 hours. Immunoreactive bands were visualized with
BCIP/NBT solution (Sigma). As control, tubulin protein was
detected by mouse anti-tubulin monoclonal antibody (mAb;
Sigma) at 1 : 200 dilution and revealed by goat anti-mouse IgG
(Sigma) at 1 : 1000.

Double immunofluorescence labeling on processed
paraffin sections of reactive lymph nodes was performed
as described previously [55]. Pressure cooked, microwave-
treated slides were incubated for 1 hour with the following
mixtures of antibodies directed to (i) CD20 (mouse mAb,



4 Journal of Immunology Research

clone L26, dilution 1 : 200, Dako) and IFI16 (rabbit antibody,
dilution 1 : 30; Sigma); (ii) BCL6 (mousemAb, clone PG-B6p,
dilution 1 : 30, M7211, Dako) and IFI16; (iii) PRDM1/BLIMP1
(mouse mAb, clone ROSI95G, dilution 1 : 10, kindly
provided by Dr. Roncador, CNIO, Madrid) and IFI16;
and (iv) CD138 (rabbit antibody, dilution 1 : 400, RB 9422-P,
NeoMarkers) and anti-PRDM1/BLIMP1. The slides were
then incubated in the dark for 1 hour with the appropriate
fluorophore-conjugated secondary antibodies (Alexa Fluor
568-conjugated goat anti-mouse IgG2a, Invitrogen, Carlsbad,
CA, USA, for CD20, and Alexa Fluor 488-conjugated goat
anti-rabbit IgG, Invitrogen, for IFI16 and CD138, and Alexa
Fluor 568, goat anti-mouse IgG1, Invitrogen for BCL6 and
PRDM1/BLIMP1). The micrographs were obtained using
an Olympus BX61 microscope equipped with an Olympus
DP-70 digital camera; image acquisition, evaluation, and
color balance were performed using Cell∧F software.

2.5. Statistical Analyses. Statistical analyses were performed
with the StatView 5.0 software package (SAS Institute Inc,
Cary, NC) and Wessa [56], Pearson Correlation (v1.0.3) in
Free Statistics Software (v1.1.23-r6), Office for Research
Development and Education, URL http://www.wessa.net/
rwasp correlation.wasp/. ANOVA, unpaired 𝑡-tests, and,
when appropriate (specifically, when the sample size was less
than 10 cases in at least 1 group), a nonparametric (Mann-
Whitney) test were adopted for GEP data analyses for the
comparison of IFI16 expression in different subgroups. The
limit of significance for all analyses was defined as 𝑝 < 0.05;
two-sided tests were used in all calculations. The possible
relationship between the expression of IFI16 and other genes
(transcription factors regulating B-cell development) was
calculated using Pearson’s correlation method and linear
regression analysis. Relations were regarded as significant for
𝑅
2
> 0.50 and Pearson correlation with a 𝑝 value <0.01.

3. Results

3.1. Both IFI16 mRNA and Protein Expression Are Downreg-
ulated during Germinal Centre Reaction and Plasma Cellular
Differentiation. To investigate whether IFI16 was modulated
during B-cell functional differentiation, we studied IFI16
gene and protein expression in normal B-cell subsets. IFI16
gene expressionwas analysed using data previously generated
by DNA-microarrays [44, 45]. Näıve and memory B-cells
displayed a significantly higher amount of IFI16 mRNA than
GC B-cells (naı̈ve versus GC 𝑝 = 0.0062; memory versus GC
𝑝 = 0.0131) or plasma cells (𝑝 < 0.0001; Figure 1 andTable 1).
Conversely, no significant differences in IFI16mRNA expres-
sion between näıve and memory B-cells were detected (𝑝 =
0.78), although a consistent variation between individuals
was observed in memory B-cells (Figure 1). Finally, GC B-
cells exhibited significantly higher IFI16 mRNA levels than
PCs (𝑝 < 0.0001; Figure 1 and Table 1).

As IFI16 can also be regulated posttranscriptionally [57],
its expression, at the protein level, was analyzed in lymph
nodes using an indirect immunofluorescence assay. Double
staining with antibodies directed against IFI16 and the B-
cell marker CD20 clearly demonstrated IFI16 protein in the

Table 1: IFI16 gene expression analysis in normal B-cell subsets.

(a)

B-cell subset Count IFI16
Mean∗

Standard
deviation

Standard
error

Näıve cells 5 0.485 0.065 0.029
GC cells 10 0.043 0.231 0.073
Memory cells 5 0.437 0.282 0.126
Plasma cells 5 −2.121 0.409 0.183

(b)

B-cell subset 𝑝 value Statistical significance
GC versus memory 0.0131 S
GC versus näıve 0.0062 S
GC versus plasma cells <0.0001 S
Memory versus näıve 0.78 NS
Memory versus plasma cells <0.0001 S
Näıve versus plasma cells <0.0001 S
∗Normalized gene expression value.

lymph node compartments. As expected, there was strong
CD20 staining in the germinal center and in the mantle
zone, and IFI16 was detectable inside the nucleus of CD20
positive B-cells (Figures 2(a)–2(c)). In accordance with the
gene expression results, IFI16 staining was clearly brighter in
themantle zones, which are normally populated by näıve and
memory cells, than in the GCs, which are basically composed
of centroblasts and centrocytes (Figure 2(c)).

Because the mantle zones can be quite heterogeneous
in their composition, we also evaluated IFI16 expression in
näıve andmemory B-cell subsets purified fromhealthy donor
peripheral blood samples using immunomagnetic proce-
dures. Using flow cytometry, slightly higher IFI16 expression
levels in memory cells compared with näıve B-cells were
detected (Figure 3), although the difference was not signifi-
cant.Western blot analysis of protein extracts fromperipheral
blood näıve and memory B-cell subsets demonstrated the
presence of the three IFI16 isoforms generated by alternative
splicing (Figure 3). Consistently, qPCR assays demonstrated
that the IFI16mRNA content was similar in peripheral blood
näıve and memory B-cell subsets (Figure 3), thus confirming
the lymph node observations. Taken together, these results
indicated that IFI16 expression wasmodulated throughout B-
cell differentiation with a progressive downregulation during
the GC reaction and differentiation to PCs.

3.2. IFI16 Expression Correlates with Select Transcription
Factors. The observation of different expression levels of
IFI16 in B-cell subsets and, in particular, the significant IFI16
mRNA decrease in the crucial GC B-cell subset prompted us
to analyse whether IFI16 is regulated by major transcription
factors involved in B-cell regulation and differentiation. We
considered the transcription factors that are more strictly
involved in the modulation of GC cells, including BLIMP1,
BCL6, MTA3, PAX5, IRF4, IRF8, XBP1, NF-𝜅B, POU2AF1,
Ets family members (as SPIB), BACH2, STAT3, STAT5A,
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Figure 1: IFI16 mRNA expression in normal B-cell subsets. IFI16 mRNA expression evaluated by GEP and presented in box plot (a) and
interaction bar plot (b). Näıve and memory B-cells showed a significantly higher IFI16 mRNA level with respect to GC B-cells (näıve versus
GC 𝑝 = 0.0062; memory versus GC 𝑝 = 0.0131; Mann-Whitney test) and PCs (näıve versus plasma cells 𝑝 < 0.0001; memory versus PCs
𝑝 < 0.0001; Mann-Whitney test) but no differences were noted between naı̈ve and memory B-cell subsets (𝑝 = 0.78; Mann-Whitney test).
GC cells showed a significant increase with respect to plasma cells (𝑝 < 0.0001; Mann-Whitney test).

and STAT5B (for details on their expression levels in B-
lymphoid subpopulations, see Figure 4). First, we calculated
the linear regression coefficient of correlation (coefficient of
determination, 𝑅2) between the expression levels of IFI16
versus the different transcription factors and selected only
those transcription factors with 𝑅2 > 0.5. Second, we
calculated the Pearson correlation andfiltered only thosewith
a significant correlation and a p value < 0.01. We found that
IFI16mRNA levels inversely correlatedwithXBP1, POU2AF1,
BLIMP1, and BCL6 expression, whereas IRF4, STAT3, REL,
SPIB, RELA, RELB, STAT5B, and STAT5A showed a direct
correlation with IFI16 expression. MTA3, PAX5, IRF8, and
BACH2 did not show any significant correlation (Table 2;
Figure 5). To validate this observation, we performed double
immunostaining assays for IFI16/BCL6 or IFI16/BLIMP1 in
a series of reactive lymphoid tissues. Of note, immunostain-
ing confirmed the inverse relationship between IFI16 and
BLIMP1 and between IFI16 and BCL6 (Figure 6).

To assess whether the identified transcription factors
could directly target the IFI16 gene, we used a recently devel-
oped bioinformatic algorithm (ARACNe), suitable to iden-
tify transcriptional targets [9, 49]. Interestingly, ARACNe
indicated IFI16 as a possible direct target of BCL6, RELB,
STAT5B, and POU2AF1 but not of BLIMP1, XBP1, IRF4,
STAT3, REL, SPIB, RELA, and STAT5A (Table 2; Figure 7).
Notably, these results were consistent with those reported by
Basso and coworkers, who studied the BCL6 transcriptional
network [51]. Altogether, these data indicated that IFI16
modulation during mature B-cell differentiation was strictly
associated with the function of different transcription factors.
Particularly, IFI16 downregulation during the germinal cen-
ter (GC) transition appeared to be due to BCL6-mediated
transcriptional repression. In contrast, in both näıve and

memory B-cells following B-cell receptor (BCR) and CD40
stimulation,NF-𝜅B and STATs protein activationwere related
to IFI16 levels along with BCL6 downregulation. Finally,
in plasma cells (PCs), the combined effects of BLIMP1,
POU2AF1, and XBP1 are likely to maintain the lowest levels
of IFI16 gene expression.

3.3. IFI16 Expression Is Correlated to NF-𝜅B Activation in
Some B-Cell Subsets. The NF-𝜅B pathway is involved in B-
cell biology and differentiation and some reports have shown
that IFI16 can upregulate NF-𝜅B activity in endothelial cells
[58, 59]. Therefore, based on the evidence of a correlation
between IFI16 and RELA, RELB, and REL, we further anal-
ysed this possible interaction in B-cell subsets. Because the
functionality of NF-𝜅B subunits (RELA, RELB, and REL) is
quite complex and cannot simply be evaluated by detecting
changes in their gene expression, we also analyzed the activity
of the NF-𝜅B pathway by studying the expression of NF-𝜅B
target genes, as reported previously [60]. Higher IFI16 levels
were found in the presence of NF-𝜅B activation (𝑝 < 0.0001;
Table 3; Figure 8), confirming the correlation suggested by
the transcriptional levels of the three REL family molecules.

As the relationship between IFI16 and NF-𝜅B is not yet
clear, except in endothelial cells, we studied the effects of
CD40 (a well-known NF-𝜅B activator in human B-cells)
signalling induction on IFI16 levels to determine whether
IFI16 is an upstream activator or a downstream target of
NF-𝜅B. To do so, we analyzed GEP data that were orig-
inally generated in Burkitt lymphoma (BL) cell lines in
which CD40 signalling was induced by viral transduction to
evaluate the early events after CD40 stimulation [47] (see
Supplementary Table 1 in Supplementary Material available
online at http://dx.doi.org/10.1155/2015/747645). Althoughwe
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Figure 2: IFI16 protein expression in normal lymphoid tissues. (a) IFI16 staining of GC and mantle zones. (b) Double staining with CD20 and
IFI16 antibodies. IFI16 protein expression in reactive lymphoid follicles; the expression pattern was largely restricted to B-lymphocytes of
the mantle zone (M) and germinal centers (GC). (c) Particular of panel (b). Higher fluorescence in B-cells of the mantle zone (M) indicates
a higher expression in this compartment compared with GC cells. These micrographs were obtained using an Olympus BX61 microscope
equipped with an Olympus DP70 digital camera (magnification 100–400x); image acquisition, evaluation, and color balance were performed
with Cell∧F software.

observed clear activation of NF-𝜅Bwith increased expression
of different NF-𝜅B molecules (including NFKB2 and NFK-
BIA) and NF-𝜅B transcriptional targets (including ICAM1,
TRAF1,CFLAR, IRF4, andTNFAIP3) [61–64], we did not find
significantmodulation of the IFI16 gene (𝑝 = 0.8; fold change,
1.04).

Together, these results indicate a significant association
between NF-𝜅B activity and IFI16 expression but apparently
excluded a direct effect of NF-𝜅B on IFI16 expression. There-
fore, our data support the concept that IFI16 can regulate NF-
𝜅B in human B-cells, as already demonstrated in endothelial
cells [58, 59].

4. Discussion

In this paper, we have analyzed IFI16 mRNA and protein
expression levels in normal B-cell subsets and investigated
the correlations between levels of IFI16 and the expression

of transcription factors known to play a relevant role in
B-cell physiology and differentiation. Specifically, we used
GEP analysis in B-cell subsets purified from lymph nodes
to explore the transition from näıve to either memory or
PCs throughout the GC reaction. Overall, GEP analysis
showed that changes in IFI16 expression were related to cell
differentiation stages. The passage from naı̈ve B-cell subsets
to proliferating GC cells was associated with a significant
downregulation of IFI16 expression. IFI16 mRNA levels also
declined dramatically when GC cells differentiated into PCs,
whereas the shift from GC cells to memory cells demon-
strated an increase in IFI16 expression that was comparable to
those observed in näıve B-cell subsets. Because IFI16 can also
be regulated posttranscriptionally [57], we evaluated IFI16
protein expression and confirmed the results of theGEP anal-
ysis. Immunofluorescence staining of IFI16 in lymph nodes
showed a clear decrease in fluorescence in germinal center
CD20+ B-cells with respect to CD20+ B-cells in the mantle
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Figure 3: IFI16 protein and mRNA expression analysis in naı̈ve and memory B-cells purified from peripheral blood. In (a), IFI16 mRNA
levels were determined using qRT-PCR. The IFI16 mRNA expression relative quantification was calculated with the ΔΔCt method [34, 35].
The results are shown for the näıve B-cell subset relative to the memory B subset. The data represent the mean (±SD) of three independent
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cell subsets purified from peripheral blood. Näıve (light grey histogram) and memory (grey histogram) B-cells were stained by indirect
immunofluorescence with a rabbit anti-IFI16 antibody (1 : 40 in 0.2% saponin/PBS) and, subsequently, with a FITC-conjugated sheep anti-
rabbit IgG (1 : 100 in 0.2% saponin/PBS).The white histograms are the negative controls (dotted line, memory cells, solid line, and naı̈ve cells)
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is shown. In (c), western blot analysis of protein extract from peripheral blood memory and näıve B-cell subsets (𝑛 = 3). Cell lysates were
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as control. IFI16 A, B, and C isoform proteins were expressed similarly in memory and naı̈ve B-cell subsets. A representative experiment is
shown.

zones. These observations indicate that IFI16 expression is
regulated in GC cells and its modulation correlated with
B-cell differentiation fate. To gain further insights into the
control of IFI16 expression in GC cells, we compared IFI16
expressionwith the expression of pivotal transcription factors
involved in GC biology and differentiation. GEP analysis
showed that IFI16 expression was significantly related to the
expression of the transcription factor BCL6.This observation
was confirmed through bioinformatic inference of the IFI16
regulatory network using ARACNe, which indicated a direct
relationship between BCL6 and IFI16. Moreover, double

immunofluorescence analysis indicated low IFI16 protein
expression when high BCL6 levels were detected in B-cell
compartments. Consistently, a recent study indicated that
IFI16 belongs to the first neighborhood of BCL6, within its
transcriptional network [51]. BCL6 is a nuclear phospho-
protein that is specifically expressed in the GC in the B-
cell lineage and is detectable in the centroblasts and in the
majority of centrocytes. BCL6 is a master regulator of GC
constitution [4], and BCL6-deficient mice have normal B-
cell development but noGC formation [5, 7].The deregulated
expression of BCL6 induced an increase in GC formation in
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Figure 4: Continued.
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Figure 4: Gene expression levels of B-cell development associated transcription factors in normal B-lymphocytes. Normalized mRNA
expression evaluated by GEP is presented in box plots.

transgenic mice [7]. In GC, BCL6 regulates differentiation,
apoptosis, genotoxic stress response, and cell cycle progres-
sion [48, 65–70]. Specifically, BCL6 upregulates proliferation
of GCs by suppressing the expression and/or the activation of
genes involved in negative cell-cycle regulation such as TP53,
PIAS2, and p21 [71]. In addition, BCL6 supports the DNA
breaks induced by SHM and CSR, suppressing the sensing
of DNA damage by ATM and RAD3 inhibition [4, 65]. Con-
versely, IFI16 downregulates cell proliferation and reinforces
genotoxic stress responses by binding several molecular
partners including p53 [20, 29, 72–74]. Therefore, it is con-
ceivable that IFI16 transcription inhibition, which is directly
controlled by BCL6 during theGC transition,may be relevant
to the correct control of cell cycle progression and DNA
damage responses in GC cells. In support of this hypothesis,
IFI16 acts as a DNA sensor that activates genes involved in

cell cycle inhibition andDNA repair [29, 75]. Moreover, IFI16
might act as a scaffold protein that is generally associated
with the suppression of cell proliferation by causing cell
death or by triggering senescence [21, 23, 26, 27, 32, 76].
We showed evidence that, during GC transition, POU2AF1
could negatively regulated IFI16 as well. On the other hand,
no correlation was observed with other transcription factors
that play a major role in GC formation [10, 77–79], such as
BACH2 and IRF8. Conversely, SPIB, STAT3, and STAT5A
showed a positive correlation, supporting the hypothesis
that they may contribute to IFI16 expression in näıve and
memory cells (Figure 9). Interestingly, a relationship between
STAT3 activation and IFI16 expression during cell apoptosis
was detected in medullary thyroid carcinoma and mammary
epithelial cells.This finding indicates the possible existence of
a more general regulatory network between STAT3 and IFI16



Journal of Immunology Research 11

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

IFI16 = 0.376 − 0.146∗BCL6_Normal.2; R2 = 0.51

BCL6_Normal.2

−0.4

−0.2

−1.5 −1 −0.5

Bivariate scattergram with regression

IF
I1

6

Lo
g 2

un
its

(a)

0

0.5

1

0 0.5 1 1.5 2 2.5
−3

−2.5

−2

−1.5

−1

−0.5

BLIMP1.Normal
−1.5 −1 −0.5

IF
I1

6
Lo

g 2
un

its

Bivariate scattergram with regression

IFI16 = −0.206 − 0.76∗BLIMP1.Normal;
R2 = 0.722

(b)

0 0.5 1 1.5 2 2.5 3

IFI16 = 0.396 − 0.967∗XPB1; R2 = 0.829

0

0.5

1

−3

−2.5

−2

−1.5

−1

−0.5

−0.5

XPB1

IF
I1

6
Lo

g 2
un

its

(c)

0.25 0.75 1.25 1.75

IFI16 = 0.496 – 1.375∗POU2AF1; R2 = 0.636

0

0.5

1

−3

−2.5

−2

−1.5

−1

−0.5

−0.75 −0.25

POU2AF1

IF
I1

6
Lo

g 2
un

its

(d)

0

0.5

1

0.25 0.75 1.25

IFI16 = −0.724 + 1.467∗ STAT3; R2 = 0.928
−3

−2.5

−2

−1.5

−1

−0.5

−0.75−1.255 −0.25

STAT3

IF
I1

6
Lo

g 2
un

its

(e)

0 0.2 0.4 0.6 0.8 1

IFI16 = −0.557 + 2.042∗ STAT5A; R2 = 0.594

0

0.5

1

−3

−2.5

−2

−1.5

−1

−0.5

−0.8 −0.6 −0.4 −0.2

IF
I1

6
Lo

g 2
un

its

STAT5A

(f)

0 0.5 1

IFI16 = −0.888 + 1.541∗ STAT5B; R2 = 0.629

−1

0

0.5

1

−3

−2.5

−2

−1.5

−1

−0.5

−0.5

STAT5B

IF
I1

6
Lo

g 2
un

its

Log2 units

(g)

0 0.5 1

IFI16 = −0.19 + 1.138∗ SPIB; R2 = 0.795

0

0.5

1

−3

−2.5

−2

−1.5

−1

−2.5 −2 −1.5 −1

−0.5

−0.5

SPIB
Log2 units

IF
I1

6
Lo

g 2
un

its

(h)

Figure 5: Continued.
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Figure 5: The correlation between IFI16 and selected transcription factors was determined by GEP in normal B-cell subsets. The data are
shown in a bivariate scattergramwith a regression line. IFI16 is plotted on the 𝑦-axes, while BCL6, BLIMP1,XBP1, POU2AF1, STAT3, STAT5A,
STAT5B, SPIB, RELA, RELB, REL, and IRF4 are plotted on the 𝑥-axes in panels (a) to (l), respectively. Note that plasma cells were eventually
excluded from the analyses between IFI16-BCL6 and IFI16-IRF4. In fact, based on our analysis, IFI16 expression was suppressed by other
molecules in plasma cells, making them not suitable for an appropriate evaluation of the relationship between IFI16 and BCL6 or between
IFI16 and IRF4.

Table 2: Relation of IFI16with themain transcription factors regulating B-cell fate in terms of correlation, regression, andmutual information
(in bold, genes with significant correlation and regression values).

Gene 𝑅2 Pearson correlation 𝑝 value Mutual information 𝑝 value 0.01
STAT3 0.928 0.963 1.22E − 14 0.06422802
XBP1 0.829 −0.91 2.65E − 10 0.081934884
REL 0.807 0.898 1.11E − 09
SPIB 0.795 0.892 2.22E − 09
BLIMP1 0.722 −0.85 7.65E − 08
RELA 0.718 0.847 9.27E − 08
RELB 0.708 0.841 1.38E − 07 0.10159171
POU2AF1 0.636 −0.797 1.89E − 06 0.12605515
IRF4 0.63 0.794 0.03
STAT5B 0.629 0.793 2.26E − 06 0.09627818
STAT5A 0.594 0.77 6.57E − 06
BCL6 0.51 −0.714 0.0004
BACH2 0.49 0.7 9.90𝐸 − 05

IRF8 0.219 0.539 0.005
PAX5 0.093 0.305 0.138
MTA3 8.90𝐸 − 05 −0.009 0.05
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Figure 6: Double-staining immunofluorescence analysis of IFI16/BCL-6 and IFI16/BLIMP1 protein expression levels. Double-staining
immunofluorescence analysis demonstrated the inverse relationship between IFI16 (green) and either BCL6 (red; (a-b) magnification 200x
and 100x, resp.), or BLIMP1 (red; (c-d), magnification 100x and 400x, resp.). The latter, in particular, showed a mutually exclusive expression
patterns with IFI16. Specifically, plasma cells in panel (d) were BLIMP1+/IFI16−, while the surrounding lymphocytes were BLIMP1−/IFI16+.
In (e) (magnification 400x) double-staining immunofluorescence analysis showed the coexpression of BLIMP1 (red) and plasma cell marker
CD138 (green). These micrographs were obtained using an Olympus BX61 microscope equipped with an Olympus DP-70 digital camera;
image acquisition, evaluation, and color balance were performed using Cell∧F software.
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[80, 81]. Notably, by using ARACNe, a robust bioinformatic
algorithm [48, 49, 51], we have defined a possible type of
relationship between IFI16 and othermolecules. In particular,
we have shown evidence of a direct interaction between
IFI16 and either BCL6, STAT5B, POU2AF1, or RELB and an
indirect relationship (i.e., mediated by intermediate factors)
for STAT3, XBP1, REL, SPIB, BLIMP1, RELA, and STAT5A.

Interestingly, IFI16 gene expression after the GC transition
was regulated differently in PCs and memory B-cells. In fact,
IFI16 was strongly downregulated in PCs and upregulated in
memory B-cells. These two B-cell subsets originate from GC
centrocytes cells upon BCR-driven signaling activation [82].
Although BCL6 is shut off in both cases, the terminal differ-
entiation into plasma cells also requires PAX5 inactivation
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Table 3: IFI16 expression according to NF-𝜅B activation status.

NF-𝜅B status
Active Inactive

IFI16 expression

Mean 0.426 −0.413
Mean difference 0.839

Variance 0.037 0.03
Std. dev. 0.192 0.173
Std. err. 0.061 0.045
𝑝 value <0.0001

and the induction of the transcriptional repressor BLIMP1
[4, 82]. BLIMP1 has been recognized as a pivotal regulator
of the transition between GC and plasma cells. In fact, mice
with a B-cell-specific deletion of PRDM1, which is the gene
encoding BLIMP1, do not generate PCs [8], and transient
transfection experiments with BLIMP1 expression vectors
can determine plasmablast differentiation [83].

By testing the possible connection between IFI16 and
BLIMP1 genes, we found a strong inverse correlation at
the gene expression level. Accordingly, we documented
their mutually exclusive expression through double-staining
immunofluorescence assays. However, ARACNe analysis
failed to identify a direct link between IFI16 and BLIMP1,
suggesting that this relationship is not direct but is likely
mediated by an additional factor. In PCs, our data indicate the
possible relevance of XBP1 and POU2AF1 in repressing IFI16
expression. In particular, POU2AF1 showed a very strong
correlationwith IFI16 andwas indicated byARACNe analysis
as directly interacting with IFI16. In parallel, the analysis of
other factors such as MTA-3 and PAX5 that are involved in
the regulation of GC differentiation to PCs or memory B-
cell subsets did not show any significant association. These
results may suggest that IFI16 mRNA levels are sustained by
SPIB and STATs proteins, whereas BCL6 is inhibited, and
XBP1, POU2AF1, and BLIMP1 are absent. In contrast, IFI16
expression is negatively regulated during the transition to
GC and during differentiation to PCs by means of a few
major negative regulators such as BCL6, XBP1, POU2AF1,
and BLIMP1. This particular regulation of IFI16 expression
in PCs may have some interesting parallels with myeloid
progenitor-derived cell lineages. IFI16 is expressed in CD34+
hematopoietic progenitors and disappears when the cells
differentiate to megakaryocytes and erythrocytes [14, 17].
These observations indicate that IFI16 is tightly regulated in
blood cell lineages and plays a regulatory role during the early
step of progenitor cell differentiation; however, IFI16 is lost in
some lineages, especiallywhen these cells reach their terminal
differentiation.

We have also investigated the functional relationship
between IFI16 andNF-𝜅B.NF-𝜅B is a transcription factor that
is involved in cell survival and activation of B-lymphocytes
[47, 84]. Its activation is particularly evident upon B-cell acti-
vation, which results in the translocation of active NF-𝜅B into
the nucleus where it regulates target genes. NF-𝜅B activation
is particularly detectable after B-cell activation, which results
in the translocation of active NF-𝜅B into the nucleus where it

regulates target genes. Using GEP analysis, we observed that
significantly higher IFI16 gene expression levels accompanied
higher NF-𝜅B signature. In GCs and PCs, both IFI16 mRNA
levels and NF-𝜅B signaling decreased, whereas IFI16 mRNA
levels and NF-𝜅B signaling were restored in näıve and
memory cells. In the latter two cell subsets, NF-𝜅B activation
is sustained, at least in part, by BCR and CD40 signaling.
Therefore, we studied the effects of the CD40 downstream
cascade on IFI16 mRNA levels in human B-cells to assess
whether NF-𝜅B activation could directly induce changes in
IFI16 expression. Despite clear evidence of NF-𝜅B induction
as a result of CD40 stimulation, no modification of IFI16
levels was observed. Importantly, consistent with our aim,
the experiment was originally designed to detect the early
events of CD40 stimulation. Therefore, indirect effects (such
as those depending on the subsequent activation of IRF4 and
consequent BCL6 downregulation) were not observed.

Overall, these results indicated that IFI16mightmodulate
NF-𝜅B in B-lymphocytes but not vice versa. Nonetheless, as
our results are based on gene expression modulation, we
cannot exclude a more complex functional interaction at the
protein level. These data are in line with previous studies
demonstrating that IFI16 positively regulates NF-𝜅B activa-
tion in endothelial cells [58, 59, 64, 85–87]. IFI16 over expres-
sion, indeed, in HUVEC endothelial cell model, triggers the
NF-𝜅B complex activation through the inhibition of I𝜅B𝛼
transcription and expression [58]. In addition, the study of
IFI16 activity as DNA sensor indicated that viral and bacterial
DNAs activated IFI16 via HIN domains, independently by
TLR regulation [39, 75]. IFI16 sensed the presence of viral
or bacterial DNA and restricted viral replication of several
viruses including HSV, HCMV, EBV, and HIV [40, 88, 89].
In this experimental context [40, 75], it has been determined
that IFI16 interacts with STING to modulate positively NF-
𝜅B and, then, induce innate response genes [40, 75, 88]
suggesting a complex relationship between IFI16 and NF-𝜅B.

5. Conclusions

This paper is the first to describe the IFI16 expression
pattern in normal human B-cells at the mRNA and protein
levels. Although further studies are required to investigate
the specific functions of IFI16 in B-cells, the detection of
significant changes in IFI16 expression during differentiation
stages along with its interaction with several transcription
factors, including NF-𝜅B and BCL6, involved in the B-cell
biology, suggest an important role of IFI16 in this cell model.
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